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It is customary to hold up mathematical proofs as ideal models of certainty. In principle

a proof can be completely formalized and annotated and then it can be handed to other
mathematicians and logicians who can “automatically” and efficiently verify it beyond any
doubt. In practice the establishment of amathematical statement is a social process. Someone
proposes a proof, he and others check it and errors are often uncovered and corrected, until
finally the community of mathematicians accepts the statement and its proof as correct.
Over the past three decades computer scientists have injected a number of revolutionary

ideas and methods into the realm of proofs. These innovations mainly involve the use of
randomness, an idea that flies in the face of the proverbial absolute certainty of mathematical
proofs. Another salient feature of these novel methods of proofs is that in a well-defined
sense they constitute self-persuasions rather than proofs. We shall discuss three outstanding
examples of these innovations.
Randomized or probabilistic proofs. Consider the statement: n = 2400 − 593 is a prime

number. You prove it by randomly choosing 100 integers a1, . . . , a100, and performing on
each an easily computable testWn(aj). If all these tests produce the truth valueF , you declare
n to be prime. If n is composite rather then prime, the probability of erroneously concluding
that it is a prime is smaller than (1/4)100. Now, first we have established a mathematical
fact with a probability of error, albeit provably a very small one. Second, the proof is non-
transferable. If you hand the integers a1, . . . , a100, to somebody else and he verifies that
Wn(aj) = F for 1 ≤ j ≤ 100, it does not prove anything for him. Namely, n is perhaps in
reality composite and you have deliberately chosen the integers aj in order to mislead him. A
person must persuade himself of the primality of n by the randomized method, by effecting
the random choice of the ajs on his own. This raises additional profound questions as to
what randomness means in the real world and whether, assuming that we know the meaning
of randomness, random processes exist in nature.
Zero Knowledge and Interactive Proofs. Assume that P know, for a propositional formula

A(p1, . . . , pk), a satisfying truth value assignment for the propositional variables p1, . . . , pk .
The ProverP can cooperate with a VerifierV in an interactive Zero Knowledge Proof (ZKP)
that he, the Prover, knows a satisfying truth value assignment for the formula A(p1, . . . , pk).
The Verifier V poses to P a small number m of randomly chosen challenges. If P correctly
responds to all challenges, then V is persuaded that P knows a satisfying truth value as-
signment. The probability that V was mislead is smaller the (1/2)m . The Zero Knowledge
aspect of the proof means that besides being persuaded of the Prover’s claim of knowledge, V
learns nothing, not just about the assignment but about anything else. Hence the name Zero
Knowledge Proofs. The theory of ZKPs provides precise and convincing definitions for the
concepts of Zero Knowledge and of proof of knowledge by P, in addition to the surprising
fact that ZKPs are possible.
The method of interactive proofs has other surprising applications. A computationally

powerful (in a precisely defined sense) Prover can provide to any Verifier an interactive proof
that a given quantified prepositional formula is true. This has far reaching, albeit purely
theoretical, consequences.
Probabilistically Checkable Proofs (PCPs). Assume that P has, as before, a satisfying

truth value assignment for the propositional variables p1, . . . , pk , of a prepositional formula
A(p1, . . . , pk). He can effectively, i.e., by a polynomially long computation, transform the



formula A into a formula B(q1, . . . , qm) so thatA is satisfiable if and only if B is satisfiable. P
then writes satisfying truth values v1, . . . , vm into, say, a computer memory. Now, the verifier
V can randomly choose a small number, say 20, memory locations, read the stored truth
values (i.e., either F or T ) and perform a very simple test. If the test comes out correctly,
V concludes that B , and hence A, is satisfiable. The probability that he will be mislead is
smaller than (3/4)20. The startling aspect is that the number of truth values or bits that he
reads for this verification is independent of the size or number of variables of the formula A.
By some transformations we can conclude that one can convince himself of the existence of
a proof of Fermat’s Last Theorem by examining just 20 randomly chosen bits of a certain
formalized form of the proof written into memory by A. Wiles.
Computer generated proofs. In the past two decades proofs of some significant results were

generated by computers, or at least by man-computer cooperation, where the computer has
played a pivotal role. Examples are the proof, due to Appel and Haken, of the four-color
conjecture by computer, and the extensive work by Doron Zilberger. We shall discuss the
meaning and implications of these developments.


