
Efficient Variable Ordering Using aBDD Based Sampling

Yuan Lu†, Jawahar Jain‡, Edmund Clarke†, Masahiro Fujita‡

Dept of Elect. and Comput. Eng.† Advanced CAD Research‡

Carnegie Mellon University Fujitsu Laboratories of America
yuanlu,emc@cs.cmu.edu jawahar,fujita@fla.fujitsu.com

Abstract
Variable ordering for BDDs has been extensively in-

vestigated. Recently, sampling based ordering techniques
have been proposed to overcome problems with structure
based static ordering methods and sifting based dynamic
reordering techniques. However, existing sampling tech-
niques can lead to an unacceptably large deviation in the
size of the final BDD. In this paper, we propose a new
sampling technique based on abstract BDDs (aBDDs) that
does not suffer from this problem. This new technique,
easy to implement and automate, consistently creates high
quality variable orderings for both combinational as well as
sequential functions. Experimental results show that for
many applications our approach is significantly superior to
existing techniques.

1 Introduction

OBDDs (Ordered Binary Decision Diagrams) [2] of-
ten determine the performance of tools used in synthe-
sis, verification, validation, etc. Variable ordering is
the central problem in using BDDs effectively. Numer-
ous heuristics have been proposed to address this prob-
lem. Topology based or static variable ordering tech-
niques (for example, using depth-first or breadth-first
search) have been extensively investigated for more
than a decade [5, 9]. However, these techniques of-
ten perform poorly due to their reliance on purely
structural information. Sifting-based dynamic order-
ing techniques are more popular [6, 11, 12], but they
are extremely expensive in both time and space. More-
over, during the reordering of the BDDs, these tech-
niques can frequently get stuck in a local minimum
and thus fail to reduce the size of the resulting graph
to an acceptable degree.
A sampling based solution has been proposed by

Jain, et al. [7] to overcome these problems. In their
approach, a portion of Boolean space for the output
function is analyzed using reordering techniques. This
order is then used for analyzing the complete Boolean
space of the given function. By appropriately using
the (limited) global information about the given func-
tion, the local minimum problem of current sifting-
based ordering techniques was observed to be signif-
icantly reduced. We found this sampling approach
to be conceptually very useful. The framework laid

out in [7] closely guides various steps of our procedure
too. However, even though they discuss the possibil-
ity of using sophisticated sampling functions, their im-
plementation uses only randomly generated cubes for
sampling. Sampling by randomly generated cubes has
several practical problems. First, it appears to pro-
vide less efficient variable orders. Secondly, variable
orders generated can vary dramatically between dif-
ferent runs. This causes an extremely large variance
in the quality of the results. This also makes cube
based sampling difficult to automate effectively. Also,
sampling based on randomly generated cubes appears
less effective in producing a common order for multiple
output functions.
In this paper we propose a new sampling method-

ology, which alleviates these problems. Our algo-
rithm uses a deterministic approach based on abstract
BDDs (aBDDs) [8] and is significantly more efficient in
time and space than existing techniques. We describe
our technique and explain its advantages in detail in
Section 2. We provide detailed experimental results
for both combinational and sequential circuits in Sec-
tion 4, and our conclusions in Section 5.

2 Window-based Sampling Using aB-
DDs

Let f be a boolean function over the variables
x1, · · · , xn. A cube ci is just a monomial over the vari-
ables x1, · · · , xm. Cube based sampling [7] partitions
the domain of f into smaller cubes c1, · · · , c2n−m and
uses dynamic variable ordering to select a good or-
dering for restriction fi = f ∧ ci. The ordering for
f is obtained by combining the orderings of several
randomly chosen fi. The quality of resulting order-
ing may not be very good if fi does not closely ap-
proximate f . Thus, if the subset of cubes is selected
randomly, there may be significant variance in the ap-
proximations. Consequently, the final ordering for f
may not be good.
We overcome this problem by using a new sampling

technique. Instead of analyzing one random cube,
we automatically consider multiple cubes at the same
time by using abstract BDDs. We call our new tech-
nique window based sampling.
Intuitively, a window is a union of some number

Permission to make digital/hardcopy of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright n otice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2 000, Los Angeles, California
(c) 2000 ACM 1 -58113-188-7/00/0006..$5.00

of cubes. Assume that we choose t disjoint windows
w1, . . . , wt. Hence, we can partition f into f1, . . . , ft,
where fi = f ∧wi. In our window based approach we
choose the sampling windows using abstract BDDs.
In order to derive a window, we will divide the set of

2n input vectors into a number of equivalence classes.
We will then construct the representation for the given
Boolean function by taking only 1 representative vec-
tor from each equivalence class. Our window will be
intuitively defined by the set of such representative
vectors. More formally, assume that we are given a
surjection h : D → A. The function h determines an
abstraction function for m boolean variables, where
D = {0, 1}m. The elements d, d1, d2 ∈ D are 0-1 vec-
tors with length m. An equivalence relation ≡h is
induced by h on D as follows:

(d1 ≡h d2)↔ h(d1) = h(d2).

The set of all possible equivalence classes of D under
the equivalence relation ≡h is denoted by [D]h and
defined as: {[d]|d ∈ D} where [d] denotes the equiv-
alence class for d. Assume that we have a function
rep : [D]h → D that selects a unique representative
from each equivalence class [d]. In other words, for a
0-1 vector d ∈ D, rep([d]) is the unique representa-
tive in the equivalence class of d. Moreover, the ab-
straction function h generates an abstraction function
H : D → D as follows: H(d) = rep([d]). Intuitively,
H maps any 0-1 vector to its representative 0-1 vector
from the same equivalence class. We call H the gen-
erated abstraction function. ¿From the definition of H
it is easy to see that H(rep([d])) = rep([d]).
Intuitively, the aBDDs reduce the sizes of BDDs

by using the abstraction function to modify (remove)
various paths which do not confirm to the abstraction
function. The concepts underlying abstract BDDs
are most easily explained using binary decision trees
(BDTs) but apply to BDDs as well. For a detailed
account, please refer to [8]. Given a BDT Tf for the
boolean function f , let �v denote the path from root
to the node v at level m + 1. It is easy to see that
the path is a 0-1 vector in the domain D = {0, 1}m,
i.e. �v ∈ D. As we described before, an abstraction
function h : D → A induces a generated abstraction
function H : D → D. Assume that �u = rep([�v]), i.e.
H(�v) = �u, we call u the representative of node v. In-
tuitively, in the abstraction procedure, if �u = H(�u),
the BDT rooted at u is kept; otherwise, the BDT is
replaced by “0”. More formally, the abstract BDT
H(f) of Tf rooted at v is defined as

H(f)(�v) =
{

f(�v) �v = H(�v)
0 otherwise.

For example, given a boolean function f = (a∧¬c)∨
(b ∧ c), and an abstraction function h = a + b, the
abstraction procedure is illustrated in Figure 1. First,
the BDT for f (Figure 1a) is shown in Figure 1b. We
have �P ≡h

�Q since h(�P) = h(�Q) = 1. Assume that P
is chosen as a representative, Then the directed graph

P

a

Q

b

c

b

Q

c

P

c

a

b

h = a + b

b

reduction

c

(c) BDT for f after abstraction

a

(a) BDD for f

b

(d) aBDD for f

b

c c

a

b

(b) BDT for f

c

abstraction

c c

b

c c

0 1

0

0

1 1

1

0

Figure 1: Build abstract BDDs (example)

after abstraction is shown in Figure 1c. Finally, the
abstract BDD of f is obtained by applying BDD re-
duction rules. Note that this new definition of aBDD
is different from the one in [8].
The following lemma guarantees that the aBDD of

a function f can be obtained by applying abstraction
before building f . This avoids building the BDD for
the original function f which might be infeasible.

Lemma 2.1 Let f, p, q : {0, 1}n → {0, 1} be boolean
functions, and letH : D → D be the generated abstrac-
tion function corresponding to the abstraction function
h : D → A. The following equations hold:

(f = p ◦ q) → (H(f) = H(p) ◦ H(q))
(f = ¬p) → (H(f) = H(¬H(p))

where ◦ is either a conjunction or a disjunction.

Assume that the boolean variables in the BDD
of f associated with �v are x1, · · · , xm. Let �v =
〈a1, · · · , am〉, ai ∈ {0, 1}. It is easy to see that �v in-
duces a cube cv where

cv =
m∧

i=1

{
xi ai = 1
¬xi ai = 0

Let us define a window wH =
∨

�u=H(�u) cu. Intuitively,
wH represents a set of cubes. Then we have

Lemma 2.2 Let f be a boolean function and H be the
generated abstraction function, then H(f) = f ∧wH.

The aBDDs provide us a window in which sam-
pling can be performed. Hence, using abstract BDDs
one can naturally implement the window based sam-
pling method. First, we select a set of control vari-
ables. These variables are heuristically determined
by traversing the circuit in a depth-first order where
nodes are selected so that the distance from a node
to the primary inputs is minimized. Next, we choose

an abstraction function for a set of control variables
and build an abstract BDD for the function f with
dynamic reordering on. Since this abstract BDD par-
tially captures the functionality of f , a good ordering
for the abstract BDD is likely to be a good order-
ing for f as well. Different abstraction functions usu-
ally produce different orders. From our experiments,
we have found that the symmetric abstraction func-
tion

∑m
i=1 xi and the logarithmic abstraction function

�log2
∑m

i=1(2
ixi)� are good choices. Note that these

abstraction functions are parameterized by the num-
ber of variables. In each case, the number of cubes is
relatively small. For example, a symmetric abstrac-
tion function on m variables determines m+ 1 cubes.

3 Algorithmic Details
Our method has same 4 conceptual steps as in

[7]: the estimation phase, the candidate-order selec-
tion phase, the testing phase (circuit filter phase), and
the evolution phase. These 4 phases produce an ini-
tial ordering for building the final BDD and are de-
scribed below. The main difference between our ap-
proach and [7] is that we select windows using abstract
BDDs instead of randomly selected cubes.

Step 1. In the estimation phase, we try k (k ≈
2, 3) different abstraction functions and determine the
number of variables mi (i ≤ k) for each function.
Starting from the top variable, we choose the set of
abstracted variables incrementally. For each cube in
the window given by the abstraction function, we par-
tially simulate the circuit. We choose mi (i ≤ k) to be
the size of the abstraction function if simulating one
of the cubes greatly decreases the number of gates left
in the circuit.

Step 2. In the candidate-order selection phase, we
apply k different abstraction functions to the top
mi (i < k) variables selected in the previous phase.
Then, for each abstraction function, we build the ab-
stract BDDs for the original boolean function with
dynamic reordering on. This produces k different vari-
able orderings. In our experiments, we choose k to be
2 or 3 and use the subsequent phases to reject and
refine these orderings.

Step 3. The purpose of the circuit filter phase is to
filter out the bad orderings. We estimate the quality
of a given variable ordering by building the BDD with
this ordering until a certain target gate inside the cir-
cuit (with dynamic reordering disabled). An obvious
question is how we choose the target gate. Consid-
ering the circuit to be levelized, we first define some
threshold level tl. Now, we pick that gate between
the primary inputs and level tl whose cone covers the
maximum number of primary inputs. The intuition
for this step is that we want to consider as many vari-
ables as possible to compare the orderings for all of
the variables obtained from Step 2.

Step 4. After filtering out the bad orderings, we use
the evolution filter to decide which is the best ordering

from the ones that remain. Using another window de-
fined by a new abstraction function, we build abstract
BDDs for the remaining orderings obtained from Step
3. We choose the ordering which has the minimum
number of BDD nodes as our final order.

3.1 BDD Ordering in Model Checking
In model checking, the problem of generating a

good initial variable ordering is even more serious than
the case with combinational circuits. Static order-
ing approaches have been proposed [1]. Because the
best ordering may change dynamically during the fix-
point computation, these approaches are not powerful
enough for many applications. In reality, people gen-
erate the initial orders manually or statically and run
model checker iteratively to produce a golden variable
order. This approach is not systematic and may be
inefficient for large designs.
In [4], a methodology to verify ACTL properties

using an abstract Kripke structure. Recently, a modi-
fied version of abstract BDDs has been used to build a
more refined abstract Kripke structure [3]. Note that
this modified aBDD is different from the one defined
in Section ??. Since the abstract Kripke structure de-
scribes the basic behavior of the original structure, a
good variable order for the abstract structure is likely
to be a good ordering for the original structure. Based
on this observation, we propose a new variable order-
ing scheme as follows:

1. Given a set of abstraction functions, the system
automatically builds the abstract Kripke struc-
ture using abstract BDDs.

2. Next, we verify each ACTL property on the ab-
stract structure with dynamic reordering. If the
property is not true, we output the final variable
ordering for next step.

3. Finally, we restart the model checker on the orig-
inal structure using the ordering obtained from
the previous step as the initial variable ordering.

Compared with the methodology for combinational
circuits, this approach does not have the evolution
phase. We are currently trying to devise an evolution
phase suitable for model checking.
As an example, we verified part of the PCI bus pro-

tocol. PCI local bus protocol includes three types of
devices: masters, targets, and bridges. Masters can
start transactions, targets respond to transactions,
and bridges connect buses. Masters and targets are
controlled by finite-state machines. We considered a
simple model which consists of one master, one tar-
get, and one bus arbiter. The model includes different
timers to meet the timing specification. The master
and target both include a lock machine to support ex-
clusive read/write. The master also has a data counter
to support burst transactions (multiple data phases).
We have observed that the BDD sizes constructed dur-
ing model checking can be reduced significantly by us-
ing the procedure described above.

SPACE (# of BDD Nodes) TIME (in seconds)
DFS Static CUDD CUDD Using DFS Static CUDD CUDD Using

Ckts MIN (aBDD) Sift SiftConv aBDDs MIN (aBDD) Sift SiftConv aBDDs

c432 5624 3956 379 377 367 1.6 3.1 1.3 2.8 2.9

c499 3466 3429 3457 3650 3117 0.1 5.1 3.5 7.2 5.3

c1355 3652 3109 2557 3337 3529 0.1 5.0 3.2 11.0 6.9

c1908 2187 1428 901 758 763 0.2 2.6 2.0 4.5 2.6

c3540 55730 6976 8045 5486 5510 9.1 30 46.0 54.0 31.0

c6288 19417 22360 16774 16693 16746 5.1 132 40.0 110.0 56.0

c6288 48483 42781 40024 39942 40024 17.0 127 88.0 251.0 103.0

EX1 fail 942 1467 644 748 fail 88 41 89 33

EX2 881339 596415 13390 14771 9431 9.5 24 22 98 33

EX3 966210 738906 633780 655556 63404 8.8 91 1320 6780 230

EX4 fail fail 163854 fail 130589 fail fail 3535 fail 2667

EX5 fail fail 190674 190674 63916 fail fail 2616 2586 480

EX6 fail 20994 20343 15905 13457 fail 134 146 334 120

EX7 fail fail 118378 67384 40698 fail fail 522 517 191

EX8 fail fail 289619 387116 186754 fail fail 786 4781 1365

Table 1: Deterministic sampling using aBDD (static and dynamic): notice that ISCAS85 circuits like c880, c2670,
c5315, c7552, have no hard outputs and hence they are ommitted from the single output table.

3.2 Advantages of our technique
In a cube based sampling technique, since only one

cube is considered at a given time, a sample may
map to a trivial function. A window based sampling
method considers a large number of cubes at one time;
it is highly unlikely that each of these cubes will re-
duce to a trivial function. Thus, even if random cubes
were generated, a window based sampling is far more
stable. As a corollary, since cube based sampling is
very sensitive to the set of cubes generated, this type
of technique is hard to automate.
Note a window contains many cubes. Thus, a func-

tion sampled using windows effectively contains a re-
striction of the original function on each of the cube.
Thus, when we reorder our sampled function, we are
implicitly trying to produce an order which is simul-
taneously “good” for each of these restrictions. In-
tuitively, this is important because a variable order
produced from restriction by any single cube may not
be good for the whole function. Considering multiple
cubes at the same time and “averaging” their effect
is more likely to produce better result. For many cir-
cuits we find that the variable order produced by us-
ing windows is far better than the order produced by
cubes. When a single order is needed for all outputs of
a multiple-output circuit, window based method can
also be used to generate good initial variable orderings
for such circuits.

4 Experimental Results
Our experiments are performed on a 360MHz Sun

UltraSparc-60 with 512Mb RAM using the CUDD-

2.2.0 package for combinational circuits; and on
a 200MHz Pentium-Pro with 1.0Gb RAM using
SMV [10] for model checking. In our tables, BDD size

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

EX3

EX6

ab
dd

ab
dd

ab
dd

ab
dd

2

4

5

1

3

6

7

8

cu
be

cu
be

cu
be

cu
be

cu
be

(1355gat)

c3540
(72)

c1355

cube based method cannot
finish EX3 and EX6 for
some of the runs EX9

ab
dd

(normalized)
BDD size

deviation
minimum

Figure 2: Static ordering using aBDD based sampling
vs. using cube based sampling method [7]

is measured by the number of BDD nodes. Runtime
entries refer to the time taken for the sampling phases,
as well as the time taken to construct the final BDD
from the order computed by sampling. The “DFS-
MIN” entries refer to the DFS based static variable
ordering method described in Section 2. Similarly, all
CUDD entries refer to CUDD-2.2.0 using sift, except

for “CUDD SiftConv” which was obtained by replac-
ing sift with sift-convergence throughout the experi-
ment. The “SMV” column refers to SMV-2.4.4 using
partitioned transition relations with 2000 nodes as the
partition size. The “Using aBDD” column refers to
the sampling technique which uses abstract BDDs for
building the abstract structure. We conducted four
sets of experiments. Experiments 1-3 use combina-
tional circuits while Experiment 4 deals with model
checking. Experiments 1-2 show how the technique
behaves on single output functions, while Experiment
3 deals with multiple output functions.
Note, our abstract BDDmethod gives deterministic

results (unlike [7]). For this purpose, in Experiments
1-3 we use two abstraction functions: the symmetric
function and the logarithmic function (See Section 2).

(402)c1908
(72)

c3540

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�

2

4

5

1

3

6

EX3

ab
dd

ab
dd

ab
dd

ab
dd

cu
be

cu
be

cu
be

cu
be

EX5

ab
dd

cu
be

EX6

BDD size (normalized)

minimum
deviation

Figure 3: Dynamic ordering using aBDD based sam-
pling vs. using cube based sampling method [7]

Experiment 1 (Table 1 and Figure 2): First, we
use the order computed by sampling to build the BDD
statically. Except for slightly inferior orderings on
c499 and c1355 (both circuits are functionally equiva-
lent) we find that our methods always produce better
variable orderings than those produced by DFS search
based static techniques (Table 1). For many industrial
examples we find that DFS-MIN cannot even process
the circuits. Interestingly, for c3540 and EX1, we find
that our static order using abstract BDD based win-
dows is better than even the dynamic ordering ob-
tained using the CUDD-2.2.0 package, and for EX6,
comparable. Thus, we believe that our window based
sampling method is superior to other static ordering
methods in terms of efficiency as well as stability.
Figure 2 gives some representative data for compar-

ing the performance of static ordering methods that
use an initial ordering provided by cube based sam-
pling vs. window based sampling using aBDDs. It is
easy to see that cube based method suffers from very
large variance. However, since window based sampling
is deterministic, there is no variance at all. Interest-
ingly, for EX3 and EX6, aBDD based methods can
create a small BDD for the output function, but cube

CUDD Sift Using aBDDs
BDD CPU BDD CPU

Ckts Size Time Size Time

c432 1246 0:02 1224 0:03

c499 25897 0:29 26798 1:03

c880 4821 0:06 4463 0:06

c1355 25897 0:31 26579 0:56

c1908 9102 0:07 5946 0:08

c2670 2412 0:15 3070 0:31

c3540 23857 0:27 24122 1:02

c5315 2108 0:06 2712 0:07

c7552 18363 2:26 7206 0:59

M1 2595K 1:54:45 1866K 1:26:41

M2 4283K 8:36:00 4120K 2:50:15

M3 963K 1:17:15 487K 28:49

M4 fail fail 2195K 1:13:26

M5 5976 0:48 1568 2:23

M6 89639 4:24 13625 2:36

Table 2: aBDD Sampling for multi-output circuits.
Note, multiplier c6288 is ommitted since it is provably
intractable for OBDDs.

based sampling fails for some of the runs!
Experiment 2 (Table 1 and Figure 3) show the

utility of window based sampling in a dynamic vari-
able ordering scheme. That is, we show how dynamic
reordering techniques can be significantly improved
if they are supplied with an initial variable ordering
generated using a window based sampling technique.
In Table 1, we find that we can produce far smaller
graphs than the traditional dynamic reordering meth-
ods (sift, sift-convergence). Also, for most of the large
circuits we take less time. Sometimes, the difference
is dramatic; in EX3 we take almost an order of mag-
nitude less space and 6 times less runtime. Compared
with cube based sampling approaches, our method is
also superior (Figure 3) since our method does not
have the large deviation problem.
Experiment 3 (Table 2): We performed another

set of experiments to show the efficacy of window
based methods on multiple output functions. It is
known that sifting works very well for ISCAS85 cir-
cuits [11] and for many circuits, there may not be
scope for significant improvement. However, our ap-
proach still outperforms CUDD for some of the circuits
(c1908 and c7552). For large industrial circuits, our
approach is definitely much better than CUDD (sift)
in both time and space.
Experiment 4 (Table 3): During verification of

the PCI bus protocol, we have applied abstractions to
some of the timers, the lock machine and the data
counter in the master. Address and data in both
the master and the target are also abstracted. Var-

Prop- TIME (sec) # Nodes
erty SMV SMV+ SMV SMV+

aBDD aBDD

P1 542 289 11984K 3327K

P2 242 204 1778K 718K

P3 5882 207 36077K 862K

P4 15 77 50K 44K

P5 424 269 4458K 3700K

P6 179 118 2472K 520K

P7 8970 3956 28924K 13964K

P8 84 117 645K 504K

P9 9946 793 37288K 5084K

P10 14 75 59K 39K

P11 5580 2713 20680K 7850K

P12 293 376 4632K 3506K

P13 2043 1209 19703K 6002K

P14 2932 1862 38210K 17386K

P15 2831 118 12740K 520K

P16 fail 3955 fail 13964K

P17 63 117 649K 504K

Table 3: Sampling for Model Checking

ious properties dealing with handshaking, read/write
transactions, and timing are checked in this model.
The initial ordering for both “SMV” and “Using
aBDD” columns are provided manually. Obviously,
aBDD based approaches are superior to the tradi-
tional approach. Note that our approach is totally
automatic.

5 Conclusion and Future Work
We have described a highly effective sampling based

ordering technique. Our technique is very easy to au-
tomate, and provides efficient solutions for both static
variable ordering as well as dynamic variable ordering
problem. Our results show significant improvement
over CUDD package as well as over the previously
reported sampling techniques which have the disad-
vantage of large variations among multiple runs in the
quality of results produced. We show that similar ap-
proaches using abstraction work very well for model
checking too.
We are currently pursuing several directions for fu-

ture research. As we discussed before, we found that
in practice the symmetry and logarithm functions are
good abstraction functions. We are currently explor-
ing this aspect of sampling based variable ordering
problem; a proper understanding of the same can be
extremely useful in generating better abstraction func-
tions automatically. BDD packages with Sampling
based variable ordering have been investigated pre-
viously by [13]. We are currently investigating how to
incorporate our techniques inside BDD packages in-
stead of exploring the circuit structure.

References
[1] A. Aziz, S. Tasiran, and R. K. Brayton. BDD

variable ordering for interacting finite state ma-
chines. In Design Automation Conference, 1994.

[2] R. E. Bryant. Graph-based algorithms for
boolean function manipulation. IEEE Transac-
tion on Computers, pages 35(8):677–691, 1986.

[3] E. Clarke, S. Jha, Y. Lu, and D. Wang. Abstract
BDDs: a technique for using abstraction in model
checking. In Correct Hardware Design and Ver-
ification Methods, volume 1703 of LNCS, pages
172–186, 1999.

[4] E. M. Clarke, O. Grumberg, and D. E. Long.
Model checking and abstraction. ACM Trans-
actions on Programming Languages and System
(TOPLAS), 16(5):1512–1542, September 1994.

[5] M. Fujita et al. Evaluation and improvements
of Boolean comparison method based on binary
decision diagrams. In International Conference
of Computer-Aided Design, 1988.

[6] M. Fujita et al. On variable ordering of Binary
Decision Diagrams for the application of multi-
level logic synthesis. In European Design Automa-
tion Conference, 1991.

[7] J. Jain, W. Adams, and M. Fujita. Sampling
schemes for computing OBDD variable orderings.
In International Conference of Computer-Aided
Design, 1998.

[8] S. Jha, Y. Lu, M. Minea, and E. Clarke. Equiva-
lence checking using abstract BDDs. In Interna-
tional Conference of Computer Design, 1997.

[9] S. Malik et al. Logic verification using binary de-
cision diagrams in a logic synthesis environment.
In International Conference of Computer-Aided
Design, 1988.

[10] K. L. McMillan. Symbolic Model Checking.
Kluwer Academic Publishers, 1993.

[11] S. Panda and F. Somenzi. Who are the variables
in your neighborhood. In International Confer-
ence of Computer-Aided Design, 1995.

[12] R. Rudell. Dynamic variable ordering for ordered
binary decision diagrams. In International Con-
ference of Computer-Aided Design, 1993.

[13] A. Slobodova and C. Meinel. Sample method for
minimization of OBDDs. In IWLS’98, pages 311–
316, 1998.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

