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1. INTRODUCTION

Security for early computers was provided by their physical isolation.
Unauthorized access to these machines was prevented by restricting phys-
ical access. The importance of sharing computing resources led to systems
where users had to authenticate themselves, usually by providing a name-
password pair. This was sufficient if the user was physically at the console
or connected to the machine across a secure link. However, the efficiency to
be gained by sharing data and computing resources has led to computer
networks, in which the communication channels cannot always be trusted.
In this case, authentication information such as the name-password pairs
could be intercepted and even replayed to gain unauthorized access. When
such networks were local to a certain user community and isolated from the
rest of the world, many were willing to take this risk and to place their
trust in the community. However, in order to be able to share information
with those outside the community, this isolation had to be removed. The
benefits obtained by such sharing have been enormous, and the gains are
demonstrated by the growth of such entities as the “Internet” and the
“World Wide Web.” As more and more people use these resources, and as
more services are offered on-line, the importance of being able to provide
security guarantees becomes paramount. Typically, these guarantees are
provided by means of protocols that make use of security primitives such as
encryption, digital signatures, and hashing. These protocols are notoriously
hard to design. In fact, errors have been found in many protocols several
years after they were published. Due to our increased dependence on these
protocols, it is extremely important that we should have high assurance or
confidence in these protocols. For example, compromise of a secure pay-
ment protocol used between a customer and an on-line brokerage company
can result in huge losses for the customers and brokerage houses. More-
over, negative publicity caused by intrusions can erode customer confidence
and affect the entire electronic commerce sector. Since the protocols in the
domain of security are widely used, and flaws in these protocols can in
some cases result in grave losses, we believe that applying formal methods
for the verification of these protocols can be very beneficial. We realize that
verifying protocols is one of many steps in building a complete system.
However, by having automatic verification tools for performing such tasks,
we ease the burden on the software architect so that they can concentrate
on other issues. Our main goal was to build a tool that is easy to use and is
as automatic as possible. We think any tool that can be readily used by
system architects building secure systems should have these characteristics.
A question that immediately comes to mind is “why is it not enough to
verify a few existing standards?” In this case verifying security protocols
using some heavyweight techniques such as theorem proving or manual
proofs might be acceptable. In the ensuing paragraph we argue that
frequently architects modify standard protocols or design new protocols.
Hence, an architect designing a secure system needs to test properties of
protocols quickly and effortlessly. Architects design new protocols because
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of several reasons. First, existing protocols might be too complex and might
have a severe performance impact on the system. Depending on the
requirements of the system, a software architect might simplify an existing
protocol. In this case, one needs to check properties of this simplified
protocol quickly. In our experience, this is quite common, especially in the
domain of secure payment protocols. Moreover, because of the specific
nature of the system being designed a software architect might only need a
very simple protocol. For example, if the customer and the merchant
communicate directly (e.g., through an on-line brokerage system), the
secure payment protocol can be greatly simplified because the communica-
tion is occurring between two parties, i.e., there is no need to involve a
clearing house or third party. Therefore, in order for a tool to effortlessly
blend into the software process a verification tool needs to be lightweight
and push button in nature.

A second requirement for a useful tool is that it should have an expres-
sive specification language for stating properties about the protocol under
consideration. In our view, “hardwiring” properties into a tool is not the
right approach. One can never anticipate properties that a system architect
may want to check. This is primarily because protocols run in the context of
a system. In fact, a single protocol might be required to have different
properties depending on the larger system it is deployed in. For example, if
a secure payment protocol runs between two parties that are untrusted,
one might want to check for authentication-type properties, i.e., only
authorized parties take part in the protocol. In a secure payment protocol
that runs on top of a secure link one can assume that the parties are
trusted. Hence, in this case the context of the system imposes different
kinds of properties on the secure payment protocol.

Earlier verification work in the domain of security was limited to
authentication protocols. These protocols are generally small. Now the
verification effort has shifted to secure payment protocols and other proto-
cols related to electronic commerce. With the emergence of electronic
commerce these protocols have become quite important. In general, secure
payment protocols are much larger than authentication protocols. This
brings the efficiency issue to the forefront. Algorithms for verifying these
protocols should be efficient in space and time. Moreover, as protocols
become complex, the flaws they exhibit have also become more complicated
in nature. For example, there are protocols with flaws that only occur if
multiple instances or sessions of that protocol are active at the same time.
This means that the verification tool should be able to handle multiple
sessions. Unless a verification algorithm is designed carefully, multiple
sessions can cause an explosion in the explored state space.

BRUTUS was developed to satisfy the requirements outlined above.
BRUTUS supports a wide class of security protocols and is completely push
button in nature. If the protocol under consideration is incorrect or flawed,
the tool generates a counterexample or an attack demonstrating the flaw.
This feature is invaluable to the designer for fixing the protocol. We have
also designed a very expressive logic for specifying properties about the
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protocol. In our experience, most security properties we have encountered
can be easily expressed in our logic. We have also developed reduction
techniques that make the verification process efficient in both time and
space. However, we believe that efficiency is an area where our tool could
still be improved.

A model of computation for protocols is discussed in Section 2. Section 3
describes the logic for expressing properties about cryptographic protocols.
Three protocols and some relevant properties are described in Section 4.
We have provided several examples of properties required of cryptographic
protocols. These can serve as design patterns for the architect using our
system. The basic algorithm and reductions used in BRUTUS are briefly
discussed in Section 5. Section 6 provides experimental results demonstrat-
ing the effectiveness of the reduction techniques. A detailed account of
other approaches and their comparison with BRUTUS appears in Section 7.
In discussing the related work, we have tried to be comprehensive, so
Section 7 is almost a minisurvey of the area of formal methods in security.
Finally, in Section 8 we conclude with future directions.

2. THE MODEL

We describe how we model security protocols in BRUTUS. As with other
model checkers, having an operational description of the behavior of agents
or principals participating in a protocol is desirable.! We begin by describ-
ing the messages involved in a protocol model, specifically what kinds of
messages there are and how they can be constructed. We then give a
mathematical model for the agents in the protocol. Finally, we discuss the
different actions allowed during the execution of a protocol and describe
how they change the state of the system.

2.1 Messages

Typically, the messages exchanged during a run of a protocol are con-
structed from smaller submessages using concatenation and encryption.
The smallest such submessages (i.e., they contain no submessages them-
selves) are called atomic messages. There are four kinds of atomic mes-
sages.

—Keys are used to encrypt messages. Keys have the property that every
key k has an inverse £ !. Note that for symmetric cryptography the
decryption key is the same as the encryption key, so 2 = £~

—Principal names are used to refer to the participants in a protocol.

—Nonces can be thought of as randomly generated numbers. The intuition
is that no one can predict the value of a nonce; therefore, any message
containing a nonce can be assumed to have been generated after the
nonce was generated, i.e., it is not an “old” message.

Principals and agents will be used synonymously throughout the article.
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—Data messages play no role in how the protocol works but are intended to
be communicated between principals.

Let A denote the space of atomic messages. The set of all messages M
over some set of atomic messages A is inductively defined as follows:

—Ifa € A then a € M. (Any atomic message is a message.)

—Ifm, € Mand my, € M then m; - m, € M. (Two messages can be paired
together to form a new message.)

—If m € M and key & € A then {m}, € M. (A message m can be en-
crypted with key £ to form a new message.)

We would also like to generalize the notion of messages to message
templates. A message template can be thought of as a message containing
one or more message variables. To extend messages to message templates
we add the following rule to the inductive definition of messages:

—If v is a message variable, then v € M.

Because keys have inverses, we always rewrite a message of the form
{m},},-1 as m, or we always keep the messages in a “reduced” form. It is
also important to note that we make the following perfect encryption
assumption: the only way to generate {m}, is from m and k. In other words,
for all messages m, my, and m, and keys k, {m}, # m, + m,y, and {m}, =
M}y, >m=m' 0k =Fk'.

We also need to consider how new messages can be created from already
known messages by encryption, decryption, pairing (concatenation), and
projection. For this we define a derivation relation “ +” which captures how
a message m can be derived from some initial set of information 7.

(D Ifm € IthenI + m.

(2) IfI+ m,;and I + m, thenI + m, - m, (pairing)

(3) IfI + m,- mythenI F m; and I  m, (projection)

(4) IfI + m and I + & for key k then I + {m}, (encryption)
(5) IfI+ {m}, and I + k! then I I m (decryption)

We will use the notation I to denote the closure of the set I under the rules
given above. In other words m € I if and only if I + m.

These rules define the most common derivability relation used to model
the capabilities of the adversary or the intruder in the literature. We will
assume that when trying to subvert a protocol, the adversary can only use
messages it can derive using these rules from some initial set of informa-
tion and from overheard messages. For example, if I, is some finite set of
messages overheard by the adversary and possibly some initially known
messages, then I, represents the set of all messages known to the adversary,
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and the adversary will be allowed to send any message in I, to any honest
agent in an attempt to subvert the protocol.

In general, I is infinite, but researchers have taken advantage of the fact
that one need not actually compute I. It suffices to check whether m € I
for some finite number of messages m. However, checking if m € I must
still be decidable. We briefly discuss this question in Section 5. For a
detailed discussion of this question, see Clarke et al. [1998].

2.2 Instances

We model a protocol as an asynchronous composition of a set of named
communicating processes which model the honest agents and the adver-
sary. We also model an insecure and lossy communication medium, in
which a principal has no guarantees about the origin of a message, and
where an adversary is free to eavesdrop on all communications and
interfere with fake messages. Therefore, in the model, we insist that all
communications go through the adversary. In other words, all messages
sent are intercepted by the adversary, and all messages received by honest
agents were actually sent by the adversary. In addition, the adversary is
allowed to create new messages from the information it gains by eavesdrop-
ping, in an attempt to subvert the protocol.

In order to make the model finite, we must place a bound on the number
of times a principal may attempt to execute the protocol. Each such attempt
will be called a session. Each session will be modeled as a principal
instantiating some role in the protocol (i.e., initiator or responder). For this
reason we will call the formal model of an individual session an instance.
Each instance is a separate copy or instantiation of a principal and consists
of a single execution of the sequence of actions that make up that agent’s
role in the protocol, along with all the variable bindings and knowledge
acquired during the execution. A principal can have multiple instances, but
each instance is executed once. When we combine these with a single
instance of the adversary, we get the entire model for the protocol.

Each instance of an honest principal is modeled as a 5-tuple (N, S, I,
B, P) where

—N € names is the name of the principal,
—S 1is a unique instance ID for this instance,

—B : vars(N) — M is a set of bindings for vars(N), the set of variables
appearing in principal N, which are bound for a particular instance as it
receives messages,

—I C M is the set of messages known to the principal executing this
instance, and

—P is a process description given as a sequence of actions to be performed.
These actions include the predefined actions send and receive, as well
as user-defined internal actions such as commit and debit.
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The model of the adversary, Z, has some similarities; however, the
adversary is not bound to follow the protocol, and so it does not make sense
to include either a sequence of actions P, or a set of bindings B, for the
adversary. Instead, at any time, the adversary can receive any message, or
it can send any message it can generate from its set of known messages I.
The instance corresponding to the adversary will be denoted by S .

The global model is then the asynchronous composition of the models for
each instance, including the adversary. Each possible execution of the
model corresponds to a trace, a finite, alternating sequence of global states
and actions 7 = oya;0.07° * *a,0, for some n € N, such that o;,_; =5 o, for
0 <i =n and for the transition relation — as defined in the next
subsection.

2.3 Actions

The actions allowed during the execution of a protocol include the two
predefined actions send and receive as well as possibly some user-defined
actions. The model transitions between global states as a result of actions
taken by the individual components, or instances. More formally, we define
a transition relation — C 3 X S X A X M X 3 where > is the set of
global states, where S again is the set of instance IDs, where A is the set of
action names (which includes send and receive), and where M is the set of
all possible messages. We will use the notation o o' in place of (o, s,

a, m, 0') € > when it is more convenient. In the definition of the
transition relation given below, we will denote the adversary as Z = (N,
S, 0, I,, ) and the honest instances as H; = (N,;, S;, B;, I;, P;). We will
use 0 = (Z, H, ..., H,) to denote the global state before the transition
and ¢’ = (Z',H', ..., H',) to denote the global state after the transi-

tion. In addition, we will use the notation B to denote the natural extension
of a set of bindings B from the domain of variables to the domain of

message templates. In other words, B(m) is the result of substituting B(v)

for v in the message template m for all the variables v appearing in m.

Next we describe all the legal transitions of the model.

—0 Sse—nim o': An instance with ID s can send message m in the global
state o, and the new global state is ¢’ if and only if

(1) I, =1,U m. (The adversary adds m to the set of messages it
knows.)

(2) There is an instance H; = (N;, s, B;, I;, send(s-msg) -+ P';) in o
such thatino', H; = (N,, s, B;, I;, P';,) and m = Bi(s-msg). (There
is an instance that is ready to send message m, and this action is
removed from its sequence of actions in the next state.)

(3) H; = H'; for all j # i. (All other instances remain unchanged.)
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Notice that the adversary intercepts all messages. In order for the
intended recipient to receive the message, the adversary must forward it.

—0 R o': An instance with ID s can receive message m in global
state o, and the new global state is ¢’ if and only if

(1) m € I,. (The adversary can generate the message m.)

(2) There is an instance H; = (N, s, B;, I, receive(r-msg) + P',) in o
such that in ¢’, H'; = (N;, s, B';, I';, P';), I'; = I, U m, and B’; is
the smallest extension of B; such that B’i(r-msg) = m. (There is an
instance ready to receive a message of the form of m; in the next state
its bindings are updated correctly, and the receive action is removed
from its sequence of actions.)

(3) H; = H'; for all j # i. (All other instances remain unchanged.)

Notice that all messages come from the adversary, although as stated
above they may simply have been forwarded unchanged. Because all
messages come from the adversary, we can also model when an adversary
modifies, misdirects, or suppresses messages.

— SA—T o': An instance with ID s can perform some user-defined internal
action A with argument m in global state o, and the new global state is
o' if and only if
(1) there is an instance H; = (N, s, B;, I;, A(msg) + P';) in o such that

in ¢',H; ={(N;,s,B,,I;, P';) and m = Ei(msg) (there is an in-

stance s that is ready to perform action A with argument m and this

action is removed from its sequence of actions in the next state) and
(2) H; = H'; for all j # i (all other instances remain unchanged).

3. LOGIC

In order to specify the requirements or the desired properties of the
protocol, we will use a first-order logic where quantifiers range over the
finite set of instances in a model. In addition, the logic will include the
past-time modal operator so that we can talk about things that happened in
the history of a particular protocol run or trace. The atomic propositions of
the logic will allow us to refer to the bindings of variables in the model, to
actions that occur during execution of the protocol, and to the knowledge of
the different agents participating in the protocol. Generally, our logic is a
variant of the linear-time temporal logic with the past-time operator where
at the atomic level one can express actions and knowledge. We will begin
with the syntax of the logic, followed by the formal semantics.

3.1 Syntax

As stated above, we will use a first-order logic where quantifiers range over
the finite set of instances. The atomic propositions are used to characterize
states, actions, and knowledge in the model. The arguments to the atomic

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.



Verifying Security Protocols with Brutus . 451

propositions are terms expressing instances or messages. We begin by a
formal description of terms.

—If S is a instance ID, then S is an instance term.

—If s is an instance variable, then s is an instance term.
—If M is a message, then M is a message term.

—If m is a message variable, then m is a message term.

—If s is an instance term, then pr(s) is a message term. Intuitively, pr(s)
represents the principal that is executing instance s.

—If s is an instance term and m is a message variable, then s.m is a
message term representing the binding of m in the instance s.

—If m; and m, are message terms, then m, - m, is a message term.

—If m, and m, are message terms, then {m,},, is a message term. Of
course we are assuming that m, has the correct type to be used as a key.

“

—We use “.” as a scoping operator. If s an instance term and v is a message
variable, then s.v is a message term and intuitively refers to the variable
v bound in instance s.

As in standard first-order logic, atomic propositions are constructed from
terms using relation symbols. The predefined relation symbols are “=” and
“Knows.” The user can also define other relation symbols which would
correspond to user-defined actions in the model. The syntax for atomic
propositions is as follows (all relation symbols are used in the infix
notation):

—If m; and m, are message terms, then m; = m, is an atomic proposition.
Examples of an atomic proposition would be checking if a customer and
merchant agree on the price of a purchase (Cy.price = M,.price), or to
check if a particular instance of A believes its authenticating with B
(Ay.partner = B).

—If s is an instance term and m is a message term, then s Knows m is an
atomic proposition which intuitively means that instance s knows the
message m. This proposition can be used to check if the adversary has
compromised the session key (Z Knows K).

—If s is an instance term, m is a message term, and A is a user-defined
action, then s A m is an atomic proposition which intuitively means that
instance s performed action A with message m as an argument. For
example, this could be used to check if a customer C, has committed to a
transaction with identifier TID(C, commit TID).
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Finally, well-formed formulas (WFFs) are built up from atomic proposi-
tions with the usual connectives from first-order and modal logic.

—if f is an atomic proposition, then f is a WFF.

—if f is a WFF, then —f is a WFF.

—if f; and f, are WFFs, then f; O f, is a WFF.

—if fis a WFF and s is an instance variable, then ds.f is a WFF.
—if fis a WFF, then O pf is a WFF.

The formula Js.f means that there exists some instance s, such that f is
true when you substitute s, for s in f, while ¢ pf means that at some point
in the past f was true. We also use the following common shorthands:

—f10f ==(=f1 O=f>)
—fr—=fe=-f10f
—frofo=(fi = f) O(fs = f1)
—Vs.f = = ds. =f (for all instances s, f is true when you substitute s for s)
—[Opf = = O p =f (at all points in the past f was true).
The formula Vs.f means that for any instance s,, f is true when you

substitute s, for s in f, while [1pf means f was true at all points in the past.

3.2 Semantics

Next we provide semantics for the logic just presented. These semantics
will be given in terms of the formal model presented in Section 2. Again, we
begin with the terms of the logic.

—An instance ID S refers to the instance with that ID.

—An instance variable s ranges over all the instances in the model.
—An atomic message M is an atomic message in the model.

—A message variable v varies over messages in the model.

—If s is an instance ID, then pr(s) is the principal executing the instance
with ID s.

—The interpretation o(s.v) of s.v in a particular state o is B,(v), the value
bound to the variable v in instance s in state o.

—The semantics of message concatenation and encryption are obvious and
follow straight from the definitions.

The WFFs of the logic will be interpreted over the traces of a particular
model. Recall that a trace consists of a finite, alternating sequence of states
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and actions m = oya,0;. . . S,. Length of a trace 7 is denoted by length().
We give the semantics of WFFs in our model via a recursive definition of
the satisfaction relation =. We will write (7, i) &= f to mean that the ith
state in a trace m satisfies the formula f. We begin with atomic propositions.

—(m, i) E m; = m, if and only if o,(m,) = o0;(m,). Thus the formula m,
= m, is true in a state if the interpretations of m; and m, are equal. In
other words, two message terms are equal in a state if after applying the
appropriate substitutions to the variables appearing in the message
terms, the resulting messages are equal.

—(m, i) = s Knows m if and only if o;(m) € I, for some instance H; in o,
such that S; = s (the instance ID of H; is s). In other words, the formula
s Knows m is true in a state if the instance with ID s can derive
message m from its known set of messages in that state. S, Knows m is
true if the adversary Z knows that message m (recall that S, is the
instance corresponding to the adversary).

—(m, i) E s A m for some user-defined action A if and only if o; = s - A - m.
In other words, the formula s A m is true in a state if the transition
taken to enter the current state was one in which instance s took action
A with argument m.

The extension of the satisfaction relation to the logical connectives is the
same as for standard first-order logic. We use the notation [f/s — s,] to
denote the result of substituting every free occurrence of the instance
variable s in f with the instance ID s,.

—(m, i) E =fif and only if {(m, i) & f.
—(m, iy E f; Ofyif and only if (7, i) = f; and (w7, i) = f5.

—(mr, i) E ds.f if and only if there exists an honest instance s, in the
model such that (m, i) = [f/s — so].

—(m, iy E O pf if and only if there exists a 0 = j =< i such that (m, j) F f.
In other words, the formula < pf is true in a state of a trace = if the
formula f is true in any state of the trace up to and including the current
state.

A formula f is said to be true in a trace 7 (denoted as 7 = f) if and only if
f is true in every state of the trace 7. A formula f is true in a model if and
only if f is true in every trace of the model.

4. CASE STUDIES

We now turn to three case studies that illustrate how BRUTUS can be used
to analyze security protocols. We will first look at the Needham-Schroeder
Public Key authentication protocol [Needham and Schroeder 1978]. Next
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we will look at the 1KP electronic commerce protocol [Bellare et al. 1995].
Finally, we will examine the Wide Mouthed Frog protocol.

4.1 Needham-Schroeder Public Key

The Needham-Schroeder Public Key authentication protocol has received
much attention since a new attack was found by Gavin Lowe in 1996 [Lowe
1996]. We present our analysis of this protocol for the sake of comparison
with the many other approaches that have also been used to analyze this
protocol. The structure of this protocol is given below. We will assume that
the initiator is agent A and that it wishes to authenticate with agent B.

(1) First, the initiator, A, generates a nonce N, (which we can assume is a
random number), encrypts the pair N,, A with B’s public key, and
constructs the message A, B, {N,, A}k, which it sends to B.

A—B :AaBa {NaaA}KB

(2) Upon receiving message number 1, B uses its private key to decrypt
{N,, A}k, and recover the identity of the initiator, A, and its nonce N,.
It then generates its own nonce N,, encrypts the pair N,, N, with A’s
public key, and constructs the message A, B, {N,, N}k, which it sends
to A.

B—A :Aa B, {Na: Nb}KA

(3) Upon receiving message number 2, A uses its private key to decrypt
{N,, Np}k,. It is now convinced of B’s identity and that B possesses N,,
a shared secret that A can include in new messages for identification. It
now replies to B by encrypting N, with B’s public key and sending the
message A, B, {N,}x,.

A —B:A, B, {N}x,

(4) Upon receiving message number 3, B can once again use its private key
to decrypt {N,}x,. Now B is convinced of A’s identity and that A
possesses N,, a shared secret that B can include in new messages for
identification.

Let us now look at how we model this protocol in BRUTUS. We must
construct a process for each honest principal in the protocol. The role of the
initiator is modeled by the following sequence of actions which is parame-
terized in a, the name of the initiator, and n,, the value of its random
number or nonce. The internal actions “begin-initiate” and “end-initiate”
are used to mark the points in the protocol when the initiator has begun,
and finished executing the protocol and with whom it is authenticating.
These actions have no role in the model, but the specification will refer to
them.
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INITIATOR =

choose (b)

internal (“begin-initiate 7, b)
send (a, b, {n,, alg,)

receive (a, b, {n,, ny}x,)
send (a, b, {n}x,)

internal (“end-initiate 7. b)

There is an analogous role for the responder. This definition is given by
the following sequence of actions which is parameterized in b, the name of
the responder, and n,, its random number. Again, the internal actions
“begin-respond” and “end-respond” mark the points in the protocol where
the responder has begun and finished executing the protocol and with
whom it is authenticating.

RESPONDER =

receive (a, b, {n,, alx,)
internal (“begin-respond ”, @)
send (a, b, {n,, ny}tx,)
receive (a, b, {n,}x,)
internal (“end-respond 7, a)

One of these processes will appear in each instance of an honest agent.
We now give a model containing four instances, one initiator instance, and
one responder instance for principal “A” and the same for principal “B.” The
model is the cross-product of the four instances shown below with an
instance for the adversary.

H, H,

N, =“A N, =“A”

S, = “A1” S, = “A2”

B, = {(a, "A"), (n,, “NAL" )} By = {(b, "A" ), (ny, “NA2" )}
I,=1{A,B,Z K., Ky, K;, K,', NA1} I,=1{A,B,Z K, K, K;, K,', NA2}
P, = INITIATOR P, = RESPONDER

H; H,

N; ="B” N, ="B"

S; = “B1” S, = “B2"

B, = {(a,"8" ), (n,, "NB1")} B, ={(b,"B" ), (n,, "NB2" )}
I,={A,B,Z Kz, Kz, K;, Kz*, NB1} I,=1{A, B, Z, K, Kz, K;, K3', NB2}
P, = INITIATOR P, = RESPONDER

All that remains is to specify the requirements for the protocol. We will
check for three different properties. The first is that if principal A has
finished executing a session with B then B must have participated in a
session with A. The same should hold when B has finished a session with
A. The second property checks that the nonces which are intended to be
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shared secrets are kept secret from the adversary. The final property is a
nonrepudiation property and states that when A finishes a protocol session
with B, B knows A’s nonce and vice-versa.

—Authentication: This property can be used as a generic requirement for
authentication protocols. Intuitively, the requirement is that if some
principal A has finished executing an authentication protocol with B,
then B must have participated in the protocol. This is formalized in our
logic with two formulas, one for the initiator and one for the responder.

VA,.A, internal (“end-initiate” ,Ap.b) =

dB, . (pr(By) = Ay.b) O O p(B, internal (“begin-respond” , pr(Ay)))

This formula states that for all honest instances A, if A, has performed
an “end-initiate” internal action with the principal that it believes is its
partner

A, internal (“end-initiate” ,Ay.b)

then there exists an instance B, of that partner such that at some point
in the past B, performed a “begin-respond” internal action with the
principal of instance A, corresponding to the clause

(pr(By) = Ay.b) O O p(B, internal (“begin-respond” , pr(Ayp))).

In other words, for all initiators I, if I has finished executing with some
principal, then some instance R of that other principal must have at least
started executing the protocol with the principal executing I. This
requirement assures us of the presence of the other party in an authen-
tication protocol. The protocol satisfies this property.

There is also an analogous property for the responder. Namely, if the
responder B, has finished executing the protocol with its partner B.a,
then there must be some initiator instance A, executing on behalf of that
principal Bj.a that has participated in the protocol. This property is
violated by the protocol. Figure 1 contains the counterexample trace
provided by BRUTUS. Note that at the end of the trace A2 has finished
responding with B, but there is no instance of B, (B1 or B2) that has
initiated with A. This attack actually occurs with a single initiator and a
single responder instance as reported by Lowe [1996]. Figure 2 illus-
trates this attack. Note that in the attack B believes that it is responding
to A, but A is executing an instance with the adversary Z.

—Secrecy: The nonces exchanged in the Needham-Schroeder protocol are
intended to be shared secrets. As such, the adversary should have no
knowledge of them unless an honest agent is trying to authenticate with
the adversary.
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Al choose Principal B

Al internal (“begin-initiate”, Principal B)

Al send Principal A, Principal B,{Nonce Nal,Principal A}_Pubkey(Principal B)
B2 choose Principal Z

B2 internal (“begin-initiate”, Principal Z)

B2 send Principal B, Principal Z,{Nonce Nb2, Principal B}_Pubkey(Principal Z)
B1 receive Principal A, Principal B,{Nonce Nb2, Principal A}_Pubkey(Principal B)
B1 internal (“begin-respond”, Principal A)

B1 send Principal B, Principal A, {Nonce Nb2, Nonce Nbl}_Pubkey(Principal A)

A2 receive Principal B, Principal A, {Nonce Nb2, Principal B}_Pubkey(Principal A)
A2 internal (“begin-respond”, Principal B)

A2 send Principal A, Principal B,{Nonce Nb2, Nonce Na2}_Pubkey(Principal B)
B2 receive Principal Z, Principal B, {Nonce Nb2, Nonce Na2}_Pubkey(Principal B)
B2 send Principal B, Principal Z,{Nonce Na2}_Pubkey(Principal Z)

B2 internal (“end-initiate”, Principal Z)

A2 receive Principal B, Principal A, {Nonce Na2}_Pubkey(Principal A)

A2 internal (“end-respond”, Principal B)

Fig. 1. Needham-Schroeder counterexample.

A Adversary @) -
A choose Z
A beginit Z
A send(A.Z{Na.A} i 7 )\Learns N

a\\B rec(A,B,{Na,A}K(B))

B send(B,A,{Na,Nb}K(B))

Learns {Na,Nb}K(B)

A rec(Z,A,{Na,Nb}K(A))

A send(A,B,{Nb} K(Z))
\Learns Nb
B rec(A,B,{Nb} K(B))
B endrespond A
Fig. 2. Needham-Schroeder attack.
VX.(S, Knows X.n, 1S, Knows X.n;) —
¢ p[X internal (“begin-initiate” ,Z)
00X internal (“begin-respond” ,Z)]
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In other words, if the adversary knows the value of someone else’s nonce

(S; Knows X.n, 1S, Knows X.n;)

then that instance must be executing the protocol with the adversary,
¢ plX internal (“begin-initiate” ,Ny)

0X internal (“begin-respond” , Nl

Recall that S, is the instance corresponding to the adversary. This
property is also violated by the same trace as before. Four actions from
the end of the trace in Figure 1, B2 sends A2’s nonce encrypted with the
key of the adversary Z. At that point the adversary knows A2’s nonce,
but A2 is not trying to authenticate with the adversary.

—Nonrepudiation: We would like to be sure that at the end of the protocol
both parties actually possess the correct shared secrets. This is a weak
notion of nonrepudiation. We are not showing that a principal can prove
that someone else possesses the secret. We are simply checking that
there is no execution in which some principal A finishes authenticating
with B but in which B does not know A’s nonce.

VA, . A, internal (“end-initiate” ,Apb) —

E‘BO . (pr(Bo) = Ao.b) [l (BO KnOWS Ao.na)
The formula given above states that for all instances A,, if A, ends an
instance with the partner A,.b
A, internal (“end-initiate” ,Ay.b)

then there should exist an instance B, such that the agent or principal
executing the session is A,.b and such that the nonce corresponding to A,
is known to B,

ElBO . (pr(BO) = Aob) 0 (BO Knows Ao.na).
Like the authentication requirement, this requirement has a second
formula with the roles of the initiator and responder reversed.

VB, . By internal (“end-respond” , By.a) —

EIAO . (pr(Ao) = Bo.a) O (AO KnOWS Bo.nb)

Unlike the authentication requirement, however, the protocol satisfies
this property. It is the case that if an agent A believes it has finished
authenticating with agent B, it has sent out its nonce encrypted with B’s
key and has received the nonce back again. The only way this is possible
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SALT -: Random number generated by C used to salt DESC
PRICE: Amount and currency

DATE: Merchant’s date/time stamp

NONCE js: Merchant’s nonce (random number)

IDyr: Merchant’s ID.

TID;s: Transaction ID (unique).

DESC: Description of the goods and delivery information.
CAN: Customer’s account number.

Rg: Random number chosen by €' to form CID.

Y /N: Yes or no response from credit card authority.

Fig. 3. 1KP atomic messages.

is if B decrypted the nonce so that B must have possession of it, even in
the traces where the other two requirements are violated.

Gavin Lowe has suggested a very simple fix for this protocol [Lowe 1996].
The second message, A, B, {N,, N}, is replaced with A, B, {B, N, N}g,.
This slightly changes the protocol so that now at step 2, B generates this
new message and so that at step 3, A decrypts the message and checks not
only for its own nonce N,, but also for the identity of B, the principal with
whom A is trying to authenticate. When we made this change in our model
of the Needham-Schroeder protocol, we could not find a counterexample to
the properties given above.

4.2 1KP

We now describe an analysis of 1KP, a member of the iKP family of
protocols for secure electronic payments over the Internet [Bellare et al.
1995]. The protocol has three participants: a customer, a merchant, and a
credit card authority which we will refer to as C, M, and A respectively.
Because there are so many atomic messages and because the messages
used are quite large we define the atomic messages in Figure 3 and some
composite fields in Figure 4. Also, we use H(:) to denote a one-way hash
function. We model H(-) in BRUTUS by having a special private key called
hash that has no inverse. This way we can compare results of encrypting
with hash (applying the hash), but we cannot decrypt the hash (invert the
hash function).

We can now turn to the definition of the protocol. It should be noted that
there is an assumption that the customer and merchant somehow arrive at
the description of the transaction outside of the 1KP protocol. In other
words, at the time the protocol is executed, the customer and merchant
should already know the values of DESC and PRICE due to some previous
negotiation step.

(1) Initiate: The customer generates two random numbers, SALT and R.
It also computes CID = H(R, CAN). It then sends a message to the
merchant consisting of the random number SALT: and the customer
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CID: A customer pseudo-ID formed by H(R¢, CAN).

Common: PRICE, Dy, TID 1y, DATE, NONCE 1, CID, H(DESC, SALT )
Clear: IDyr, TID 3, DATE, NONCE 57, H(Common)

SLIP: PRICE, H(Common), CAN, R¢

Fig. 4. 1KP composite messages.

pseudo-ID CID. CAN is the customer’s account number (see Figure 3).
In general, refer to Figures 3 and 4 for the explanation messages.

C—M:SALT., CID

(2) Invoice: The merchant recovers the values of SALT: and CID. It also
generates the values NONCE,; and TID,;. The merchant already knows
PRICE, DATE, and its own identity ID;, so it can create the composite
message Common. It uses all these components, along with the hash
function, to construct the compound message Clear as defined in Figure
4 and sends it to the customer.

M — C : Clear

(3) Payment: The customer receives Clear and retrieves the values ID,,,
DATE, TID,;,, and NONCE,,;. Since the customer already has PRICE
and CID, it can form Common. It computes H(Common) and checks
that this matches what was received in Clear. It already has the
information necessary to form SLIP (Figure 4) and then encrypts this
and sends it to the merchant. At this point the customer commits to the
transaction.

C — M : {SLIP},

(4) Auth-Request: The merchant receives the encrypted payment slip and
now needs to get authorization from the credit card authority. It
forwards the encrypted slip to the authority, along with Clear and
H(DESC, SALT.) so that the authority can check the validity of the
SLIP. At this point, the merchant is committing to the transaction.

M — A : Clear, H(DESC, SALT,), {SLIP},

(5) Auth-Response: The authority receives the authorization request and

performs the following actions.

—The authority extracts the values ID,;, TID,;,, DATE, and NONCE,,
and checks that there is no previous request with these same values.
It also extracts the value h; which is supposed to be H(Common).

—The authority decrypts the encrypted SLIP. If the decryption is
successful, it now has SLIP and can extract PRICE, CAN, R, and the
value h, which is supposed to again be H(Common).
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—The authority verifies that h; = h, which ensures that the customer
and merchant agree on the transaction.

—It now also has all the components to construct Common and does so.
It computes H(Common) and compares this to the value h;.

—Assuming everything is in order, it can authorize the payment by
signing the pair Y, H(Common) (Y refers to yes, and N refers to no)
and returning this to the merchant.

A—>M:Y,{Y, H(Common)}g

(6) Confirm: The merchant receives the authorization response. Assuming
the response is Y, it then verifies that it has received a valid signature
of Y, H(Common) from the authority. If so, it forwards this on to the
customer who can check it for himself.

M — C:Y,{Y, H(Common)}g

Like the Needham-Schroeder protocol, the BRUTUS definition of the 1KP
protocol consists of a set of instances with at least one instance for each
role in the protocol. These roles also consist of mostly send and receive
actions with a few internal actions to mark commit points in the protocol as
well as when the authority debits and credits accounts. The major differ-
ence between the two models is the large size of the 1KP protocol. Not only
are there three roles instead of two and six messages instead of three, but
the size and complexity of the messages is greatly increased. The messages
appearing in the Needham-Schroeder protocol are quite simple. In 1KP, the
messages contain many more fields (so many that we had to define
composite fields like Common and SLIP to simplify the presentation). The
messages also have multiple levels of nested encryption, signatures, and
hashes. Because of this, the number of messages that the adversary can
generate in an attempt to subvert the protocol is much greater as is the
number of reachable states. Hence, we were forced to look at a smaller
model, one in which there was only a single instance of a customer and
merchant and two instances of the authority. Using this configuration we
were able to perform the analysis, and verify the following properties
proposed by the authors in Bellare et al. [1995].

—Proof of transaction by customer: When the authority debits a credit card
account by a certain amount, it must have unforgeable proof that the
credit card owner has authorized the payment. The authors argue that
SLIP provides this unforgeable proof. While verifying that SLIP does
provide a proof is outside the capabilities of BRUTUS, we can check that
the authority only debits credit cards when it possesses SLIP.

VA,.(pr(Ay) = A) O(A, internal (“debit” , (Aq.c, Ay.price))) —

A, Knows SLIP
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The formula given above states that for all instances A, if the principal
executing the instance is an authority ((pr(A,) = A)) and a debit action
is executed

(A, internal (“debit” , (A,.c, Ay.price)))

then A, must know the slip (A, Knows SLIP). Here SLIP is defined as
before, but with A,.c in place of the customer account number CAN, and
A,.price instead of the constant PRICE which appeared in the defini-
tions. In other words, we are checking that the authority does indeed

have a proof with the values that are consistent with this particular
debit.

—Unauthorized payment is impossible: For this property we require that
the authority debit a customer’s account, only if the customer has
authorized the debit. We are no longer asking if the authority has some
kind of a proof, but whether or not the customer did actually authorize
the debit.

VA,.(pr(Ay) = A) O(A, internal (“debit” , (Aq.c, Ay.price))) —

3C,. (pr(Cy) = Ay.c) O O p(C, internal (“authorize” , Ag.price))

In other words, if some instance A, of the authority debits the principal
Ay.c (presumably the customer) by the amount A,.price

(A, internal (“debit” |, (A,.c, Ay.price)),)

then there must be some instance executing on behalf of A,.c, who has
authorized a debit of the same amount (A,.price)

(pr(Cy) = Ay.c) O O p(Cy internal (“authorize” , Ag.price)).

We should note that this by itself does not guarantee the absence of a
replay attack, one in which an adversary simply replays a previous
message to cause a second transaction to take place. In fact, the first
thing the adversary does when it receives an authorization request is to
make sure that there is no previous request with the same transaction
ID, date, and nonce. Since BRUTUS does not allow for this kind of check,
one would expect there to be a replay attack in our model. So we checked
the following formula.

-[A1l internal (“debit” ,(C, Al.price))

0OA2 internal (“debit” , (C, A2.price))]

If there is no replay attack in our model, this formula should hold, since
there is a single customer instance and a single merchant instance, so
there should be at most one debit. However, there is a counterexample to
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this formula in which the adversary simply sends the single authoriza-
tion request from the merchant to both authority instances causing them
both to perform debits.

—Privacy: Customers want to ensure that the merchant is the only other
party that knows the details of the transaction. In addition, we would
want to keep the customer’s credit card number secret as well. For this
we have the following two formulas:

VS, .[So Knows C1.DESC — (pr(S,) = C Opr(S,) = M)]

VS, .[S; Knows C1.CAN — (pr(S,) = C Opr(S,) = A)]

In other words, if some instance S, knows the customer’s description of
the transaction

(So Knows C1.DESC)

then S, must be the customer or the merchant

((pr(So) = C Opr(Sy) = M)).

Similarly, the second formula states that if some instance S, knows the
customer’s account number, then S, must be either the customer or the
authority.

—Proof of transaction authorization by merchant: This particular property
is not claimed to hold of 1KP. It is meant to hold for 2KP and 3KP, but we
tried to verify a variant of it in our model for 1KP. We would like to check
if all transactions allowed by the authority are authorized by the mer-
chant.

VA,.(pr(Ay) = A) O(A, internal (“credit” , (A,.m, Ay.price))) —

dM,.(pr(M,) = Ay.m) O O p(M, internal (“Mauthorize” , Ay.price))
In other words, if the authority credits principal A,.m (presumably the
merchant) by the amount A.price
(A, internal (“credit” , (Ag.m, Ay.price)))

then it must be the case that A,.m authorized a payment of that amount

(pr(My) = Ag.m) O O p(M, internal (“Mauthorize” |, A,.price)).

This particular analysis did provide some insight. Although the authors
do not claim that 1KP guarantees this property, there was nothing about
the protocol that suggested to us that this property could be violated.
Indeed BRUTUS finds a counterexample. All the adversary needs is the

merchant’s ID (ID,), and some account number to debit. With this
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information, no one else other than the authority need participate in
order to have the authority authorize payments.

4.3 Wide Mouthed Frog

The Wide Mouthed Frog protocol is intended to distribute a freshly gener-
ated session key to another party. In the description that follows, A is the
initiator wishing to communicate with B, the responder. S is a trusted

third party with whom both A and B share a symmetric key. The protocol
proceeds as follows:

(1) A - S : Aa {Taa B, Kab}Kus

(2) S — B : {T37 A: 'Kab}Kbs

Implicit in this description is the fact that the parties are checking the
timestamps, although how exactly this is done is not specified. One
reasonable assumption is that there is some time window for accepting
messages. In other words, if a message with timestamp 7 arrives, it is
accepted as long as the current time is less than 7' + & for some specified
time window §. It would then be reasonable to require that if B accepts a
key K,, from S with which to communicate with A, then A must have
requested that S forward that key within some other time window €. In
other words, if B accepts key K,;, at time 7', then A must have originally
sent the key to S at some time 7" such that 7" > T — e.

Because BRUTUS does not have a notion of time, we do not include
timestamps in our model. In our model we simply remove all timestamps
from the messages. Our abstracted protocol becomes

(1) A — S : A7 {B7 }{ab}KaS
(2) S — B : {A7 Kab}Kbs'

Since the protocol depends on timestamps to secure against replay, our
model exhibits trivial replay attacks. This points to the fact that in the
original protocol, a replay attack was possible within the time window
allowed by S and B. In other words, if the adversary replayed A’s initial
message fast enough (before S could start rejecting the message), then S
could conceivably send it’s message to B in time for B to accept it, thus
resulting in a state where B has authenticated twice while A only authen-
ticated once.

However, because we do not model time, we are not able to characterize
the time window requirement discussed above. This means that in particu-
lar we cannot find the known attack where the adversary uses S as a
timestamp oracle. This attack is given below:
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1. A — Z©S) : AT, B, Kk,
14 ZA) —- S : AT, B,Kuk,
24, S = ZB) : (T4 A Kk,
1. ZB) — S : B,{TYA K.k,
25, S = Z@A) : {TE B,K,k,
X, ZA) — S : A{TY B,K,k,
2. S - ZB) : {TYA Kuk.
2. ZS) — B : A{T¥ A K.k,

In the attack given above, Z(S) represents the adversary masquerading as
the server. A similar explanation holds for Z(B) and Z(A). Notice that the
final message sent (message labeled 2 with timestamp 7'%) is sent much
later than the original message from A (labeled 1 with timestamp T',).
Presumably enough time has gone by that T, < T%. However, by playing
this game, the adversary has kept each individual message within the
appropriate time window. In particular, this means that the current time is
less than 7% + 8, and so B accepts the message from the adversary. This
violates the property we discussed earlier. Namely, B does accept a stale
message (a message that is older than e time units).

Despite these limitations, the Wide Mouthed Frog protocol is a good
protocol to illustrate the advantage of using the symmetry reduction
techniques. We have modeled this protocol without timestamps as dis-
cussed above. With this model we were able to find the errors discussed
above (namely that a replay is possible within the time window allowed).
We also demonstrated that the protocol itself provides no guarantees to A
about B’s participation. A can finish executing the protocol without B ever
participating. These errors were all found despite the fact that we were
eliminating quite a few traces from consideration because of the symmetry
reduction. The symmetry reduction is most effective when we check a
property that is correct, such as the property that if B receives a key, then
that key did originally come from A. The exhaustive search performed is
significantly reduced by eliminating symmetric traces from consideration
during the search.

We also check authentication using the same pair of formulas we used to
check authentication in the Needham-Schroeder protocol. However, we only
check half of the property.

VB,.B, internal (“end-respond” , By.a) —
JA,. (pr(A,) = By.a) O O p(A, internal (“begin-initiate” , pr(By)))

This property does hold of our model. The other half of the property (if
the initiator finishes then the responder must have participated) does not
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funct dfs(s)
EN (s)={ a| en(s,a) }
foreach o € EN (s)
do dfs(a(s))

Fig. 5. Depth-first search algorithm A.

hold in our model. We can see this because the only thing the initiator does
in the protocol is send the first message. Hence it could finish executing
before/without a corresponding responder executing if the adversary simply
prevents the message from reaching the responder.

We can also check the secrecy property. Here we would like to verify that
the adversary does not gain knowledge of the session key. Again, this
requirement need only hold when the initiator is not trying to execute the
protocol with the adversary.

VX.S; Knows X.k — ¢ p[X internal (“begin-initiate” , N,

Again, this property holds of our model.

5. BASIC ALGORITHM AND REDUCTIONS

In this section we first describe the general algorithm used in BRUTUS.
The algorithm used in BRUTUS is based on a combination of state space
exploration and natural deduction. Most techniques based state space
exploration for verifying security protocols suffer from the well-known
state-explosion problem, i.e., the state space of the system grows exponen-
tially in the number of components. In the domain of model-checking for
reactive systems there are numerous techniques for reducing the state
space of the system. Two such widely used techniques are partial-order and
symmetry reductions. We have developed variants of these techniques in
the context of verification of security protocols. We also describe partial-
order and symmetry reductions that are used in BRUTUS. Discussion of
these reduction techniques is kept at an informal level, and proof of
correctness of these reduction techniques is not provided. However, we
mention references that discuss these reductions and their proof of correct-
ness in considerable detail.

5.1 General Algorithm

The algorithm used in BRUTUS explores the state space using depth-first
search. During the depth-first search if the algorithm encounters a state
where the property being checked is not true, it stops and demonstrates a
counterexample. The basic depth-first search algorithm is shown in Figure
5. If an action « is enabled at a state s, then the predicate en(s, a) is true.
Hence, the set of actions enabled at the state s (denoted by EN(s)) is

{alen(s, a)}.
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As can be seen from the description, the algorithm basically explores every
action enabled from state s. The state reached from s by executing action «
is denoted by «(s). Standard bookkeeping details common to all model-
checking algorithms are not shown. However, recall that in our logic at the
atomic level we can refer to the knowledge of a principal (e.g., Z Knows
m), so during the search we often must decide if m € I where I is the set of
messages known to a principal or the adversary and where I denotes the
set of all messages that can be constructed from I using the standard
message operations (pairing, projection, encryption, and decryption). If we
describe each of these message operations as inference rules, then the
question of whether or not m € I is equivalent to whether or not m is
derivable from I. The problem now looks very similar to natural deduction,
and in fact we will use ideas and terms from natural deduction to describe
an efficient algorithm for deciding if m € I and prove its correctness. This
combination of state space exploration and natural deduction-style reason-
ing distinguishes BRUTUS from other approaches that are solely based on
state space exploration. Next we describe in detail the algorithm for
deciding if a message m is in the closure of a set of messages I.

We will assume that the reader is familiar with derivation trees, so we
will not formalize them here. We refer the reader to Prawitz [1965] for a
good discussion on natural deduction. We will say that a particular mes-
sage m is derivable from a set of messages I (I  m), if there exists a valid
derivation tree using the inference rules shown in Figure 6, such that m
appears at the bottom of the tree and such that all messages appearing at
the top of the tree are contained in I. An example of such a tree can be
found in Figure 7.
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funct add(I, m)
foreach : € I do
ifi={o}y A m=y"?
then I := add(I,z)
fi
od
ifmeA
then return 7 U {m}
elsif m=xz-y
then return add(add(I,z),y)
elsif = {}, Ay~ €1
then if y € 1
then return add(7, z)
else return add(I U {m},z)
fi

else
return 7 U {m}
fi

Fig. 8. Augmenting the adversary’s knowledge.

Note that each message construction operation (pairing and encryption)
is characterized by a pair of inference rules. One is an introduction rule
that creates a new message whose principal connective is that operation.
For example, the {},J rule creates a new encrypted message {m}, from the
message m and key k. The second is an elimination rule that removes that
particular operation from the compound message. For example the -&; rule

takes a message m; - m, and returns its left component m ;. In Clarke et al.
[1998] we proved Theorem 1.

THEOREM 1. Let I be a set of messages, and let m be a message derivable
from I (I v m). Then there exists a derivation tree T for m from assump-
tions in I such that all elimination rules appear above all introduction
rules. We call such derivation trees normalized.

This theorem is the key to how we maintain each session’s knowledge.
Whenever a session learns a new message, we add the new message to the
set of known messages and close under elimination rules (projection and
decryption). Since a session cannot gain any new knowledge by applying
elimination rules, any new messages must be constructed using introduc-
tion rules. Theorem 1 guarantees that we cannot gain anything by trying to
apply elimination rules once we have started applying introduction rules.
We formally prove this idea correct below.

Definition 1. I F;m if and only if there exists a valid derivation tree
using only the introduction rules (-J and {},J), such that m appears at the
bottom of the tree and such that all messages appearing at the top of the
tree are contained in I.

THEOREM 2. Let I be a set of messages, 1" be the closure of I under
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funct in(I,m)
ifmel
then return true
elsif m = -y
then return in(I,z) A in(1,y)
elsif m = {z},
then return in(I,z) A in(1,y)
else
return false
fi

Fig. 9. Searching the adversary’s knowledge.

elimination rules, and m be a message. I + m if and only if I" +; m where
F; denotes derivability using only introduction rules.

Proof of Theorem 2 follows easily from Definition 1 and Theorem 1.
Theorem 2 proves the correctness of our algorithm. Recall, whenever an
instance learns a new message, we close its knowledge under elimination
rules (construct I°). Whenever we check whether I  m, we use only
introduction rules, but we are actually using I as the set of assumptions.
In other words, we are checking I F, m which is equivalent to I + m by
Theorem 2.

The pseudocode for these algorithms is given in Figures 8 and 9. Figure 8
implements the closure operation that recomputes I° whenever a new
message is added to I. Notice that whenever add generates a new message
that should be included in the closure, we recursively call add because we
will need to compute the closure again once we add this new message.
Figure 9 implements the search for a derivation using only introduction
rules. If {m}, & I" then I" +, {m}, can be true only if there are derivation
trees for m and % that can be combined using {},J to get a tree for {m},. The
same holds for I" F, m; - m,.

Termination for both algorithms follows from the fact that the recursive
calls are performed on submessages. When closing under elimination rules,
newly generated messages are smaller than previously existing messages.
In the worst case, we will end up adding all submessages of the messages in
I, but this is guaranteed to be finite. Similarly, when we are searching for a
derivation for m using introduction rules, we recursively search for deriva-
tions of submessages of m. Since there are only finitely many submessages,
again the algorithm terminates.

5.2 Partial-Order Reductions

Partial-order reductions reduce the search space by ignoring redundant
interleavings. The theory of partial-order reductions is well developed in
the context of verification of reactive systems [Godefroid et al. 1996; Peled
1996; Valmari 1991]. In this section we describe partial-order reductions as
they are employed in BRUTUS. For a detailed description and the proof of
correctness the reader is referred to Clarke et al. [2000].
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funct dfs(s)
EN (s) ={ a| en(s,a) }
foreach o € ample(EN(s))
do dfs(a(s))

Fig. 10. Modified depth-first search algorithm Ag.

As already pointed out, the basic algorithm for verifying whether a
protocol satisfies a specification works by exploring the state space starting
from the initial state using depth-first search. In the ensuing discussion we
will focus on the depth-first search algorithm. Recall that algorithm A
given in Figure 5 performs the depth-first search starting from state s. The
predicate en(s, «) is true if action « is enabled in the state s, i.e., action «
can be executed from the state s. The set of enabled actions EN(s) in a
state s is {a | en(s, a)}. Algorithm Ay, (shown in Figure 10) is the modified
depth-first search procedure with partial-order reductions. The set of
actions ample(EN(s)) is defined as follows:

—If EN(s) contains an invisible internal action, then ample(EN(s)) is an
arbitrary invisible action {A} picked from EN(s).

—Suppose EN(s) does not contain an invisible internal action, but does
contain a send action. In this case ample(EN(s)) is an arbitrary send
action picked from the set EN(s).

—If EN(s) does not contain an invisible internal action or a send action,
ample(EN(s)) is equal to the entire set of enabled actions EN(s).

In the original algorithm A every action that is enabled from a state is
explored during the depth-first procedure. In the modified algorithm A
only a subset of the enabled actions from a state s (denoted by
ample(EN(s)) are explored. As will be clear from the experimental section,
this results in considerable savings in the size of the state space.

Note. Partial-order reductions presented here are only sound if the
specifications have a restricted form. In the specification, atomic proposi-
tions that pertain to the adversary can only appear under an odd number of
negation signs. Roughly, this means that one can express that the adver-
sary does not know something, but cannot assert that the adversary knows
something. Fortunately, most specifications we have encountered have this
property. The reader can check that all specifications that appear in this
article have this property. For a detailed discussion of this question please
refer to Clarke et al. [2000].

5.3 Symmetry Reductions

Intuitively, the correctness of the protocol should not depend on the specific
assignment of principal names. In other words, by permuting the names of
the principals the correctness of the protocol should be preserved. Symmetry
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reductions have proved very useful in the verification of reactive systems
[Clarke et al. 1996; Emerson and Sistla 1996; Ip and Dill 1996; Jensen
1996]. We have also developed the theory of symmetry reductions in the
context of verifying security protocols. Intuitively the state space is parti-
tioned into various equivalence classes because of the inherent symmetry
present in the system. During the verification process our algorithm only
considers one state from each partition. Specific details and the correctness
of the symmetry reduction will be discussed in Will Marrero’s forthcoming
thesis.

Because our models often include replicated components, they often
exhibit symmetry. For example, imagine a protocol that has two parties, an
initiator who sends the first message (A) and a responder who receives the
first message (B). When we model the protocol, we would like to allow for
the possibility of multiple executions of the protocol by the same parties.
Let us assume then that in our model we create three instances for each
participant (A, A,, As, By, By, Bs) so that each A and B can attempt to
execute the protocol three times. In the start state, the A;’s are symmetric
and the B;s are also symmetric. They are identical up to their names or
instance IDs. At this point in time, anything A; can do, A, or A5 can do and
similarly for the B;’s.

To see this, imagine some trace involving these six instances. Because A;
and A, were identical in the start state, we could imagine them swapping
roles in the trace. Every action A; took is now taken by A, and vice versa.
This should still be a valid trace, since A; and A, are identical. Now, to
take advantage of this symmetry, we note that the specification should not
refer to the individual instances. Properties should talk about the princi-
pals and not about the individual instances. If this is the case, then the
property is insensitive to this symmetry. In other words, we can swap A;
and A, in the requirement specification (usually because they do not even
appear in the requirement) without altering the meaning of the formula. In
fact, in the usual case, the permuted formula is syntactically identical to
the original formula. The result is that the original trace satisfies the
original formula if and only if the permuted trace satisfies the permuted
formula. Since the original formula and the permuted formula are the
same, either both traces satisfy the formula or neither trace satisfies the
formula. Therefore, we need only check one of these two cases and we know
the result of the other.

In the example given above, we considered a particular trace. Now
consider the fact that we can perform these permutations on any trace. In
any trace, we can swap the roles or behavior of A; and A,. Each trace we
consider is symmetric to some other trace we are considering (actually, the
roles or behavior of A; and A, could be identical in a particular trace, and
therefore swapping A; and A, will yield the same trace). So we could
restrict ourselves to about half of the set of traces, none of which are
symmetric to each other. We would then be assured that if there is an error
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Fig. 11. Exploiting symmetry.

in any of the traces we did not consider, we would still be checking a
symmetric trace which would exhibit the same error.

Now consider the fact that we exploited a specific symmetry between A;
and A,. In general, all the A/s are symmetric, and all the B,s are
symmetric. Any permutation on the A;s and on the B;’s would yield the
same results as above, symmetric traces and identical requirement. For
example, consider the graphs in Figure 11. The graph on the left is
supposed to represent some trace in which B; is responding to A;, B, is
responding to A,, and Bj is responding to A;. The graph on the right
represents the symmetric trace where B, is responding to Aj;, B, is
responding to A;, and Bj is responding to A,. In fact, these graphs do not
represent specific traces, but any traces that satisfy the sender responder
relationships mentioned above. It should be clear that for any trace
represented by the graph on the right there is a symmetric trace repre-
sented by the graph on the left. This symmetric trace is found by permuting
the B;s in a cycle as indicated on the right. By doing so we get the
symmetric trace on the left.

As we have seen, the different symmetries induce an equivalence on the
set of traces. All the traces in an equivalence class agree on the require-
ment, i.e., they all satisfy the requirement, or none of them satisfies the
requirement. So it is sufficient to check a single representative from each
equivalence class. When we do this, how much work do we save? To answer
this, we examine how large is each equivalence class. For a model with i
initiators and j responders, there are factorial of i (denoted by i!) symme-
tries on the initiators and j! symmetries on the responders for a total of i! j!
symmetries. So every trace in which the instances exhibit different behav-
ior belongs to an equivalence class of size i! j!. So in general we can reduce
the number of traces that we need to consider by about i! j!.

The question becomes how do we know when such a symmetry exists.
This question is very difficult in general. Our solution is to demonstrate
and exploit a number of traces that are guaranteed to be symmetric in any
model in BRUTUS. We will consider a particular point in the execution of a
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protocol, namely the point when the responder in the protocol is ready to
receive its first message. For the sake of simplicity, we will assume that the
model has one initiator A that can participate twice and one responder B
that can participate twice. The initiator is simply the principal that sends
the first message, and the responder receives the first message. Consider
the point when B is ready to receive its first message. There is nothing in
the execution so far that distinguishes between the two instances of B. Any
trace that results from B1 receiving that first message has a symmetric
trace in the model where B2 behaves as B1 and receives that first
message. So at this point we arbitrarily choose B1 to receive the first
message and ignore the case where B2 receives the first message. Now let
us assume that both A1 and A2 have sent their first messages. So B1 could
receive either one. Again we are in a state which is symmetric with respect
to A1 and A2. Any trace that results from B1 receiving A1’s message has a
symmetric trace where A2 behaves as A1 and B1 receives A2’s message
instead. So at this point, we arbitrarily choose to have B1 receive Al’s
message and ignore the case where B1 receives A2’s message. Note,
however, that now the symmetry is broken. A1 can be distinguished from
A2 because someone has received A1’s message while no one has received
A2’s message. Similarly, B1 can be distinguished from B2 because B1 has
received its first message while B2 has not.

6. EXPERIMENTAL RESULTS

Table I summarizes the results of applying these reductions to a few
protocols. We examined the 1KP secure payment protocol [Bellare et al.
1995], the Needham-Schroeder public key protocol [Needham and Schroe-
der 1978], and the Wide Mouthed Frog protocol [Burrows et al. 1989;
Schneier 1996]. In Table I these protocols are marked as 1KP, N-S, and
WMF respectively. Columns 2 and 3 give the number of initiator and
responder instances used in constructing the model. The other columns
give the number of states encountered during state space traversal using
exhaustive search or some specific reduction technique. The column
marked with None refers to results when no reductions were applied.
Results corresponding to the partial-order and symmetry reductions are
presented in columns marked with p.o. and symm respectively. Column
p.o.+symm presents results when both reductions (partial order and
symmetry) were applied simultaneously. The entries with an “X” represent
computations that were aborted after a day of computation (over
700,000,000 states). Note that there is no reduction when applying symme-
try reductions to models that do not have more than one initiator or
responder. Notice that for the Needham-Schroeder protocol with one initi-
ator and two responders (third row) we achieve reduction of a factor of
around 400. As can be easily seen from the table, the reductions achieved
due to the two techniques are significant.
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Table I. Table of Results

Protocol init resp None p-o. symm p.-o+symm
1KP 1 1 17,905,267 906,307 17,905,267 906,307
N-S 1 1 1,208 146 1,208 146
N-S 1 2 1,227,415 6,503 613,713 3,257
N-S 2 2 X 372,977 X 186,340
N-S 2 3 X 78,917,569 X 12,148,470
WMF 3 3 X 1,286,074 X 7,004
WMF 4 4 X X X 455,209
WMF 5 5 X X X 47,651,710

7. RELATED WORK

A number of researchers have seen the potential in applying formal
methods to analyze security protocols. Some approaches use theorem
proving, while others use nonautomated reasoning. Model-checking and
rule rewrite systems have also been used. Generally, verification tools
based on state-exploration techniques (model-checking being one of them)
have the advantage that they are automatic. In addition if the security
protocol is incorrect it is easy to demonstrate the flaw by producing a
counterexample. The disadvantage of most approaches based on state-
exploration over those based on theorem proving is that the process by
which the adversary deduces messages from a known set of messages has
to be “hard coded” into the model. In theorem-proving-based approaches
the rules by which the adversary deduces additional messages are simply
additional rules in the logical system. Moreover, techniques based on state
space exploration have difficulty handling multiple instances of the same
protocol because of the “state-explosion” problem, i.e., the state space grows
exponentially in the number of instances. As was already explained before,
our tool BRUTUS uses a combination of state space exploration and
natural deduction. Hence, the deduction rules corresponding to the adver-
sary can be easily handled. Moreover, because of powerful reduction
techniques used in BRUTUS we can model multiple instances for many
protocols. Next, we describe each approach in detail and where applicable
discuss the specific advantages and disadvantages of each approach over
BRUTUS. All except the first approach use the same basic operational
model for the adversary, and so the differences result from how one
specifies the protocol, how one specifies the properties, how one specifies
the adversary, and how the tool goes about trying to perform the analysis.

7.1 Logic of Authentication

One of the earliest successful attempts at formally reasoning about security
protocols involved developing logics in which one could express and deduce
security properties. The earliest such logic is the Logic of Authentication
proposed by Burrows et al. [1989] and is commonly referred to as the BAN
logic. Their syntax provided constructs for expressing intuitive properties
like
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—“Asaid X" (A v X)

—“A sees X” (A<X)

—“A believes X” (A = X)

—“K is a good key for A and B” (A & B)
—“X is a fresh message” (#(X))

—“S is an authority on X” (S & X).

They also provide a set of proof rules which can then be used to deduce
security properties such as “A and B believe K is a good key” (A = A EB

and B=A S B) from a list of explicit assumptions made about the
protocol. For example, their inference system provides rules for the following:

—If a message encrypted with a good key K is received by a principal P,
then P believes that the other party possessing K said the message.

PEQEP, PaXy
PEQHX

—A principal says only things that it believes. Worded differently, if a
principal P receives a recent message X from @, then P believes that @
believes X.

PeE#(X), PEQHrX
PEQEX

—If a principal P believes that some principal @ has jurisdiction over the
statement X, then P trusts @ on the truth of X. If statement X is about
an instance key generated by a server, this rule would allow us to infer
that participants in a protocol will believe that the instance key is good if
it came from a trusted server that has jurisdiction over good keys.

PEQBX, PEQEX
PEX

—A principal can see the components of compound messages, and a
principal can decrypt messages with good keys.

P4 (XY) P=Q&P, P<{Xk
P<X P<X

This formalism was successful in uncovering implicit assumptions that
had been made in a number of protocols. However, this logic has been
criticized for the “protocol idealization” step required when using this
formalism. Protocols in the literature are typically given as a sequence of
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messages. Use of the BAN logic requires that the user transform each
message in the protocol into formulas about that message, so that the
inferences can be made within the logic. For example, if the server sends a
message containing the key K,;, then that step might need to be converted
into a step where the server sends a message containing A & B, meaning
that the key K,; is a good key for communication between A and B. This
simple example is pretty straightforward. In general, however, the ideali-
zation step requires that we assign a meaning to the messages that appear
in the protocol, thus introducing an informal step into the protocol analysis.
We should mention, however, that Kindred and Wing [1999] have investi-
gated making this step more formal while also using computer automation
to aid with the analysis (we discuss this technique in detail later).

The second objection is that in this kind of analysis all principals are
honest, and so it does not allow for a malicious adversary. In other words,
we try to argue about how different participants might come to certain
beliefs about keys and secrets, but we cannot investigate how a malicious
adversary might try to subvert the protocol by possibly modifying and
misdirecting messages. For this reason, a number of researchers have
looked to analyzing security protocols in a framework that allows for a
malicious adversary.

In the tools that follow, researchers have a concrete operational model for
how the protocol executes. This operational model includes a description of
how the honest participants in the protocol behave (i.e., what it means to
execute the protocol) and a description of how an adversary can interfere
with the execution of the protocol. The behavior of the adversary has
evolved from the model of Dolev and Yao [1989] and allows for the
maximum amount of interference from the adversary while maintaining
encryption as a black box. The model of the adversary usually allows it to
overhear and intercept all messages, misdirect messages, and send fake
messages. The adversary can send any message it can generate from
previously overheard messages by concatenating and projecting onto com-
ponents as well as encrypting and decrypting with known keys. The
adversary is also allowed to participate in the protocol. In other words it
can try to initiate protocol instances, and honest agents are willing to try to
initiate instances with the adversary. While the details of how this behav-
ior is modeled are different among the different tools, all the tools described
below (including BRUTUS) somehow implement this high-level description
of an adversary.

7.2 FDR

Gavin Lowe has investigated the use of FDR to analyze CSP [Hoare 1985]
models of cryptographic protocols [Lowe 1996; 1997]. CSP seems to be a
natural language in which to model asynchronous composition of protocol
instances. Each instance of an agent trying to execute the protocol is
modeled by a CSP process that alternates between waiting for a message
and sending a message. Along with the usual communication channel,
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INITIATOR(a,nq) = user.a’h — Irunning.a.b —+
comm!Msgl.a.b.Encrypt.key(b).na.a —
comm.Msg2.a.b.Encrypt.key(a)'n!, .np —
if ng = nl,

then comm!Msg3.a.b.Encrypt.key(b).n, —
I_commit.a.b — instance.a.b — Skip
else Stop

Fig. 12. FDR example.

channels are used to model possible adversary interference, the external
interface, and to keep track of the state of the agents. For example, the
event I_commit.a.b can be generated by initiator ¢ on channel I_commit to
represent the fact that it is committing to an instance with responder b.

For the sake of concreteness, a description of the initiator in the Need-
ham-Schroeder protocol is given in Figure 12. The definition is parameter-
ized by a, the name of the initiator, and n_a, the nonce used by the initiator
in the instance. This definition follows the abstract description of the
protocol fairly closely. The initiator waits for a request from the user then
begins running the protocol and sends message 1. When it receives message
2, it checks if the nonce in message 2 matches the nonce sent in message 1.
If so, it sends message 3, commits to the protocol instance, and begins the
instance execution; otherwise it halts. To model the interception of mes-
sages by the adversary and the introduction of fake messages by the
adversary, a renaming is applied to this process so that actions that occur
on the channel comm can also occur on the adversary-controlled channels
intercept or fake instead.

Originally, the user also had to provide a description of the adversary.
With the development of Casper, the construction of the adversary became
automated [Lowe 1997]. The adversary can be thought of as the parallel
composition of n processes, one for each of n facts or messages that the
adversary may learn during the execution of the protocol. Each process
basically has two states, one in which it knows the message and one in
which it does not. Each of these processes then can generate a number of
events.

—It will synchronize with an agent when overhearing a message that
contains the fact.

—It will synchronize with an agent when it sends a message to that agent
that contains the fact.

—It will synchronize with other processes representing the adversary when
knowledge of those other facts can be used to derive it.

—It will synchronize with another process representing the adversary
when it can contribute to the derivation of the fact represented by that
other process.

—It can generate a leak event to signal that the adversary has acquired
knowledge of the fact.
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Casper will also construct the specification process for verification. FDR
would then check that the protocol in parallel with the adversary is a
refinement of the specification process. The specification process for secrecy
is simply the CSP process RUN(Z — L) where X is the set of all possible
events, L is the set of leak events that correspond to the adversary knowing
a secret, and RUN(S) is the process that can perform any sequence of
events in S. So the specification is the process that can perform any
sequence of events that do not include the leak events in question. There-
fore, authentication specification AS is defined below.

AS,=R_running.A.B —I_commit.A.B — AS,
A ={R_running.A.B,I_commit.A.B}
AS =AS, || RUNZ - A)

Intuitively, the specification is the process that can perform all events in
any order, except that the occurrence R_running.A.B and I_commit.A.B
events must alternate and must begin with R_running.A.B. This means
that every time the initiator commits to a protocol run, there must be a
separate responder instance that has started responding to the initiator. It
is this notion of authentication, which Woo and Lam call correspondence
[Woo and Lam 1993], that investigators using operational models try to verify.

Advantages over BRUTUS. The advantage of using an existing model
checker is that one can obtain results very quickly, and the designer who
has experience with that model checker will be already familiar with the
input and specification languages.

Advantages of BRUTUS. As seen in the description of BRUTUS, the
process model for the honest agents is similar to the CSP model. Each
honest agent has a sequence of events that constitute its role in the
protocol. In addition, however, we also explicitly maintain the knowledge
corresponding to the principals and the adversary. Since this knowledge is
represented as a set of “atomic facts” and a set of rewrite rules that can be
applied to that set, we can implicitly represent an infinite set of facts. This
becomes especially important for the model of the adversary because now
we are not forced to artificially limit the set of words that the adversary
may learn in order to construct a finite-state model for the adversary. Since
in our logic “knowledge” has a first-class status, our logic can express
properties about security more naturally. Moreover, we believe that proof of
correctness of reduction techniques (such as partial-order and symmetry
reductions) is easier and more natural in our framework.

7.3 Muré

Mitchell et al. [1997] have investigated using a general-purpose state-
enumeration-based model-checking tool, Mur¢, for analyzing cryptographic
protocols. In Murd, the state of the system is determined by the values of a
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foreach i € 1..num.nitiators
foreach j € 1..network.size
if (initfi].state = WAITING_FOR_MESSAGE_2 A
net[j].destination = 1)
then
remove j from the network
if (netfjlkey =1 A
netfjl.type= MESSAGE_2 A
net[j].noncel = 1)
then
set the fields of outgoing message out
add out to the network
initfi].state := COMMIT

|=
|=

Fig. 13. Mur¢ example.

set of global state variables, including the shared variables that are used to
model communication. For example, there is a variable describing which
state each of the honest agents is in and a different variable containing the
name of its “partner” in the protocol. There is also a set of variables that
contain the messages that are sent on the network with one variable
describing the type of the message and other variables containing the fields
of the message. Transition rules are used to describe how honest agents
transition between states and how new messages are inserted into the
network.

For example, the structure of the rule describing how the initiator in the
Needham-Schroeder protocol responds to message number 2 with message
number 3 of the protocol can be found in Figure 13. The rule specifies that
if there is some initiator { waiting for message number 2 and if there is
some message j on the network whose recipient is i then we remove j from
the network, and if j is a message 2 encrypted with i’s key and containing
I’s nonce, then we construct message 3, add it to the network; and then i
enters the COMMIT state. Similar rules are written for each of the other
messages used in the protocol. The authors mention that rules that capture
the behavior of the adversary must also be constructed, and while the rules
are not provided, the authors concede that formulating the adversary is
complicated [Mitchell et al. 1997]. Presumably, these rules would capture
how an adversary can intercept messages, misdirect them, and modify
them. However, because the description must necessarily be finite state, it
cannot capture the infinite behavior of the adversary. In particular, the
description can only keep track of a finite number of words that the
adversary may know or learn, and this adversary model would be specific to
the particular protocol being analyzed.

The specification for the protocol is given by providing an invariant on
the reachable global states of the system. The “usual” correctness property
is used, namely that if an initiator i commits to a protocol run with
responder r then » must have at least started to respond to i. This is given
more formally in Mur¢ by an invariant like the one shown in Figure 14.
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V¢ € 1..num.initiators .
(init[i].state = COMMIT A initfi].responder € Responders) —

(respfinitfi].responder].initiator = i A resp[initfi].responder].state # INITIAL)

Fig. 14. Mur¢ specification.

There would be an analogous invariant for all responders as well. The
authors do not provide a specification for secrecy. Since keeping track of the
knowledge of each of the agents is somewhat cumbersome in this approach, we
suspect that this would involve a nontrivial extension to the model. Advan-
tages and disadvantages of this approach over BRUTUS are virtually the
same as for the FDR case, so we will not repeat it here. However, due to the
development of Casper modeling, the adversary is easier in the case of FDR.

7.4 NRL Analyzer

Catherine Meadows has developed the NRL Protocol Analyzer, a special-
purpose verification tool for the analysis of cryptographic protocols [Mead-
ows 1994]. Like the approaches based on model-checking, each participant
has its own local state, and the global state of the entire system is the
composition of these local states with some state information for the
environment or adversary. The state of each local participant is maintained
by a store of learned facts or /facts. This is represented by a store with four
indices which can be thought of as a function of four arguments, Ifact(p,
r, n,t) = v where

—p is the participant that knows the fact,

—r identifies the run of the protocol (an identifier),

—rn describes the nature or name of the fact,

—t is the local time as kept by the participant’s counter, and

—v is a list of words or values that make up the content of the fact.

For example,
lfact(user(A), N, init_conv, T') = [user(B)]

expresses the fact that A has initiated a conversation with B in run N at
local time T. If A has not yet initiated a conversation with B, then the
value of the fact would be empty, and so the value of the function would be
nil or [].

New Ifact values are computed using the transition rules that describe
the behavior of the protocol. For example, consider a fired rule that causes

A to perform some action in run C. Also assume that lfact(A, B, C, X) = Y.
If the rule fires at local time X, it sets A’s local counter to s(X). If the rule
changes the value of the [fact to Z, then Ifact(A, B, C, s(X)) = Z; otherwise
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rule(1)

If:

count (user(A,honest)) = [M],

adversaryknows(Z) ,

1fact(user(A,honest), O, init_nonce, M) = [user(B,W), XI.

1fact(user(A,honest), N, init_gotnonce, M) = [],

then:

count(user(A,honest)) = [s(M],

1fact(user(A,honest), N, init_gotnonce, s(M)) =
[user(B, W), pke(privkey(user(A,honest))),
id_check (pke(privkey(user(A,honest)), Z), (X, Y))I,

EVENT:

event(user(A,honest), I, init_decrypt, s(i)) =
[user(B, W), X, Y, Z].

rule(2)

If:

count(user(A, honest)) = [M],

1fact(user(A, honest), N, init_gotnonce, M) =
[user(B, W), (X, Y), ok]l,

1fact(user(A, honest), N, init_nonce, M)

1fact(user(A, honest), N, init_final, M)

then:

count(user(A, honest)) = [s(M)],

adversarylearns (pke(pubkey(user(B, W)), Y)),

1fact(user(A, honest), W, init_final, s(M)) = [Y],

EVENT:

event(user(A, honest), N, init_reply, s(M))

[user(B, W), Y].

[user(B, W), X1,
1,

Fig. 15. NRL example.

lfact(A, B, C, s(X)) = Y. For the sake of concreteness, an example that
parallels the Mur¢ example is given in Figure 15. In this example, the first
rule checks to see if the initiator has sent message number 1 but still has
not received message number 2. If this is the case, it accepts any message Z
that the adversary knows and records whether or not it has the correct
format for message number 2 in an Ifact with the name ini¢t_gotnonce. It
checks for the correct format with id_check which is simply the identity
function. The second rule checks for this Ifact, and if it exists and the value
computed by id_check was true, it produces message number 3.

While this description looks somewhat similar to the Mur¢ description,
this similarity is mostly superficial. Mur¢ performs a state space search on
explicit state descriptions. The NRL Analyzer uses unification to work on a
possibly incomplete state description that would represent a set of states.
In addition, the NRL Analyzer works backward. The analysis proceeds by
starting with a description of an insecure state. The NRL Analyzer then
tries to unify this state description with the right-hand side of a transition
rule. If this unification is successful, then applying this substitution to the
left-hand side results in a description of the states that could precede the
insecure state. We can then continue to search backward from these states
in an attempt to reach an initial state. If the initial state is found, then the
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path to the initial state represents the counterexample trace. Unlike the
other finite-state systems, there is also no a priori bound placed on the
number of instances of the protocol that can be executed. Therefore, the
number of states that could be potentially searched is infinite. The NRL
Analyzer provides a way to prove certain sets of states (often these sets are
infinite) unreachable in an attempt to prune the search. However, the
procedure is still not guaranteed to terminate.

Advantages over BRUTUS. The big advantage of the NRL analyzer over
BRUTUS is that the correctness of the protocol is proved without any
bounds on the number of instances. In fact, any approach based on theorem
proving has this advantage over techniques based on state space explora-
tion. For example, the NRL analyzer has proved the correctness of the
Needham-Schroeder protocol without any constraints on the number of
instances.

Advantages of BRUTUS. NRL analyzer requires user assistance while
it is proving the protocol correct. On the other hand, BRUTUS is completely
automatic. Moreover, when the protocol is flawed, BRUTUS outputs a
counterexample displaying the flaw. For theorem-proving-based ap-
proaches counterexamples are notoriously hard to produce. However, in
general it should be noted that any model checker will have these advan-
tages over a theorem prover, such as the NRL analyzer.

7.5 Isabelle

Paulson has investigated the use of Isabelle to prove protocols correct
[Paulson 1997b]. Like the models used in Mur¢ and the NRL Analyzer, the
protocol is encoded with a set of rules that describe how the honest
participants in the protocol behave. These rules describe under what
circumstances an agent will generate and send a certain message. Murd¢
and the NRL Analyzer use these rules to describe the state that results
when a particular action is taken or a particular message is sent. Paulson,
however, uses these rules to inductively define the set of possible traces. In
other words, each of Paulson’s rules has the form “if the trace evs contains
certain events, then it can be augmented by concatenating the event ev to
the end of the trace.” For example, in the Needham-Schroeder public key
protocol, the message the initiator sends in step number 3 is modeled by
the rule in Figure 16. If the trace evs contains the actions where A sent
message 1 containing nonce NA to B and A receives a message 2 contain-
ing NA in the first field and NB in the second field, then the trace is
augmented with the action where A sends message 3 containing NB.
Since this is a theorem-proving environment, the requirement is given in
a syntax identical to that used to model the protocol. Figure 17 gives a
possible requirement for the Needham-Schroeder public key protocol. The
requirement states that if A sends the nonce NA to B in message 1 and
receives a message 2 back that contains NA in the first slot, then B must
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NS3 [| evs € ns_public;
Says A B (Crypt (pubK B) | Nonce NA, Agent A |)
€ set_of list evs;
Says B’ A (Crypt (pubK A) {| Nonce NA, Nonce NB |})
€ set_of list evs |]
=
Says A B (Crypt (pubK B) (Nonce NB))

# evs € ns_public
Fig. 16. Isabelle example.

[| Says A B (Crypt (pubK B) {|Nonce NA, Agent A[})
€ set_of list evs;
Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB|})
€ set_of list evs;
A ¢ lost; B ¢ lost; evs € ns_public |]
=
Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|})
€ set_of_list evs

Fig. 17. Isabelle requirement example.

have sent this message. The complete report on the analysis of the
Needham-Schroeder public key protocol can be found in Paulson [1997a].

Unlike Mur¢, the NRL Analyzer, and BRUTUS, Paulson’s technique is
based entirely on theorem proving. Because he gives an inductive definition
for the set of traces in the protocol, there is no limit placed on the number
of instances considered. In other words, Paulson’s proof of correctness is for
an arbitrary number of instances and not for a specific finite-state model.
Like the NRL Analyzer, however, there is no guarantee of termination. In
addition, it is not clear how to get feedback about possible errors in the
protocol from a failed proof. This suggests that while Paulson’s verification
technique may be able to prove stronger statements, the model-checking
techniques would be more useful to a protocol designer for debugging
purposes.

The advantages and disadvantages of the Isabelle approach over BRU-
TUS are the same as mentioned in the case of the NRL protocol analyzer.

7.6 The Strand Space Model

A new model called the Strand Space Model (or SSM) was proposed in
Thayer et al. [1998]. Thayer et al. [1998] also show how to use the SSM for
protocol representation and manually prove properties related to security
about the protocol. A model checker Athena which uses SSM as its
underlying representation is presented in Song et al. [2001]. Roughly,
Athena starts with an initial goal that violates the desired property. After
that, the tool works backward using the rules corresponding to the adver-
sary and the protocol and tries to justify the initial goal. As the reader can
see, the approach followed in Athena is similar to the one employed in the
NRL analyzer. The key difference between the two approaches is that
Athena is fully automatic and uses SSM as its underlying representation.
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Advantages over BRUTUS. In some cases Athena is more efficient in
terms of space and time than BRUTUS. However, we believe that the
underlying algorithm and representation employed in Athena is fundamen-
tally different from the one used in all other approaches described in this
article, including BRUTUS. In fact, we are in the process of developing and
implementing algorithms and representations similar to the one used in
Athena for the logic presented in this article.

Advantages of BRUTUS. We believe that our logic is more expressive
and natural for describing properties about security protocols. Moreover, as
can be easily inferred from the previous discussion BRUTUS can easily
model and reason about protocols where the actions related to security are
“mixed” with other actions, such as committing the description of a trans-
action to a database. On the other hand, the algorithms and representation
used in Athena are “fine tuned” for protocols where all the actions are
related to security. However, as already pointed out we believe that the
underlying algorithms and representations used in Athena can be em-
ployed in our framework as well.

7.7 Theory Generation

Kindred and Wing [1999] introduced a technique called theory generation.
Theory generation takes as its input a set of initial assumptions and rules
of inference of a logical system and then constructs a set of facts that can be
derived from the initial assumptions and the rules of inference. As an
example consider the BAN logic presented earlier. Theory generation will
take as its input the initial assumptions about all the principals and the
rules of inference in the BAN logic. After that, theory generation produces
all the facts or beliefs about various principals that can be derived from the
initial beliefs and the rules of inference of the BAN logic. Once the process
of “theory generation” has been performed, the set of facts produced can be
“queried” to gain insight into the protocol. Kindred and Wing also describe
a tool called REVERE based on the techniques presented in Kindred and
Wing [1999]. We believe that theory generation has a fundamentally
different goal than BRUTUS and can be used by verification tools (like
BRUTUS). For example, when we check whether m is in the closure of a set
of messages I known by the adversary, we are essentially performing
theory generation to compute the closure of I using the messages in I as the
set of initial assumptions and the rules of inference corresponding to the
adversary. Perhaps theory generation can be used to incorporate other
adversary model into BRUTUS. Sanjit Seshia, Nick Hopper, and Jeannette
Wing have used BRUTUS and REVERE in a novel way which demonstrates
the “synergy” between the two tools [Hopper et al. 2000]. They analyzed an
authentication protocol using BRUTUS which produced a counterexample.
Then they used REVERE to find the “reason” for the counterexample, i.e.,
the beliefs that caused the counterexample. Moreover, a flawed assumption
discovered by REVERE can be used to point out configurations in BRUTUS
that might lead to a counterexample. This leads us to believe that a
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combination of BRUTUS and REVERE can be used to provide a user-
friendly tool, where BRUTUS is used as a verification engine, and REVERE
provides a user-friendly explanation for the counterexamples.

7.8 Reductions

A reduction similar to the partial-order reduction presented in this article
appears in Shmatikov and Stern [1998]. Shmatikov and Stern [1998] use
Mur¢ to verify cryptographic protocols. The connection to partial-order
reductions was not made in Shmatikov and Stern [1998], and the set of
reductions considered in Shmatikov and Stern [1998] are more restrictive
than the ones considered here. Moreover, the arguments presented in
Shmatikov and Stern [1998] only apply to a restrictive logic. The reduction
techniques presented in this article are much more precise and apply to a
much richer logic.

Symmetry reductions for model-checking reactive systems are discussed
in Clarke et al. [1996], Emerson and Sistla [1996], and Ip and Dill [1996].
Symmetry reductions in the context of checking relational specifications
are described in Jackson et al. [1998]. However, we were unable to locate
related research on use of symmetry for verification of security or crypto-
graphic protocols.

8. CONCLUSION

In this article we presented the design of a tool BRUTUS for verifying
security protocols. We argued how by automating the job of verifying a
security protocol BRUTUS eases the burden on a software architect.
Reduction techniques that make BRUTUS more efficient were also pre-
sented. In the future, we plan to look for techniques that will make
BRUTUS even more efficient. We are in the process of investigating the
Strand Space Model in this context. We feel that there is still room for
improvement in this area. In particular, we want to look at abstraction
techniques in the context of verifying security protocols. Another area of
future work is to provide semantics to internal actions. Recall that in the
logic presented in this article internal actions (e.g., debit) do not have any
semantics associated with them (i.e., they are treated as purely symbolic).
In the future, we want to explore the possibility of having semantics for
internal actions, e.g., the debit action actually debits a customer’s account.
Notice that this will entail combining traditional correctness techniques
(based on pre/post conditions) with techniques used for verifying security
properties. We also want to compile a database of various properties
relevant to security protocols in our logic. This database can serve as a set
of patterns for the system architect and will make the task of writing
requirements easier.
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