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Abstract. We consider the problem of maintaining persistent lists sub-
ject to concatenation and to insertions and deletions at both ends. Up-
dates to a persistent data structure are nondestructive—each operation
produces a new list incorporating the change while keeping intact the list
or lists to which it applies. Although general techniques exist for mak-
ing data structures persistent, these techniques fail for structures that
are subject to operations, such as catenation, that combine two or more
versions. In this paper we develop a simple implementation of persistent
double-ended queues with catenation that supports all deque operations
in constant amortized time.

1 Introduction

Over the last fifteen years, there has been considerable development of persistent
data structures, those in which not only the current version, but also older ones,
are available for access (partial persistence) or updating (full persistence). In
particular, Driscoll, Sarnak, Sleator, and Tarjan [5] developed efficient general
methods to make pointer-based data structures partially or fully persistent, and
Dietz [3] developed an efficient general method to make array-based structures
fully persistent.

These general methods support updates that apply to a single version of a
structure at a time, but they do not accommodate operations that combine two
different versions of a structure, such as set union or list catenation. Driscoll,
Sleator, and Tarjan [4] coined the term confluently persistent for fully persistent
structures that support such combining operations. An alternative way to ob-
tain persistence is to use strictly functional programming (By strictly functional
we mean that lazy evaluation, memoization, and other such techniques are not
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allowed). For list-based data structure design, strictly functional programming
amounts to using only the LISP functions CAR, CONS, CDR. Strictly functional
data structures are automatically persistent, and indeed confluently persistent.

A simple but important problem in data structure design that makes the issue
of confluent persistence concrete is that of implementing persistent double-ended
queues (deques) with catenation. A series of papers [4, 2] culminated in the work
of Kaplan and Tarjan [8], who developed a confluently persistent implementation
of deques with catenation that has a worst-case constant time and space bound
for any deque operation, including catenation. The Kaplan-Tarjan data structure
and 1ts precursors obtain confluent persistence by being strictly functional.

If all one cares about is persistence, strictly functional programming is un-
necessarily restrictive. In particular, Okasaki [12, 11, 13] observed that the use of
lazy evaluation in combination with memoization can lead to efficient functional
(but not strictly functional) data structures that are confluently persistent. In
order to analyze such structures, Okasaki developed a novel kind of debit-based
amortization. Using these techniques and weakening the time bound from worst-
case to amortized, he was able to considerably simplify the Kaplan-Tarjan data
structure, in particular to eliminate its complicated skeleton that encodes a tree
extension of a redundant digital numbering system.

In this paper we explore the problem of further simplifying the Kaplan-
Tarjan result. We obtain a confluently persistent implementation of deques with
catenation that has a constant amortized time bound per operation. OQur struc-
ture is substantially simpler than the original Kaplan-Tarjan structure, and
even simpler than Okasaki’s structure: whereas Okasaki requires efficient per-
sistent deques without catenation as building blocks, our structure is entirely
self-contained. Furthermore our analysis uses a standard credit-based approach.
As compared to Okasaki’s method, our method requires an extension of the con-
cept of memoization: we allow any expression to be replaced by an equivalent
expression.

The remainder of this extended abstract consists of five sections. In Section
2, we introduce terminology and concepts. In Section 3, we illustrate our ap-
proach by developing a persistent implementation of deques without catenation.
In Section 4, we develop our solution for deques with catenation. We conclude
in Section 5 with some remarks and open problems.

2 Preliminaries

The objects of our study are lists. As in [8] we allow the following operations on
lists:



MAKELIST(z): return a new list containing the single element z.

PUSH(z, L): return a new list formed by adding element z to the
front of list L.
POP(L): return a pair whose first component is the first element

on list . and whose second component is a list contain-
ing the second through last elements of L.

INJECT(L, z): return a new list formed by adding element z to the
back of list L.
EJECT(L): return a pair whose first component is a list containing

all but the last element of L and whose second compo-
nent is the last element of L.

CATENATE(L, R):  return a new list formed by catenating Z and R, with
L first.

We seck implementations of these operations (or specific subsets of them) on
persistent lists: any operation is allowed on any previously constructed list or
lists at any time. For discussions of various forms of persistence see [5]. A stack
is a list on which only PusH and PoOP are allowed. A queue is a list on which only
INJECT and POP are allowed. A steque (stack-ended queue) is a list on which only
PUSH, POP, and INJECT are allowed. Finally, a deque (double-ended queue) is a
list on which all four operations PUSH, POP, INJECT, and EJECT are allowed. For
any of these four structures, we may or may not allow catenation. If catenation
is allowed, PUSH and INJECT become redundant, since they are special cases of
catenation, but it is sometimes convenient to treat them as separate operations
because they are easier to implement than general catenation.

We say a data structure is strictly functional if it can be built and manipu-
lated using the LISP functions CAR, cONS, CDR. That is, the structure consists of
a set of immutable nodes, each either an atom or a node containing two pointers
to other nodes, with no cycles of pointers. The nodes we use to build our struc-
tures actually contain a fixed number of fields; reducing our structures to two
fields per node by adding additional nodes is straightforward. Various nodes in
our structure represent lists. To obtain our results, we extend strict functionality
by allowing, in addition to CAR, CONS, CDR, the operation of replacing a node in
a structure by another node representing the same list. Such a replacement can
be performed in an imperative setting by replacing all the fields in the node, for
instance in LISP by using REPLACA and REPLACD. Replacement can be viewed
as a generalization of memoization. In our structures, any node is replaced at
most twice, which means that all our structures can be implemented in a write-
once memory. (It is easy to convert an algorithm that overwrites any field only a
fixed constant number of times into a write-once algorithm, with only a constant
factor loss of efficiency.)

To perform amortized analysis, we use a standard potential-based framework.
We assign to each configuration of the data structure (the totality of nodes cur-
rently existing) a potential. We define the amortized cost of an operation to
be its actual cost plus the net increase in potential caused by performing the
operation. In our applications, the potential of an empty structure is zero and



the potential is always non-negative. It follows that, for any sequence of opera-
tions starting with an empty structure, the total actual cost of the operations is
bounded above by the sum of their amortized costs. See the survey paper [14]
for a more complete discussion of amortized analysis.

3 Noncatenable Deques

In this section we describe an implementation of persistent noncatenable deques
with a constant amortized time bound per operation. The structure is based on
the analogous Kaplan-Tarjan structure [8] but is much simpler. The result pre-
sented here illustrates our technique for doing amortized analysis of a persistent
data structure. At the end of the section we comment on the relation between
the structure proposed here and previously existing solutions.

3.1 Representation

Here and in subsequent sections we say a data structure is over a set A if it stores
elements from A. Our representation is recursive. It is built from bounded-size
deques called buffers, each containing at most three elements. Buffers are of
two kinds: prefizes and suffizes. A nonempty deque d over A is represented by
an ordered triple consisting of a prefix over A, denoted by pr(d); a (possibly
empty) child deque of ordered pairs over A, denoted by ¢(d); and a suffix over A,
denoted by sf(d). Each pair consists of two elements from A. The child deque ¢(d),
if nonempty, is represented in the same way. We define the set of descendants
{c(d)} of a deque d in the standard way—namely, ¢°(d) = d and ¢t1(d) =
c(ct(d)), provided ¢ (d) and ¢(c!(d)) exist.

The order of elements in a deque 1s defined recursively to be the one consistent
with the order of each triple, each buffer, each pair, and each child deque. Thus,
the order of elements in a deque d is first the elements of pr(d), then the elements
of each pair in ¢(d), and finally the elements of sf(d).

In general the representation of a deque i1s not unique—the same sequence of
elements may be represented by triples that differ in the sizes of their prefixes and
suffixes, as well as in the contents and representations of their descendant deques.
Whenever we refer to a deque d we actually mean a particular representation of
d, one that will be clear from the context.

The pointer structure for this representation is straightforward: a node rep-
resenting a deque d contains pointers to pr(d), ¢(d), and sf(d). Note that, since
the node representing c!(d) contains a pointer to ¢!*t!(d), the pointer structure
of d is essentially a linked list of its descendants. By overwriting pr(d), c¢(d), or
sf{d) with a new prefix, child deque, or suffix respectively, we mean assigning a
new value to the corresponding pointer field in d. As discussed in Section 2, we
will always overwrite fields in such a way that the sequence of elements stored
in d remains the same and the change is only in the representation of d. By
assembling a deque from a prefix p, a child deque y, and a suffix s, we mean
creating a new node with pointers to p, y, and s.



3.2 Operations

We describe in detail only the implementation of PoP; the detailed implemen-
tations of the other operations are similar. Each operation on a buffer is imple-
mented by creating an appropriately modified new copy.

PoP(d): If pr(d) is empty and ¢(d) is nonempty, then let ((z,y),¢’) = PoP(c(d))
and p’ = INJECT(y, INJECT(z, pr(d))). Overwrite pr(d) with p’ and ¢(d) with ¢’.
Then if pr(d) is nonempty, perform (z,p) = PoP(pr(d)), return z as the item
component of the result, and assemble the deque component of the result from
p, ¢(d), and sf(d). Otherwise, the only part of d that is nonempty is its suffix.
Perform (z,s) = PoP(sf(d)) and return z together with a deque assembled from
an empty prefix, an empty child deque, and s.

Note that the implementation of POP is recursive: POP can call itself once.
The implementation of EJECT 1s symmetric to the implementation of pop. The
implementation of PUSH is as follows. Check whether the prefix contains three
elements; if so, recursively push a pair onto the child deque. Once the prefix
contains at most two elements, add the new element to the front of the prefix.
INJECT 1s symmetric to PUSH.

3.3 Analysis

We call a buffer red if it contains zero or three elements, and green if it contains
one or two elements. A node representing a deque can be in one of three possible
states: rr, if both of its buffers are red; gr, if one buffer is green and the other
red; and gg, if both buffers are green. We define #rr, #gr, and #gg to be the
numbers of nodes in states rr, gr, and gg, respectively. Note that deques can
share descendants. For instance, d and d’ = PoP(d) can both contain pointers to
the same child deque. We count each shared node only once, however. We define
the potential @ of a collection of deques to be 3 x (#rr) + #gr.

To analyze the amortized cost of POP, we assume that the actual cost of a
call to poP, excluding the recursive call, is one. Thus if a top level POP invokes
POP recursively k& — 1 times, the total actual cost is k.

Assume that a top level POP invokes k — 1 recursive PoPs. The ith invocation
of Pop, for 1 < i < k— 1, overwrites ¢ ~1(d), changing its state from rr to gr or
from gr to gg. Then it assembles its result, which creates a new node whose state
(gr or gg) is identical to the state of ¢!~1(d) after the overwriting. In summary,
the ith recursive call to por, 1 < ¢ < k — 1, replaces an rr node with two gr
nodes or a gr node with two gg nodes, and in either case decreases the potential
by one. The last call, Pop(c*~1(d)), creates a new node that can be in any state,
and so increases the potential by at most three. Altogether, the k invocations of
POP increase the potential by at most 3 — (k — 1). Since the actual cost is &, the
amortized cost i1s constant.

A similar analysis shows that the amortized cost of PUSH, INJECT, and EJECT
is also constant. Thus we obtain the following theorem.



Theorem 1. Fach of the operations PUSH, POP, INJECT, and EJECT on the data
structure defined in this section takes O(1) amortized time.

3.4 Related Work

The structure just described is based on the Kaplan-Tarjan structure of [8, Sec-
tion 3], but simplifies it in three ways. First, the skeleton of our structure (the
sequence of descendants) is a stack; in the Kaplan-Tarjan structure, this skele-
ton must be partitioned into a stack of stacks in order to support worst-case
constant-time operations (via a redundant binary counting mechanism). Sec-
ond, the recursive changes to the structure to make its nodes green are one-sided,
instead of two-sided: in the original structure, the stack-of-stacks mechanism re-
quires coordination to keep both sides of the structure in related states. Third,
the maximum buffer size is reduced, from five to three. In the special case of a
steque, the maximum size of the suffix can be further reduced, to two. In the spe-
cial case of a queue, both the prefix and the suffix can be reduced to maximum
size two.

There is an alternative, much older approach that uses incremental recopying
to obtain persistent deques with worst-case constant-time operations. See [8]
for a discussion of this approach. The incremental recopying approach yields
an arguably simpler structure than the one presented here, but our structure
generalizes to allow catenation, which no one knows how to implement efficiently
using incremental recopying. Also, our structure can be extended to support
access, insertion, and deletion d positions away from the end of a list in O(log d)
amortized time, by applying the ideas in [9].

4 Catenable Deques

In this section we show how to extend our ideas to support catenation. Specif-
ically, we describe a data structure for catenable deques that achieves an O(1)
amortized time bound for PUSH, POP, INJECT, EJECT, and CATENATE. Our struc-
ture is based upon an analogous structure of Okasaki [13], but simplified to use
constant-size buffers.

4.1 Representation

We use three kinds of buffers: prefizes, middles, and suffizes. A nonempty deque
d over A is represented either by a suffix sf(d) or by a 5-tuple that consists of a
prefix pr(d), a left deque of triples ld(d), a middle md(d), a right deque of triples
rd(d), and a suffix sfld). A triple consists of a first middle buffer, a deque of
triples, and a last middle buffer. One of the two middle buffers in a triple must
be nonempty, and in a triple that contains a nonempty deque both middles must
be nonempty. All buffers and triples are over A. A prefix or suffix in a 5-tuple
contains three to six elements, a suffix in a suffix-only representation contains



one to eight elements, a middle in a 5-tuple contains exactly two elements, and
a nonempty middle buffer in a triple contains two or three elements.

The order of elements in a deque is the one consistent with the order of each 5-
tuple, each buffer, each triple, and each recursive deque. The pointer structure is
again straightforward, with the nodes representing 5-tuples or triples containing
one pointer for each field.

4.2 Operations

We describe only the functions PUSH, POP, and CATENATE, since INJECT is Sym-
metric to PUSH and EJECT is symmetric to POP. We begin with PUSH.

PUSH(z,d):

Case 1: Deque d is represented by a 5-tuple.

1) If |pr(d)| = 6 then create two new prefixes p’ and p” where p’ contains the first
four elements of pr(d) and p” contains the last two elements of pr(d). Overwrite
pr(d) with p’ and ld(d) with the result of pusHu((p"”, 0, 0), Id(d)).

2) Let p = pusH(z, pr(d)) and assemble the result from p, ld(d), md(d), rd(d),
and sf(d).

Case 2: Deque d is represented by a suffix only.

If |sfld)| = 8, then create a prefix p containing the first three elements of sf(d),
a middle m containing the fourth and fifth elements of sf(d) , and a new suffix
s containing the last three elements of sf{(d). Overwrite pr(d), md(d), and sf(d)
with p, m, and s, respectively. Let p’ = PusH(z, p) and assemble the result from
p, 0, m, 0, and s. If |sf(d)| < 8, let s’ = PusH(z, sf(d)) and represent the result
by s’ only.

Note that PUSH (and INJECT) creates a valid deque even when given a deque
in which the prefix (or suffix, respectively) contains only two elements. Such
deques may exist transiently during a POP (or EJECT), but are immediately
passed to PUSH (or INJECT) and then discarded.

CATENATE(dy, ds):

Case 1: Both dy and ds are represented by 5-tuples.

Let y be the first element in pr(dz), and let & be the last element in sf(d;). Create
a new middle m containing  followed by y. Partition the elements in sf(d;)—{z}
into at most two buffers s{ and s{ each containing two or three elements in or-
der, with s{ possibly empty. Let {d] = NJECT((md(d1), rd(d1), s1), ld(dy1)). Tf
st # 0 then Let Id{ = NJrcT((s7,0,0),1d}); otherwise, let IdY = Id}. Simi-
larly partition the elements in pr(di) — {y} into at most two prefixes pi, and
p4 each containing two or three elements in order, with p} possibly empty. Let
rdy = pusH((pY, ld(d2), md(ds)), rd(ds)). If ph # B let rdy = rusu((ph, 8, 0), rd5);
otherwise, let rdy = rd’. Assemble the result from pr(dy), ldY, m, rdy, and sf{(d2).
Case 2: d; or dy is represented by a suffix only.

Push or inject the elements of the suffix-only deque one by one into the other
deque.



In order to define the POP operation, we define a NAIVE-POP procedure that
simply pops its argument without making sure that the result is a valid deque.

NAIVE-POP(d): If d is represented by a 5-tuple, let (z,p) = Pop(pr(d)) and
return z together with a deque assembled from p, ld(d), md(d), rd(d), and sf(d).
If d consists of a suffix only, let (z,s) = PoP(sf(d)) and return z together with
a deque represented by s only.

POP(d):

If deque d is represented by a suffix only, or if |pr(d)| > 3, then perform
(z,d’) = NA1vE-POP (d) and return (z,d’). Otherwise, carry out the appropri-
ate one of the following three cases to increase the size of pr(d); then perform
(z,d') = NAIVE-POP(d) and return (z,d’).

Case 1: |pr(d)| = 3 and ld(d) # 0.

Inspect the first triple ¢ in ld(d). If either the first nonempty middle buffer in
t contains 3 elements or ¢ contains a nonempty deque, then perform (¢,{) =
NAIVE-POP (Id(d)); otherwise, perform (¢,1) = popr(ld(d)). Let ¢ = (z,d’, y) and
w.l.0.g. assume that z is nonempty if ¢ consists of only one nonempty middle
buffer. Apply the appropriate one of the following two subcases.

Case 1.1: |z| = 3.

Pop the first element of z and inject it into pr(d). Let 2’ be the buffer obtained
from z after the pop and let p’ be the buffer obtained from pr(d) after the inject.
Overwrite pr(d) with p’ and overwrite ld(d) with the result of PusH((2', d', y), ).
Case 1.2: |z| = 2.

Inject all the elements from z into pr(d) to obtain p’. Then, if d’ and y are null,
overwrite pr(d) with p’ and overwrite ld(d) with {. If on the other hand, d’ and
y are not null, let I’ = caTENATE(d’, PUSH((y, 8, 0),1)), and overwrite pr(d) with
p’ and ld(d) with !’

Case 2: |pr(d)| = 3, ld(d) = 0, and rd(d) # 0.

Inspect the first triple ¢ in rd(d). If either the first nonempty middle buffer in
t contains 3 elements or ¢ contains a nonempty deque, then perform (¢,7) =
NAIVE-POP(rd(d)); otherwise, perform (¢,r) = Popr(rd(d)). Let t = (z,d’, y) and
w.l.0.g. assume that z is nonempty if ¢ consists of only one nonempty middle
buffer. Apply the appropriate one of the following two subcases.

Case 2.1: |z| = 3.

Pop an element from md(d) and inject it into pr(d), Let m be the buffer obtained
from md(d) after the pop and p the buffer obtained from pr(d) after the inject.
Pop an element from z and inject it into m to obtain m’. Let z’ be the buffer
obtained from z after the pop, and let ' = pusu((2',d’, y), r). Overwrite pr(d),
ld(d), md(d), and rd(d) with p, @, m’, and r’ respectively.

Case 2.2: |z| =2

Inject the two elements in md(d) into pr(d) to obtain p. Overwrite pr(d), md(d),
and rd(d) with p, z, and ', where v/ = r if d' and y are empty and v =
CATENATE(d', PUSH((y, 0, 0), 7)) otherwise.

Case 3: |pr(d)| = 3, ld(d) = 0, and rd(d) = 0.

If |sf(d)| = 3, then combine pr(d), md(d), and sf(d) into a single buffer s and

overwrite the representation of d with a suffix-only representation using s. Oth-



erwise, overwrite pr(d), md(d), and sf(d) with the results of shifting one element
from the middle to the prefix, and one element from the suffix to the middle.

4.3 Analysis

We call a prefix or suffix in a 5-tuple red if it contains either three or six elements
and green otherwise. We call a suffix in a suffix-only representation red if it
contains eight elements and green otherwise. The prefix of a suffix-only deque
is considered to have the same color as the suffix. A node representing a deque
can be in one of three states: rr, if both the prefix and suffix are red, gr, if one
buffer is green and the other red, or gg, if both buffers are green. We define
the potential @ of a collection of deques exactly as in the previous section:
@ = 3« (#rr) + #gr where #rr and #gr are the numbers of nodes that are in
states rr and gr, respectively.

The amortized costs of PUSH and INJECT are O(1) by an argument identical
to that given in the analysis of POP in the previous section. CATENATE calls PUSH
and INJECT a constant number of times and assembles a single new node, so its
amortized cost is also O(1).

Finally, we analyze PoP. Assume that a call to POP recurs to depth k. By
an argument analogous to the one given in the analysis of POP in the previous
section, each of the first £ — 1 calls to PoP pays for itself by decreasing the
potential by one. The last call to POP may invoke PUSH or CATENATE, and
excluding this invocation has a constant amortized cost. Since the amortized
cost of PUSH and CATENATE is constant, we conclude that the the amortized
cost of POP is constant.

In summary we have proved the following theorem:

Theorem 2. Qur deque representation supports PUSH, POP, INJECT, EJECT,
and CATENATE in O(1) amortized time.

4.4 Related Work

The structure presented in this section is analogous to the structures of [13,
Section 8] and [7, Section 9] but simplifies them as follows. First, the buffers are
of constant size, whereas in [13] and [7] they are noncatenable deques. Second,
the skeleton of the present structure is a binary tree, instead of a tree extension
of a redundant digital numbering system as in [7]. The amortized analysis uses
the standard potential function method of [14] rather than the more complicated
debit mechanism used in [13].

For catenable steques (EJECT is not allowed) we have a simpler structure
that has a stack as its skeleton rather than a binary tree. It is based on the same
recursive decomposition of lists as in [8, Section 4]. Our new structure simplifies
the structure of [8] because we use constant size buffers rather than noncatenable
stacks, and our pointer structure defines a stack rather than a stack of stacks.
We will describe this structure in the full version of the paper.



5 Further Results and Open Questions

If the universe A of elements over which deques are constructed has a total order,
we can extend the structures described here to support an additional heap order
based on the order on A. Specifically, we can support the additional operation
of finding the minimum element in a deque (but not deleting it) while preserv-
ing a constant amortized time bound for every operation, including finding the
minimum. We merely have to store with each buffer, each deque, and each pair
or triple the minimum element in it. For related work see [1,2,6,10].

We can also support a flip operation on deques. A flip operation reverses the
linear order of the elements in the deque: the ith from the front becomes the
1th from the back, and vice-versa. For the noncatenable deques of Section 3, we
implement flip by maintaining a reversal bit that is flipped by a flip operation. If
the reversal bit is set, a push becomes an inject, a pop becomes an eject, an inject
becomes a push, and an eject becomes a pop. To support catenation as well as
flip we use reversal bits at all levels. We must also symmetrize the definition in
Section 4 to allow a deque to be represented by a prefix only, and extend the
various operations to handle this possibility. The interpretation of reversal bits
is cumulative. That is, if d is a deque and z is a deque inside of d, z is regarded
as being reversed if an odd number of reversal bits are set to 1 along the path
of actual pointers in the structure from the node for d to the node for z. Before
performing catenation, if the reversal bit of either or both of the two deques is
1, we push such bits down by flipping such a bit of a deque z to 0, flipping the
bits of all the deques to which z points, and swapping the appropriate buffers
and deques (the prefix and suffix exchange roles, as do the left deque and right
deque). We do such push-downs of reversal bits by assembling new deques, not
by overwriting the old ones.

We have devised an alternative implementation of catenable deques in which
the sizes of the prefixes and suffixes are between 3 and 5 instead of 3 and 6.
To achieve this we have to use two additional pointers in each node. For a
node that represents a deque d, one additional pointer, if not null, points to the
result of POP(d); and the other, if not null, points to the result of EJECT(d).
The implementation of push and catenate is essentially as in Section 4. The
changes in pop (and eject) are as follows. While popping a deque d with a prefix
of size 3, if the pointer to PoP(d) is not null we read the result from there.
Otherwise, we carry out a sequence of operations as in Section 4 but instead of
overwriting the buffers of d before creating the result we create the result and
record it in the additional pointer field of the node representing d. Using a more
complicated potential function than the one used in Section 4 we can show that
this implementation runs in O(1) amortized time per operation.

One direction for future research is to find a way to simplify our structures
further. Specifically, consider the following alternative representation of caten-
able deques, which uses a single recursive subdeque rather than two such subd-
eques. A nonempty deque d over A is represented by a triple that consists of a
prefix pr(d), a (possibly empty) child deque of triples ¢(d), and a suffix sfid). A
triple consists of a nonempty prefiz, a deque of triples, and a nonempty suffiz,



or just of a nonempty prefix or suffix. All buffers and triples are over A. The
operations PUSH, POP, INJECT, and EJECT have implementations similar to their
implementations in Section 4. The major difference is in the implementation of
CATENATE, which for this structure requires a call to PoP. Specifically, let d;
and dz be two deques to be catenated. CATENATE pops ¢(d1) to obtain a triple
(p,d', s) and a new deque ¢, injects (s, ¢, sf(d1)) into d' to obtain d” and then
pushes (p,d”, pr(d2)) onto ¢(d3) to obtain ¢’. The final result is assembled from
pr(di), ¢, and sf(ds). Tt is an open question whether this algorithm runs in con-
stant amortized time per operation for any constant upper and lower bounds on
the buffer sizes.

Another research direction is to design a confluently persistent representation
of sorted lists such that accesses or updates d positions from an end take O(log d)
time, and catenation takes O(1) time. The best structure so far developed for this
problem has a doubly logarithmic catenation time [9]; it is strictly functional,
and the time bounds are worst-case.
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