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The motivating question for me in the early 1950s was as follows. Functional analysis,
developed within the framework of set theory including the axiom of choice, is very abstract.
What is the relation between this and the physical world? Even Peano arithmetic, PA, is
problematic, since it is based on an idea of truth whose empirical meaning is not clear. Two
tools for the investigation of questions of this kind within the framework of constructive
reasoning have been: the descending chain principle within some system of constructive
ordinal notations (Gentzen. 1938), and Gédel’s interpretation of intuitionistic systems by
means of functionals of finite type (1958).

New perspectives were opened up by Spector (1962) and Kreisel. This led to the pursuit of
the following program. Take a suitable subsystem of classical analysis, translate this into an
intuitionistic system, then give a proof theoretic treatment of the latter by means of Godel’s
functional interpretation, using the appropriate system of functionals of finite type.

When one considers functionals of finite type within a constructive framework, the ques-
tion arises: What is a type? In investigating this question, Curry found a striking relation
between the types of elementary functionals and the theorems of positive implicational logic.
This generalizes to the intuitionistic predicate calculus and to various systems of intuitionistic
mathematics. The relation between types and intuitionistic logic has been found useful in the
study of strongly typed programming languages.

In summary, the philosophical goals have been only partially achieved, and may very well
be unachievable, but there have been some useful practical consequences.
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Leibniz, Boole and Frege all expected the mathematical logic they were developing to be
applicable to human affairs outside mathematics and science. Leibniz explicitly wanted to
replace disputation by calculation. Unfortunately, this didn’t happen.

A complete system of first order logic was essentially developed by Frege and proved
complete by Godel. The Zermelo-Fraenkel set theory formally adequate for classical mathe-
matics was available by 1920. However, no-one was able to replace disputation by calculation
by formulating common sense facts and arguments in mathematical logic.

Logical artificial intelligence (AI) since 1959 has represented facts about the common
sense world in logical languages and has expressed rules giving the effects of actions and
other events as sentences in languages of mostly first order logic. The plan was and is for
a computer program to decide what to do by logically inferring that a certain reasoning
strategy was appropriate for attempting to achieve a certain goal.

Difficulties arose that required extensions of logical formalisms. The most important
extension is to nonmonotonic reasoning, in which allows brave inferences that may later have
to be withdrawn. There are several systems for this, all of which can be understood in terms
of preferred models. This lecture will mention circumscription, essentially minimization of a
tuple of predicates subject to an axiom constraining the interpretations, with some symbols
variable and others held constant.

More than just nonmonotonic reasoning is needed, but then matters become controversial
even within Al The lecture will discuss individual concepts and propositions as first order



objects, contexts as objects, and approximate objects without defined extensions.

All these matters come up in connection with the common sense informatic situation that
people face in trying to achieve goals. It is not decided in advance what concepts and facts
are relevant.

Human-level logical Al needs the following, and logicians have helped and can help more.

1. Languages covering more and more of common sense knowledge. This work has
gone slowly, because the needed concepts are often incompletely definable, i.e., don’t have
if-and-only-if definitions.

2. A “heavy duty” set theory within which a system can do its reasoning. Present systems
are limited in scope and require too much human intervention. However, some substantial
theorems, e.g., Godel’s first incompleteness theorem, have been proved by interactive systems
where a person provides guidance.

3. Logical problem solving programs that can use domain dependent heuristic informa-
tion. This is necessary, because present general purpose problem solvers generate too much
junk.

4. A language capable of expressing meta-reasoning about theories in the language. Al-
most all research in mathematical logic has involved informal reasoning about theories from
above rather than formal reasoning within the theory. A human-level system must not require
human supervision. Making such a system requires accepting incompleteness and avoiding
paradoxes by suitable weakening of axioms.
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Sets and arbitrary maps form a rich category, as everyone knows, but it may not be so
clear that there are natural subcategories (i.e., with fewer maps). For example, every set
has an intrinsic, generally non-discrete topology. The reason is that every powerset has a
natural topology (in fact, more than one. but we concentrate on the non-Hausdorff topology
of “finite information”), and, in the usual formulation of Zermelo-Fraenkel set theory (ZF),
every set is a subset of the powerset of its unionset. In this way a set inherits a subspace
topology. and consequently set inclusion becomes the same as subspace inclusion. The
intrinsic topology is easily defined, as is the notion of continuous function (a property of the
usual set-theoretic notion of function), and the category of sets and continuous functions
is equivalent to the category of topological Ty-spaces and continuous functions as usually
defined in pointset topology. This topological category of sets can be expanded to a category
of equivalence relations and continuous, equivariant functions by equally easy set-theoretic
definitions, and the resulting category has interesting closure properties and applications
not seen in the topological category. In intuitionistic Zermelo-Fraenkel (IZF) it is even
possible to postulate the existence of a small subcategory with extensive closure properties,
an inconsistent assumption in classical logic. The lecture is intended as a survey.



