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Abstract

The covering Steiner tree problem is a common generaliza-
tion of the k-MST and the group Steiner problems: Given
an edge weighted graph, with subsets of vertices called the
groups, and a requirement for each group which is an in-
teger of value at most the size of the group, the problem
is to find a minimum-weight tree such that for each group,
at least as many nodes as its requirement are included in
the tree. When all requirements are equal to 1, we get the
group Steiner problem, while if there is only group whose
node set is all the vertices in the graph, and this group’s
requirement value is the integer k, the problem reduces to
finding a minimum-weight tree containing k vertices.

We present a polylogarithmic approximation algorithm
for this problem which uses an integer linear programming
formulation, and rounds the optimal fractional solution
iteratively. One interesting feature of our algorithm is that
even though the optimal fractional value of the original LP
formulation may be a very bad estimate of the optimal
integral solution value, at least one of the formulations
arising in one of the iterations of our rounding estimates
the optimal integral solution value well.

1 Introduction

1.1 Statement of the problem. Let G = (V,E)
be an undirected graph with a cost functionc: E — Ry
defined on the edges. Let g1,...,9,m C V be subsets of
vertices. We call the sets g; groups. For each group
g; a nonnegative integer k;, called the requirement of
the group is specified - this value for group i is at most
|g;|. The covering Steiner problem on G is the problem
of finding a minimum-cost connected subgraph of G
which contains at least k; vertices of group g; for all
i € {1,...m}. We denote the size of the largest group
by N, and the largest requirement of a group by K. We
call the group vertices terminals.

The covering Steiner problem generalizes two differ-
ent NP-hard network design problems that have been
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studied recently, namely the &-MST problem (see Ravi,
Sundaram, Marathe, Rosenkrantz and Ravi [16], Fis-
chetti, Hamacher, Jgrnsten and Maffioli [9], Blum,
Ravi and Vempala [6], and Garg [10]), and the group
Steiner problem (see Reich and Widmayer [17], Garg,
Konjevod and Ravi [12] and Charikar, Chekuri, Goel
and Guha [7]).

The k-MST problem is that of finding a minimum-
cost connected subgraph that contains at least k nodes
in an undirected graph with nonnegative costs on edges.
The covering Steiner problem reduces to the k-MST
problem when there is only one group and when all
the vertices in V' belong to this group. This problem
is NP-hard and the best-known approximation ratio
for this problem currently is 2, using an algorithm of
Garg [11], but see also papers of Arya and Ramesh [3]
and Arora and Karakostas [2]. This problem is solvable
in polynomial time in some special cases, e.g. if the
underlying graph is a tree.

The group Steiner problem is the restriction of the
covering Steiner problem where all group requirements
are 1. This problem is at least as hard to approximate
as the set cover problem, because even the special case
where the underlying graph is a star-tree contains the
set cover problem (Klein and Ravi [14]). Approxima-
tion algorithms for the group Steiner problem with poly-
logarithmic approximation ratios were presented in [12]
(randomized) and [7] (deterministic).

1.2 Results. Our central result is a randomized ap-
proximation algorithm for the covering Steiner prob-
lem on a tree with an approximation guarantee of
O(log Nlogmlog K) Here, N denotes the maximum
size of a group (which in turn is at most n, the to-
tal number of nodes), K denotes the maximum require-
ment value of any group (which in turn is at most N)
and m denotes the number of groups. For the group
Steiner problem where K = 1, this approximation ra-
tio matches the best-known ratio. We can transform the
problem in any metric to one on a tree, with a worsening
in the performance ratio, by using the technique of Bar-
tal [5] and Charikar, Chekuri, Goel and Guha [7]. This
then leads to an approximation algorithm for the gen-
eral covering Steiner problem with approximation guar-
antee of O(lognloglognlogNlogmlog K). Using im-



proved metric approximations for graphs that exclude
K, s as a minor (such as planar graphs, points in the
plane), we can get an improved approximation guaran-
tee for the problem on such graphs. Our algorithms can
be derandomized by using ideas from [7].

1.3 Overview and contributions.We solve the cov-
ering Steiner problem on the tree by successively round-
ing solutions to linear programming relaxations of log K
different covering Steiner subproblems that arise from
our original problem. Our formulations capture the
multiplicity requirement for the groups by using a differ-
ent “commodity” to denote different unit requirements.
Intuitively, each group is required to participate (in-
clude one of its vertices) in as many commodities as
its requirement value. All vertices included in a com-
modity must be connected to the root via a subtree of
edges that is chosen by the solution. The objective is to
minimize the total cost of the edges chosen to support
the trees for all commodities. Since a rounding step
can only ensure that a constant fraction of each group’s
current requirement is met with high probability, we set
up a new LP to satisfy the remaining requirement and
proceed iteratively until all requirements are met.

One surprising outcome is that the initial LP relax-
ation that we use for the original problem does not nec-
essarily provide a good lower bound on the cost of the
optimal covering Steiner tree (See Section 2.3). Even
for the special case with only one group whose require-
ment is K, the gap between the optimal integral and
fractional solutions can be Q(K). However, it follows
from our proof that at least one of the O(log K) LP re-
laxations we use in the rounding provides a good lower
bound (within polylogarithmic factor of optimal).

2 Linear programming formulation

First, we make several assumptions that do not reduce
the generality of the problem, but make it easier to
formulate.

2.1 Assumptions. We assume the following.

(1) The graph G is a weighted tree (we can use the
results of Bartal [5] on probabilistic approximation of
general metrics by tree metrics to reduce the original
problem to the problem in a weighted tree with a
slight loss in the performance ratio — the details are
in Section 4.1);

(2) The groups are disjoint (a vertex belonging to
several groups may be expanded into a star with edges
of cost 0 and each leaf belonging to exactly one of the
groups);

(3) Every vertex belonging to a group has degree 1
(similar to the construction in (2));

(4) Every vertex of degree 1 belongs to some group
(otherwise it may be removed from the graph);

(5) It suffices to consider the rooted problem where we
know one vertex called the root that belongs to the
optimal solution (the algorithm may be run for each
possible choice of this vertex).

2.2 ILP Formulation. We formulate the covering
Steiner problem on a tree as an integer linear program.
Let the indicator variable z. denote whether the edge e
is contained in the solution, Then the cost of a solution
zequals ), cp CeTe. In addition to z we use variables yt
for i € {1,...,K}. We may think of the variables y* as
supporting flows of different commodities from the root
to the terminals. In a covering Steiner tree, there are k;
vertices of the group g;, so we require the commodities
C1,...,C; t0 each send a unit of flow from the root to
some unique terminal in group g;, for all i. The final
solution z must majorize every y’. In addition, we must
require that no terminal in a group be used by more
than one commodity for this group. To ensure this, for
each edge e incident on a terminal (pendant edge), we

require that
Te > Yyt
i

This constraint (or rather the fact that it can only be
enforced for pendant edges) necessitates another set of
constraints: z, > zy for all successor edges f of e in
the tree, for all e. This in turn makes our formulation
possible only when G is a tree.

The complete linear programming formulation fol-
lows. Here, S denotes the set of edges with exactly
one endpoint in S, and y*(E’) denotes Y-, 5 y'(e) for
any subset of edges E'.

min E Cele

ecE
y1(9S) > 1
for all S C V such that r € S and ¢
such that for some group g,
SNg=0and k, > i
Te > YL

(2.1)
for all non-pendant edges e

Te> )yl
i

for all pendant edges e
Te > Ty
for all (e, f) where e is the parent of f
0< z, <1 Ve



2.3 Integrality gap. Even for the version of the
problem with a single group, this linear formulation does
not give a tight relaxation. For instance, let G be the
tree in Fig. 1, that consists of a star with k& — 1 leaves,
whose center is connected to another star with k leaves
by a single edge. Let the center of the first star be the
root of the tree. Denote the first star by A, the second
by B, and the edge joining them by eg. The single group
consists of all the leaves of G and has requirement value
k.

Consider the solution to the linear program where
each commodity sends 1/k of flow from the root to each
of the kK — 1 leaves of A and each of the k different
commodities sends 1/k of flow to a distinct leaf of B.
The packing constraints force 2, = 1 for all edges e in
A, but since only one commodity is served by every edge
of B, zy = 1/k for all edges f of B and for the edge .
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k-1 Figure 1. 1

Let the cost of the edges belonging to the stars A
and B be €, and the cost of edge eg be C. Clearly,
the cost of the optimal tree that contains the root and
covers k terminals is at least C + ke, since at least one of
the leaves of B must be included. However, the relaxed
solution described above costs only C/k + ke. Thus,
the ratio between the optimal integral and fractional
solutions of the formulation (2.1) can be as large as k.

3 The Iterative Rounding Algorithm

The algorithm runs in log K phases where K is the
maximum requirement value. In each phase, a linear
program is solved and the solution rounded to a set of
edges of G. The rounded solution halves the residual
requirement for every group and is then used to modify
the problem whose LP formulation is solved in the next
phase.

The rounding procedure in each phase succeeds
with probability at least 1 —1/2log K, and so the whole
algorithm succeeds with probability at least 1/2.

3.1 Basic rounding step. Suppose we are given
an optimal solution to the linear program (2.1). We
use the rounding procedure described in [12], namely,
an edge e is included in the set of edges chosen with
probability z./z,(), where p(e) denotes the predecessor

of e on the path from the root. This experiment is
performed for each edge of G independently. Let H
denote the subgraph of G induced by the chosen edges.
We discard all connected components of H except the
one containing the root, and denote the resulting tree
by T'. It is not difficult to see that the expected cost of
a tree obtained in this experiment is equal to the cost
of the initial linear programming solution. An edge e is
included in T iff all the edges in the path from r to e, say
e1,...,€ep, e are picked in their respective independent
random experiments, the probability of which is

Ze,

1 =z Te

Te Te
Tex e _ g

P

Garg, Konjevod and Ravi [12] further show that
for each group g, the probability that a vertex of g
is included in T is £2(1/log|g|). For this, they use an
inequality of Janson [13]. By a similar argument, and
using a generalization of the same inequality, we show
that for each group, the probability that at least half of
its requirement is satisfied by T is ©(1/log]|g|).

THEOREM 3.1. Let T be the tree arising from the ran-
dom experiment described above. Then there exists a
constant C such that for any group g of size |g| and
with requirement kg,

Pr[T contains at least k,/2 vertices of g] > C ——.
log|g]
In what follows we consider the experiment for a
single group g with requirement k. First we state the
probabilistic inequality: let Q be a universal set, and
R C Q determined by the experiment in which each
element r € Q is independently included in R with
probability p,.. Let A; be subsets of Q, and denote
by B; the event that A; C R. Write i ~ j if B; and
B; are not independent. Define A = 3", . Pr[B; N By]
(the sum is over ordered pairs). Let X = i: XZ, where
X, is an indicator variable for the event B;, and let
u=E[X] = ¥, Pr{B].

THEOREM 3.2. (Janson’s inequality [13].) With the
notation as above,
—7u/(2+%)
PrlX <(1-v)u] <e wl,

In our application, @ = E(T"), and pe = Te/zp()
where p(e) is the parent or predecessor of e on the path
from . The subsets A; are edge-sets of paths from r to
leaves belonging to a fixed group g, and X is the number

of vertices of the group chosen in the experiment.
The following lemma was used in [12].



LEMMA 3.3. If T and T' are trees that differ only in
the capacity of one edge e, so that xr(e) > z7:(€), then
for any group, g, the probability of including a vertex
from g is no greater in T' than in T.

This lemma, still holds in the covering Steiner prob-
lem, if the probability of including a vertex from g is
replaced by the probability of including at least k/2 ver-
tices of g, where k is the requirement of g.

Another useful observation is the following,.

LEMMA 3.4. Let x be the solution of the linear pro-
gram (2.1) where o flow of 1 can be sent to vertices
of group g by each of k different commodities. Then the
expected number of vertices of g picked in one rounding
step is at least k.

In [12] it is shown (in the proof of their Theorem
3.2) that, given a solution z of the linear programming
relaxation of the group Steiner problem, for every group
g, there is a tree 7Y with capacities 9 such that
(1) the probability of success for g when rounding
according to z9 (that is, the probability of including
a vertex of g) is Q(1/log|g|) and
(2) the probability of success for g when rounding
according to z¢ is no more than the probability of
success when rounding according to z.

Essentially, 7Y is obtained by rounding down the
capacities to powers of 2, discarding the edges with
capacity less than 1/(2n) and contracting the edges
preceded by edges of equal capacities (except for the
pendant edges). In the resulting tree, there is still a
flow of 1/4 from the root to every group.

We need a slightly different result now, because we
must guarantee to cover at least a half of a group’s
requirement. To be able to apply Theorem 3.2, we must
keep the expected number of vertices of a group covered
by a single rounding step a constant fraction above 1/2.
We arrange the constants used in the first part of the
argument so that the expected number of vertices of g
covered in a single rounding step is 2k/3, where k is the
requirement of the group g.

Now we can describe the proof of Theorem 3.1.

Proof. (of Theorem 3.1.) Let g be a group with
requirement k. Consider an optimal solution to the
linear program (2.1) and its support tree. Let T be
the tree spanned by the paths between the root and
the vertices of g, and let (x,y) be the restriction of the
optimal LP solution to the edges of T

For every i € {1,... ,k} and every e € E(T) let

vi = (10/11),
where £ is chosen so that

(10/11)¢ < g < (10/12)%

4

(i-e., v is y¢ rounded down to the nearest power of
10/11).

Then define w, starting from the pendant edges and
going up the tree T'. For a pendant edge e, let

k
We = E vg.
i=1

If w has been defined for all children of a non-pendant
edge f, let

¢}, = max{w, | f child of e},

? = max v’
1<i<k

and
Wp = max{‘b}w ¢?7,}

Next, for every edge e, let u, = (10/11)¢ where £ is
chosen so that (10/11)¢ < w, < (10/11)4*! (i.e., u, is
w, rounded down to the nearest power of 10/11). For
every edge e such that 0 < u, < 1/(121n), define u, =0
and thus effectively remove e from 7. Finally, for every
pair (e, f) of edges such that e is a parent of f, f is not
pendant and u, = uy, contract f. Call the resulting
tree TV.

We use the following properties of 77.

(1) In one rounding step performed according to the
values of u, the probability of picking at least k/2
vertices of g is no greater than the probability of picking
at least k/2 vertices of g when rounding according to z.
(2) The expected number of vertices of g picked in one
rounding step done according to u is at least 3k/4.

(3) The depth of T" is d < [logy /19 7]-

Property (1) follows from Lemma 3.3. Let p be the
probability of success (picking at least k/2 vertices of g)
in one step of rounding according to z. Let p; and p; be
the respective probabilities of success when the rounding
is done according to w and . Then Property (1) claims
that

P = po.

Since v < y (v is just y rounded down), and since w and
x are obtained respectively from v and y by the same
monotone process (compare LP (2.1) to the definition
of w above), it follows that w < z. Thus p > p;.

To prove that p; > ps, note that removing some
subtrees (consisting of edges of very small value) only
decreases the success probability, and that the contrac-
tions described above do not change the probability of
picking any vertex in a rounding step. Thus we have

P> p1 2 pe.

To see that Property (2) holds, notice that convert-
ing y to v reduces the flow of each commodity by at most



1/11. Furthermore, a fraction 1/11 of this flow may be
lost in rounding w to u, leaving behind at least (10/11)2
flow for each commodity. Finally, deleting edges with
u-value at most 1/(121n) reduces this flow by at most
1/121, leaving at least (10/11)2 — 1/121 > 3/4 flow for
each commodity. Property (2) then follows from linear-
ity of expectation.

Property (3) is true because u, > 1luy/10 when-
ever e is a parent edge of f, except possibly when f is
a pendant edge.

Denote by X the random variable that counts the
vertices of g included in T after rounding. To apply
Theorem (3.2), we need an upper bound on the value
A.

Let a(e, f) denote the least common ancestor of the
pair of pendant edges e and f, both belonging to group
g. For an edge f, let i(f) denote the index 4 for which
max; vj; is achieved. Let d be the depth of the support
tree of z. Then,

k max; v}

Ua(e,f)

_ Uellf
ATl Ly T2
U;(f) 11
S kZuEZUZ(T S Edeue
e freTale.f) €
11
< =

< 10k2 log11/10 lg| < 200k*1og |g]-

The first inequality follows since f is a pendant edge
going to a terminal node of group g whose requirement
value is k, so that uy = Zle v < kmax; vfg.. The
second inequality uses the LP inequality us > v}, for a
non-pendant edge h and any commodity i.

The third inequality follows from the proof of
Theorem 3.2 in [12]. The most important observation
is that

vh 11
fEE(e,a) ¢

where the E(e,a) is the set of all pendant edges f such
that the least common ancestor of f and e is a. This
follows because 3 ¢+ gy, o) ¥}/¥e < 1for all commodities
i, and because v* was obtained from y* (which satisfied
the flow-conservation constraints) by rounding down to
powers of 10/11.

By Property (3), the expected number of vertices
of g covered in one rounding step is at least p = 3k, /4.
We need to cover k/2 vertices, so let v = 1/3. Now

substituting the upper bound for A in Theorem 3.2 gives

Pr[at least k/2 vertices of g are covered]

=Pr[X > (1-1/3)-3k/4]
1
gl
> 1 —eXp <2+ 200k210g g >
u
1
=1-—exp (2 80(?k210g|g|>
wt o
1
1 —exp (—>
8 12800 1log |g
3% T 9
1-e p( L )
=1-ex
21 1 128001og|g]
N
log|g|’
for a suitably chosen C. O

3.2 Amplification. After the basic rounding step
described above, with probability at least C/log|g| we
have satisfied a half of g’s requirement. If we perform
C'log |g| rounding steps independently, with probability
at least 1/e, at least one of them will succeed.

3.3 Union. To ensure that we cover at least a half
of every group’s requirement, and that our iterative
algorithm succeeds with a reasonable probability, we
repeat the rounding a few more times. The goal is
to bring down the probability of failure (to cover a
half of the required number of vertices) for any group
to 1/(2mlogK). Then by the union bound, we will
have covered a half of every group’s requirement with
probability at least 1/(2log K).

Recall that we write N for the size of the largest
group and K for the maximum requirement. We repeat
the basic rounding step 8C log N log 2m times, where 3
satisfies

. C (Blog2mlog N)/C - 1
log N 2mlog K’

Since 1/e < 1/2, the above equation is implied by

1 "< 1
2m 2mlog K’

which is true whenever

8>

log 2m + loglog K
log 2m '

This gives

1
ol log N (log 2m + loglog K)



as the number of basic rounding steps needed. We may
assume that loglog K < log2m. Indeed, otherwise we
have 2m < log K so there are no more than O(logn)
groups and just taking a 2-optimal k-MST [11] for each
of them gives an O(logn) approximation algorithm for
the overall problem.

Thus we repeat the basic rounding step

O(log N log 2m)

times and ensure that a half of every group’s require-
ment is covered with probability at least 1—1/(21og K).

3.4 Tteration. To achieve the required coverage
for every group, we can repeat the above rounding
algorithm on a sequence of subproblems of the original
covering problem, at each step halving the residual
requirement.

Suppose the first rounding phase succeeded in cov-
ering a half of the requirement for every group. Then
we modify the graph by contracting the chosen edges
and reducing the number of commodities that support
group g to at most k,/2 for every g. Note that any
integral solution to the original problem contains as a
subgraph an integral solution to this residual problem.
Therefore, the cost of the optimal fractional solution to
the residual problem is a lower bound on the cost of the
optimal solution to the original problem.

In this way, we solve a sequence of log K subprob-
lems, and then form the solution of the original problem
as the union of the solutions to the subproblems.

If any of the log K steps fails, we stop the algorithm
and say the algorithm fails. Since the probability of
success of each step is at least 1 — 1/2log K, and the
events are independent, the algorithm succeeds with
probability at least 1/+/e > 1/2.

3.5 Cost. Overall, the basic rounding step is per-
formed a = O(log Nlog Klogm) times, and so by
Markov’s inequality,

Pr[solution costs more than 4o - OPT] < 1/4,

where OPT denotes the minimum cost of a covering
Steiner tree. Thus, with probability more than 1/2 both
“good” events happen, that is we get a feasible solution
of cost at most 4a - OPT.

THEOREM 3.5. There is a randomized polynomial time
algorithm that, with probability at least 1/2, finds a
covering Steiner tree on an underlying graph which is a
tree, of cost O(log NlogmlogK) times the minimum.
Here, N denotes the mazimum size of a group (which
is at most the number of nodes in the tree), K denotes
the mazimum requirement value of any group (which in
turn is at most N ) and m denotes the number of groups.

4 Extensions

4.1 General metrics.

DEFINITION 4.1. A set of metric spaces S over V is
said to a-probabilistically approximate a metric space
M over V,if (1) forallz,y €V and S € S, ds(z,y) >
duy(z,y), and (2) there exists a probability distribution
D over metric spaces in S such that for all z,y € V,
Eldp(z,y)] < ady (z,y).

Bartal [4, 5] proved the following theorem.

THEOREM 4.2. Every weighted connected graph G on
n vertices can be a-probabilistically approzimated by
a set of weighted trees, where a = O(lognloglogn).
Moreover, the probability distribution can be computed
in polynomial time.

The trees that we get from Bartal’s algorithm
are not subtrees of the original graph. Only their
leaves are the original vertices of G. To solve the
covering Steiner tree problem on a general graph G,
first find a set of trees and the distribution on them
that O(lognloglogn)-approximates G. Then pick a
tree from the distribution and solve the covering Steiner
tree problem on it. Now this solution subtree must be
transformed into a subgraph of G, and this can be done
by simply taking the tour that visits all the leaves of the
solution tree, as in the classical 2-approximation for the
metric TSP. The distances in the tree are greater than
those in the original graph, so this tour will at most
double the cost of the solution tree. The expected cost
of this tree is O(logn loglognlog N logmlog K) times
the optimum. By using Markov’s inequality, we finally
get the following theorem.

THEOREM 4.3. The algorithm described above with
high probability finds a covering Steiner tree of cost
O(lognloglognlog Nlogmlog K) times the cost of the
optimal tree.

4.2 Improved metric approximations. The fol-
lowing improvement of Bartal’s result to graphs that ex-
clude small minors is presented by Konjevod et al [15].

THEOREM 4.4. Let G be an n-node graph that excludes
K, s as a minor. Then G can be a-probabilistically
approximated by a set of weighted trees, where a =
O(s®logn). Moreover, the probability distribution can
be computed in polynomial time.

This improved result (for constant s) applies, e.g.,
to planar graphs, which exclude K3 3 as a minor. This
theorem, together with the arguments from the previous
section, then gives an improved approximation ratio of
O(lognlog N log mlog K) for such graphs.



Since distances in the Euclidean plane can be ap-
proximated to within a factor of 2 by a planar graph
[8], the improvements also apply to this case. More
formally, if the edge lengths of the resulting planar
graph can be assumed to be integers in a polynomial
range, then we can probabilistically approximate the
original distances by trees with only a logarithmic loss.
Even if these assumptions cannot be made, by identify-
ing some points we can assume the distances to be in
{1,...,0(n?)}. This can be done so that the optimum
value of a covering Steiner tree only changes by a factor
of 1+ ¢ for any constant € as in [1].

4.3 Derandomization. It is possible to derandom-
ize our main procedure by using ideas from [7] to obtain
the same guarantees. We defer the details to a full ver-
sion of the paper.

Acknowledgements. Thanks to Naveen Garg,
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