
Selective Quantitative Analysis and Interval Model Checking:
Verifying Different Facets of a System

Sérgio Campos
Carnegie Mellon University

� Edmund M. Clarke
Carnegie Mellon University

� Orna Grumberg
The Technion

�

January 4, 1996

Abstract

In this work we propose a verification methodology consisting of selective quantitative analysis and interval
model checking. Our methods can aid not only in determining if a system works correctly, but also in understanding
how well the system works.

The selective quantitative algorithms compute minimum and maximum delays over a selected subset of system
executions. We use a formula of the linear-time temporal logic LTL in order to select either infinite paths or finite
intervals over which the computation is performed. We therefore define two semantics for LTL – over infinite paths
and over finite intervals. We show how tableaux for LTL formulas can be used for selecting either paths or intervals
and can also be used for model checking formulas interpreted over paths or intervals.

We have implemented a tool based on our techniques. To demonstrate the usefulness of our methods we verified
a complex distributed real-time system. Several features of this example make it an interesting target for our
techniques. It is a system of realistic complexity, its components are existing systems and protocols executing a
mixture of multimedia, traditional real-time and non-real time tasks. Also, the distributed nature of the system makes
the interaction among its various components much richer. This also makes its analysis more difficult.

Out tool were able to analyze the system and verify that the deadlines are met by the design. Moreover, we
have been able to identify inefficiencies that caused the response time to increase significantly (about 50%). After
changing the design we not only verified that the response time was lower, but were also able to determine the causes
for the poor performance of the original model using interval model checking.
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1 Introduction

This work presents a verification methodology that can provide both quantitative and qualitative analysis of systems.
The analysis can aid not only in determining if the system works correctly, but also in understanding how well the
system works. The suggested methodology consists of selective quantitative analysis and interval model checking
and it is based on two concepts – quantitative analysis, and tableaux for linear-time temporal logic.

In [10] it has been proposed how quantitative symbolic algorithms can be used to analyze the model of a system.
The technique suggested there computes minimum and maximum delays between the occurrence of two events, as
well as the number of times a specified condition occurs in such an interval. The timing correctness of a system can
be evaluated by this method. The schedulability of a real-time task set can be determined by computing response
times for all processes. Reaction time to important events can also be computed in the same manner. In general,
performance parameters can be analyzed using this technique.

Typically, the quantitative analysis investigates all intervals between a set of initial states start and a set of final
states final. In many cases, however, it is desirable to restrict the consideration to only execution paths that satisfy a
certain condition. Being able to select the execution paths considered during verification, can help in understanding
how the system reacts to different conditions. For example, one common technique for achieving good performance is
to optimize a design for the most frequent cases, while maintaining correctness for the infrequent ones. If the designer
can restrict system behavior to only the most common cases, he can optimize response time. Later he can remove the
restrictions and check the correctness of the system in all cases.

In this work we suggest how to apply selective quantitative analysis. We use a formula of the linear-time temporal
logic LTL in order to specify the paths selected to be verified. Quantitative analysis is then applied only to those paths
along which the formula holds.

Sometimes a more precise analysis is needed, requiring that the selecting formula is true exactly on the investigated
interval and not just anywhere on the path. Thus, if the LTL formula is ��� (meaning “ � holds globally”) then an
interval is selected only if all states on the interval satisfy � . If the formula is 	�� (meaning “ � holds eventually”) then
there must be a state on the interval that satisfies � .

To maintain selecting of either infinite paths or finite intervals we will consider two semantics for the logic LTL –
over infinite paths and over finite intervals.

To strengthen our verification methodology, we combine the selective quantitative analysis with model checking
techniques. Traditionally, LTL model checking procedures [20, 11] accept a structure that models the system, a set of
designated states, and an LTL formula. The procedures determine whether the formula holds on all infinite paths of
the structure that start from some designated state. In this work we extend the construction of [11] also for interval
model checking, that is, checking a formula with respect to finite intervals. We use Tableaux for LTL formulas as the
main tool for both selecting and model checking.

Using tableaux for LTL formulas: A tableau for an LTL formula 
 is a structure that includes all possible paths
that satisfy the formula. In order to verify that all paths of a system have some property 
 , we construct the tableau
for the negation of 
 , ��
 , and check that no path of the system is included in the tableau for ��
 . This is done by
constructing the intersection of the system and the tableau and checking that the intersection includes no path.

In order to select the set of all paths that satisfy a formula 
 , we construct the tableau for 
 and intersect it with
the system. Verification is then applied to the intersection structure.

We show how the same tableau can also represent all finite intervals satisfying a formula. Thus, intersecting with
the tableau for ��
 can also be used to check that all intervals in the system satisfy 
 and intersecting with the tableau
for 
 can be used to select the intervals satisfying 
 .

Main Characteristics: Both interval model checking and selective quantitative analysis can be used to extract
information related to specific “parts” of a system without changing the model. Similar information sometimes can
be obtained by restricting the model to disable uninteresting behaviors, or by marking the interesting ones using
observer modules. However, these techniques frequently modify system behavior, and consequently properties are
checked on a model different than the original one, possibly hiding important errors, or introducing false ones. Also,
such methods are usually ad hoc; the class of execution sequences that can be analyzed cannot be characterized in a
straightforward way. They are also more difficult to implement and error-prone.
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An important characteristic of the method proposed is that it counts the number of computation steps between
events, or the number of occurrences of events in an interval. Because of this it finds application in synchronous
systems in general, such as computer circuits and protocols. Another area in which the method has been successfully
used is in the verification of real-time systems, as will be seen in the example verified in this paper. These systems
are inherently asynchronous, and would not seem to be appropriate for our method. However, they are subject to tight
timing constraints, which are difficult to satisfy in an asynchronous design. For this reason designers of real-time
systems often significantly reduce asynchronism in their systems to ensure predictability. In fact, several real-time
systems we have analyzed are even more synchronous than traditional circuits, and have been successfully verified
using techniques such as the one proposed [10, 9, 8].

Another advantage of this approach is that it is amenable to symbolic implementations using bdds [5]. This
makes it possible to verify systems with extremely large state spaces, allowing realistic and interesting problems to
be handled.

Moreover, the fact that properties are verified over finite intervals, allows very different types of properties to be
expressed. It is possible to check for “traditional” properties such as safety and liveness, but also to investigate system
behavior in more detail. In the real-world not all possible execution sequences are equally interesting. Nor are all
possible time intervals within a path. Understanding how the system reacts in different situations allows for a detailed
analysis that can aid not only in determining if the system works, but also in understanding how well the system works.

Related Methods: There are several other approaches to the verification of timed systems. For example, dense
time is modeled by [1, 2, 25, 17]. Those methods provide a very accurate notion of passage of time. However, the
state space of dense time models is infinite, and these verification tools rely on the construction of a finite quotient
structure called region graph. This construction is extremely expensive, limiting the size of problems that can be
handled.

Discrete time is used by other tools such as [16, 28]. The tool described in [28] also uses symbolic algorithms
using BDDs. These tools, however, do not allow the quantitative analysis of systems as the proposed method. In [14]
quantitative analysis is implemented, but with a more limited scope.

Analytical methods for analyzing real-time systems also exist, such as the rate-monotonic scheduling theory [22,
19, 26]. In this method a real-time system is characterized by a set of periodic tasks, each having a period and
an execution time. Assumptions about system behavior are made (such as no task preempts itself), and if these
assumptions are satisfied, simple formulas determine the schedulability of the system. The rate-monotonic theory
algorithms have much simpler complexity than the other verification methods discussed, but they also generate more
restricted information.

More important when comparing these methods, however, is the fact that these tools do not allow a selective
verification of properties as the proposed method. They provide no natural way in which a subset of behaviors can be
analyzed in isolation, not allowing as rich an analysis as the proposed method.

Linear-time temporal logics interpreted over both infinite paths and finite intervals have been introduced in [21, 23].
However, they use tableau only for satisfiability and did not handle either quantitative analysis or interval model
checking.

The closest method to our selection of paths or intervals is the use of fairness constraints in model checking [13,
24, 15]. However, there a fairly restricted types of properties were used for selection, while we can handle any LTL
formula. Moreover, only infinite paths can be selected in these works.

A Distributed Real-Time System: To demonstrate the usefulness of our method, we have applied it to a distributed
real-time system of realistic complexity, derived from the example described in [27]. Real-time systems are used in
many critical applications such as aircraft control or medical monitoring systems. Because of the consequences of
failures in such systems, determining their correctness is a vital task.

Several features of this example make it an interesting target for our techniques. It is a system of realistic
complexity, its components are existing systems and protocols executing a mixture of multimedia, traditional real-
time and non-real time tasks. Also, the distributed nature of the system makes the interaction among its various
components much richer. This also makes its analysis more difficult.

The system consists of three major components, the first being an FDDI network to which are connected audio
and video data sources. The network is connected to a multiprocessor, where other data is generated. Finally the
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third component is one of the processors of the multiprocessor, the control processor, which receives the audio/video
signals from the network, as well as data from other processors in the system.

The specification determines deadlines between data sources (audio/video on the network and sensor data on the
multiprocessor), and their processing in the control processor. However, verifying that these deadlines are met using
standard techniques is made more difficult because of the distributed nature of the problem. Analytical methods such
as the rate monotonic scheduling must impose restrictions on the system, for example, intermediate deadlines [27].
The complex interaction between the various components of the system also makes its analysis using continuous time
models unmanageable.

Our tools, on the other hand, were able to analyze the system and verify that the deadlines are met by the design.
Moreover, we have been able to identify inefficiencies that caused the response time to increase significantly (about
50%). After changing the design we not only verified that the response time was lower, but were also able to
determine the causes for the poor performance of the original model using interval model checking. The final model
uses approximately 5000 bdd nodes, and has about 
 � � � states. Verification time varied from seconds for the simplest
properties to several minutes for the most complex ones using a pentium based workstation.

The remainder of this paper is organized as follows. In Section 2 we define the logic LTL, give two semantics
for the logic, and construct a tableau for LTL formulas that suits both semantics. Section 3 shortly describes CTL
model checking and quantitative analysis. In Section 4 selective quantitative analysis and interval model checking are
described. Section 5 concludes with the verification of a complex example using a combination of our new techniques.

2 A tableau for LTL

Our specification language is a linear-time temporal logic called LTL. The logic is used for two different purposes.
One is to specify a property of the system that needs to be verify. The other is to specify a set of selected paths. In the
latter case, only the selected paths will be verified. In both cases we use a tableau for the formula.

We first give the syntax of LTL. Given a set of atomic propositions ��� , the linear-time temporal logic LTL is
defined inductively as follows. Every atomic proposition is an LTL formula. Moreover, if � and � are LTL formulas
then ��� , ����� , ��� and ����� are also LTL formulas.

The semantics of LTL is defined with respect to a labeled state transition graph called Kripke Structure. A Kripke
structure � �"! #%$ &�$ '�( has a finite set of states # , &�)*#,+-# is the transition relation, and '/. #10324! ����( is the
labeling function that associates with each state the set of atomic propositions true in that state.

An infinite sequence 5 6 $ 5 � $ 7 7 7 of states in # is a path in the structure � from a state 5 iff 5���5 6 and for every8:9 � , ! 5 ; $ 5 ; < � (�=/& . Let >,�?5 6 $ 5 � $ 7 7 7 be a path, we use > ; to denote the suffix of > starting at 5 ; . A finite
sequence @ 5 6 $ 7 7 7 $ 5 A B is an interval in a structure � from a state 5 iff 5C��5 6 and for every ��D 8�E*F , ! 5 ; $ 5 ; < � (G=-& .
An interval may be a prefix of either a finite or an infinite path. Thus, 5 A may or may not have successors in � . LetH �?@ 5 6 $ 7 7 7 $ 5 A B be an interval, then the size of H , denoted I H I , is

F
. H ; is defined iff �4D 8 D F and it denotes the

suffix of H , starting at 5 ; .
For a formula � , a path > , and an interval H , ��$ >1I �KJ L M N�� means that � holds along path > in the Kripke structure

� . ��$ H I �CO A M�� means that � holds along interval H in � . Given a designated set of initial states #P6 , we say that
��$ #P6�I �KJ L M N�� iff for every path > from every state in #P6 , ��$ >QI �KJ L M N�� . Given two designated sets of states 5 R S T R
and �VU F S W , we say that ��$ @ 5 R S T R $ �VU F S W BKI �KJ L M N�� iff for every interval H from some state in 5 R S T R to some state in
�VU F S W , ��$ H I �CO A MX� . Note that this definition does not require that intervals will be disjoint. Unless otherwise stated,
overlapping intervals are allowed.

The relation I �KJ L M N is defined inductively as follows (the structure � is omitted whenever clear from the context).

1. >QI �KJ L M NKY Z[Y�=-'K! 5 6 ( , for Y4=-��� .
2. >QI �KJ L M N���� � Z\>,]I �KJ L M N�� � .
3. >QI �KJ L M N�� � ��� � Z\>QI�KJ L M N�� � or >QI �KJ L M N�� � .
4. >QI �KJ L M NC�*� � Z\>X��I �KJ L M NC� � .
5. >QI �KJ L M NC� � ��� � Z there exists a ^ 9 � such that >P_4I �KJ L M N�� � and for all ��D 8�E ^ , > ; I �KJ L M NC� � .
The relation I �CO A M is identical to I �KJ L M N for atomic propositions and boolean connectives. For temporal operators it is
defined by

3



4. `Qa bCc d ePf*g hjika `�a l*m and ` h a bCc d ePg h .
5. `Qa bCc d ePg h%n�g opi there exists a m�q*r4q*s such that `Pt4a bCc d eXg o and for all m�q/u�v*r , ` w�a bCc d eXg h .

The following abbreviations are used in writing LTL formulas:

xCy�z g�{�|K} | y�~ |%g � xC�:y {*� � �V��n y x��*y {�| � | y .
In the sequel, whenever we refer to a path that satisfies a formula, the satisfaction is with respect to a bK� � e � . Whenever
an interval is considered the satisfaction is with respect to a bCc d e .

Note that, in the definition of � � � � � � � � d �Ka b y we do not consider successors of � d (whether exist or not). This
definition is meant to capture the notion of an interval satisfying a formula independently of its suffix (satisfaction is
always defined independently of the prefix).

It is also important to notice that LTL formulas might have quite a different meaning when interpreted over paths
or over intervals. For instance, a path will satisfy the formula �*�:� iff � holds infinitely often along the path. On
the other hand, an interval will satisfy this formula iff the last state of the interval satisfies � . Furthermore, while
the formulas |�f � and f�| � are equivalent over paths, these formulas are not equivalent over intervals. To see this,
consider an interval � � � � of size m . � � � �%a bCc d e%|�f � but � � � ���a bCc d eXf�| � .

Let y be an LTL formula. We construct a Kripke structure ��} y � , called the tableau for y , that contains all paths
and intervals satisfying y . The tableau described below is based on the construction given in [11]. There, the tableau
was used for checking that the LTL formula is true for all paths of a given Kripke structure. Here we will use the
tableau for three purposes:

1. Selecting the set of paths of a structure that satisfy y and computing minimum and maximum delays over those
paths;

2. Selecting the set of intervals of a structure that satisfy y and computing minimum and maximum delays over
those intervals;

3. Checking that a specified set of intervals of a structure satisfy y .
We first introduce the notion of fairness constraints, needed for some of the tableau applications. A fairness

constraint for a structure � can be an arbitrary set of states in � , usually described by a formula of the logic. A path
in � is said to be fair with respect to a set of fairness constraints if each constraint holds infinitely often along the
path.

We now give an informal description of the tableau. A state of the tableau is a set of formulas, intended to be true
along all paths in the tableau that start with that state. The transition relation of the tableau guarantees the satisfaction
of all formulas except formulas of the form y n?g . If y n�g is included in a state, then the tableau construction
guarantees that y is true as long as g is not true. In the case of LTL over paths, fairness constraints are required in
order to identify those infinite paths along which g will eventually be true. For LTL over finite intervals, it is sufficient
to consider those intervals that have a final state that does not contain any formula of the form f*g . Intuitively, f*g
formulas can be viewed as transferring to next states the requirements that are necessary for the satisfaction of y and
are not yet fulfilled. Thus a state that contains no formula of the form f*g indicates that all necessary requirements
have already been fulfilled.

We next describe the construction of the tableau ��} y � in detail. Let ���X� be the set of atomic propositions in y .
The tableau associated with y is a structure ��} y �Kb�} �V�G� �C��� �%�%� with ���X� as its set of atomic propositions. Each
state in the tableau is a set of elementary formulas obtained from y . The set of elementary subformulas of y is denoted
by � � } y � and is defined recursively as follows:

x � � } � ��b�� �V� if ���:���X� .
x � � } |%g ��b�� � } g � .
x � � } g ~:  �%b�� � } g �%¡:� � }   � .
x � � } f*g ��b�� f*g �G¡:� � } g � .
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¢/£ ¤ ¥ ¦�§"¨V©�ª�« ¬1¥ ¦�§"¨V© ­G®:£ ¤ ¥ ¦ ©X®:£ ¤ ¥ ¨V© .
Thus, the set of states ¯V° of the tableau is ± ¥ £ ¤ ¥ ²V© © . The labeling function ³%° is defined so that each state is labeled
by the set of atomic propositions contained in the state.

In order to construct the transition relation ´C° , we need an additional function µ ¶ · that associates with each
elementary subformula ¦ of ² a set of states in ¯V° . Intuitively, µ ¶ · ¥ ¦ © will be the set of states that satisfy ¦ .
¢ µ ¶ · ¥ ¦ ©�ª�« µ�¸ ¦4¹ µ ­ where ¦4¹-£ ¤ ¥ ²V© .
¢ µ ¶ · ¥ º%¦ ©�ª�« µ�¸ µ4»¹ µ ¶ · ¥ ¦ © ­ .
¢ µ ¶ · ¥ ¦�¼:¨V©%ª µ ¶ · ¥ ¦ ©X® µ ¶ · ¥ ¨V© .
¢ µ ¶ · ¥ ¦�§"¨V©%ª µ ¶ · ¥ ¨V©X®,½ µ ¶ · ¥ ¦ ©X¾ µ ¶ · ¥ ¬Q¥ ¦C§"¨V© © ¿ .
We want the transition relation to have the property that for every elementary formula ¬*¦ of ² , ¬*¦ is in a state

iff ¬*¦ is true in that state. Clearly, if ¬*¦ is in some state µ , then all the successors of µ should satisfy ¦ . Moreover,
if ¬*¦ is not in µ , then no successor of µ should satisfy ¦ . Thus, the definition for ´C° is

´C° ¥ µ À µ Á ©�ªÃÂ
Ä�Å Æ Ç È É Ê Ë µ

¹ µ ¶ · ¥ ¬*¦ ©%Ì µ Á ¹ µ ¶ · ¥ ¦ © Í

Unfortunately, the definition of ´C° does not guarantee that eventuality properties are fulfilled. Consequently, an
additional condition is necessary in order to identify those paths and intervals along which ² holds. In order to identify
the paths along which ² holds we define a set of fairness constraints, Î�¶ Ï Ð�Ñ,± ¥ ¯V° © ,

Î�¶ Ï Ð ¥ ²V©�ª�« µ ¶ · ¥ ºK¥ ¦�§"¨V©P¼:¨V© ¸ ¦C§"¨ occurs in ²P­ Í
Theorem 2.1 Let Ò ¥ ²V© be the tableau for ² .

1. For every path Ó in Ò ¥ ²V© , if Ó starts from a state µ ¹ µ ¶ · ¥ ²V© and Ó is fair for Î�¶ Ï Ð ¥ ²V© then Ò ¥ ²V© À ÓQ¸ ªKÔ Õ Ö ×�² .
2. For every interval Ø ª"Ù · Ú À Í Í Í À · Û Ü in Ò ¥ ²V© , if · Ú ¹ µ ¶ · ¥ ²V© and · Û ¹ ± ¥ Ý�Þ�© then Ò ¥ ²V© À ØQ¸ ªCß Û Ö%² .
The following theorem makes precise the intuitive claim that Ò ¥ ²V© includes every path and every interval which

satisfies ² . In order to state this property, we must introduce some new notation. A path Ó ª · Ú À · à À Í Í Í in
Ò ¥ ²V© corresponds to a path Ó Á ª µ Ú À µ à À Í Í Í in a structure á iff for every Ï�âäã , ³ ¥ µ ß ©G¾-Ý�Þ Ê ª ³%° ¥ · ß © . An
interval Ø ªåÙ · Ú À Í Í Í À · Û Ü in Ò ¥ ²V© corresponds to an interval Ø Á ªåÙ µ Ú À Í Í Í À µ Û Ü in á iff for every ã/æçÏ4æçè ,
³ ¥ µ ß ©P¾�Ý�Þ Ê ª ³%° ¥ · ß © .
Theorem 2.2 Let Ò ¥ ²V© be the tableau for the formula ² and let á be a Kripke structure.

1. If Ó Á is a path of á such that á�À Ó Á ¸ ªKÔ Õ Ö ×�² then there is a path Ó in Ò ¥ ²V© such that (i) Ó corresponds to Ó Á ,
(ii) Ó starts with a state in µ ¶ · ¥ ²V© and (iii) Ó is a fair path with respect to Î�¶ Ï Ð ¥ ²V© .

2. If Ø Á is an interval in á such that á�À Ø Á ¸ ªCß Û Ö%² then there is a interval Ø in Ò ¥ ²V© such that (i) Ø corresponds
to Ø Á , (ii) Ø starts with a state in µ ¶ · ¥ ²V© and (iii) the last state of Ø is in ± ¥ Ý�Þ�© .

Next, we want to compute the product Þ3ªå¥ ¯%À ´�À ³ © (also called the intersection) of the tableau Ò ¥ ²V©-ª¥ ¯V°KÀ ´C°�À ³%° © and the Kripke structure á ª"¥ ¯VéQÀ ´Cé1À ³%é © .
¢ ¯ ª�« ¥ µ À µ Á © ¸ µ ¹ ¯V°GÀ µ Á ¹ ¯Vé and ³%é ¥ µ Á ©P¾�Ý�Þ Ê ª ³%° ¥ µ © ­ .
¢ ´ ¥ ¥ µ À µ Á © À ¥ · À · Á © © iff ´C° ¥ µ À · © and ´Cé ¥ µ Á À · Á © .
¢ ³ ¥ ¥ µ À µ Á © ©�ª ³%° ¥ µ © .

We extend the function µ ¶ · to be defined over the set of states of the product Þ by ¥ µ À µ Á ©�¹ µ ¶ · ¥ ¦ © iff µ ¹ µ ¶ · ¥ ¦ © .
Lemma 1 ê Á Á ª�¥ µ Ú À µ Á Ú © À ¥ µ à À µ Á à © À Í Í Í is a path or an interval in Þ with ³%ë ¥ ¥ µ ß À µ Áß © ©Gª ³%° ¥ µ ß © for Ï%â�ã if and only
if there exist ê ª µ Ú À µ à À Í Í Í in Ò ¥ ²V© , and ê Á ª µ Á Ú À µ Á à À Í Í Í in á with ³%° ¥ µ ß ©%ª ³%é ¥ µ ß ©P¾�Ý�Þ Ê for ÏXâ*ã .
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3 Known Verification Techniques

The variety of verification techniques that we develop in the next section are based on the tableau, as described in the
previous section, and in addition on two verification techniques: CTL model checking and quantitative analysis.

3.1 CTL Model Checking

CTL [4, 12] is a branching-time temporal logic that is similar to LTL except that each temporal operator is preceded
by a path quantifier – either ì standing for “there exists a path” or í standing for “for all paths”. CTL is interpreted
over a state in a Kripke structure. The path quantifiers are interpreted over the infinite paths of the structure that start
at that state.

CTL model checking is the problem of finding the set of states in a Kripke structure where a given CTL formula
is true. One approach for solving this problem is a symbolic model checking using a representation called binary
decision diagram (BDD) [5] for the transition relation of the structure. This representation is often very concise. We
use the SMV model checking system [24] that takes a CTL formula î , and the BDD that represents the transition
relation. SMV returns exactly those states of the system that satisfy the formula î .

SMV can also handle model checking of a CTL formula with respect to a structure together with fairness
constraints. The path quantifiers in the CTL formula are then restricted to fair paths. The CTL model checking under
given fairness constraints can also be performed using BDD.

3.2 Quantitative Analysis

Several methods have been proposed to verify timed systems, as has been discussed in the introduction. These verifiers
assume that timing constraints are given explicitly in some notation like temporal logic and determine if the system
satisfies the constraint. In [10] we have described how to verify timing properties using algorithms that explicitly
compute timing information as opposed to simply checking a formula. This section briefly describes that approach,
which is later used in this work.

A Kripke structure is the model of the system in our method. Currently the system is specified in the SMV
language [24]. The structure is represented symbolically using BDDs. It is then traversed using algorithms based on
symbolic model checking techniques [6]. All computations are performed on states reachable from a predefined set
of initial states. We also assume that the transition relation is total. This requirement is not necessary for the minimum
algorithm, however, it is essential for the correctness of the maximum algorithm described below.

We consider first the algorithm that computes the minimum delay between two given events (figure 1). Let start
and final be two nonempty sets of states, often given as formulas in the logic. The minimum algorithm returns the
length of (i.e. number of edges in) a shortest interval from a state in start to a state in final. If no such interval exists,
the algorithm returns infinity. The function ï�ð ñXò ó gives the set of states that are successors of some state in ñXò . The
function ï , the state sets ô and ô ò , and the operations of intersection and union can all be easily implemented using
BDDs [6, 24]. The minimum algorithm is relatively straightforward. Intuitively, the loop in the algorithm computes
the set of states that are reachable from start. If at any point, we encounter a state satisfying final, we return the
number of steps taken to reach that state.

The second algorithm returns the length of a longest interval from a state in start to a state in final. If there exists
an infinite path beginning in a state in start that never reaches a state in final, the algorithm returns infinity. The
function ï�õXö ð ñ ò ó gives the set of states that are predecessors of some state in ñ ò . not final represents the states that
do not satisfy final.

Informally, the algorithm computes at stage ÷ the set ô ò of all states at the beginning of an interval of size ÷ , all
contained in not final. The algorithm stops in one of two cases. Either ô ò does not contain states from start at stage
÷ . Since it contained states from start at stage ÷Vø*ù , the size of the longest interval in not final from a state in start is
÷Vø*ù . Since the transition relation is total, this interval has a continuation to a state outside not final, i.e. to a state in
final. Thus, there is an interval of length ÷ from start to final and the algorithm returns ÷ .

In the other case, a fixpoint is reached meaning that there is an infinite path within not final from a state in start.
The algorithm in this case returns infinity.
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proc minimum (start, final)úXû*ü
;ý�û

start;ý þVû*ÿ�� ý ���:ý
;

while
� � ý þ��û�ý ���	� ý�

����� �Pû�� � �

doúPû�ú����
;ý�û*ý þ

;ý þVû*ÿ�� ý þ ���:ý þ
;

if
� ý�

����� ���û�� �

then return
ú
;

else return � ;

proc maximum (start, final, not final)
if
� � � � � ��
�� ����� � ����� � ����� � �Gû�� �

then return � ;úXû*ü
;ý�û

TRUE;ý þVû
not final;

while
� � ý þ��û�ý ���	� ý þ 
 � � � � �!�û�� � �

doúPû�ú����
;ý�û*ý þ

;ý þVû*ÿ!"�# � ý þ ��
���� � ����� �
;

if
� ý�û�ý þ �

then return � ;
else return

ú
;

Figure 1: Minimum and Maximum Delay Algorithms

As before, the algorithm is implemented using BDDs, however, a backward search is required in this case. Both
algorithms are proven correct in [10].

4 New Verification Techniques

In the followingsubsections we present three verification techniques, based on the tableau and the quantitative analysis,
presented in previous sections. In Section 5 we combine all three techniques in the verification of a complex example.

4.1 Selective Quantitative Analysis — Over Paths

In this section we describe how to adapt the minimum and maximum algorithms given in Figure 1 to apply to a set of
selected paths of a given structure $ .

Given two sets of states % & ' ( & and ) ú * ' + in $ and an LTL formula ) , we compute the lengths of a shortest interval
and a longest interval from a state in % & ' ( & to a state in ) ú * ' + along paths from % & ' ( & that satisfy ) . The formula ) is
interpreted over infinite paths and is used to select the paths over which the computation is performed.

Let fair be a set of states such that %!,�- � . � iff % is the beginning of a path which is fair with respect to Fair(f).
The Path Selective minimum and maximum Algorithms:

1. Construct the tableau for ) ,
ÿ�� ) � .

2. Construct the product / of
ÿ�� ) � and $ .

3. Use the model checking system SMV on / to identify the set of states fair in / .
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4. Construct 0!1 , the restriction of 0 to the state set fair. 0!1�243 5�1 6 7�1 6 8�1 9 is defined as follows. 5�1�2;: < = > ,
7�1�2�7@?�3 5�1�AB5�1 9 and for every C!D�: < = > 6 8�1 3 C 9E2�8�3 C 9 .

5. Apply the algorithms minimum 3 C F 6 G�H�9 and maximum 3 C F 6 G�H�6 H�I F G�H�9 to 0!1 , with J K�2L3 C M F 3 G�9�A�J K < > K 9 ?�: < = > ,
G�H 2ON�P�< Q ?
: < = > , and P�R K : P
2O: < = >�S�N�P�< Q .

To see why the algorithms work correctly, note that by Lemma 1 0 contains all paths of T that are also paths ofU 3 G�9 . 0!1 is restricted to the fair paths of
U 3 G�9 . Thus, every path in 0!1 from C M F 3 G�9�AVC F M W F satisfies G . Consequently,

applying the algorithms to 0!1 from C M F 3 G�9�A C F M W F to G�X H�M Y over states in G�M X W gives the desired results.
As mentioned before, in order to work correctly, the algorithm maximum must work on a structure with a total

transition relation. The transition relation of 0 is not necessarily total. However, the transition relation of 0!1 is total
since every state in G�M X W is the beginning of some infinite (fair) path.

We have applied this method in the analysis of the PCI Local Bus to show how it can be used in the verification
of real systems [7]. In this example we have computed the minimum and maximum transaction times in the PCI
bus for several different configurations. One of the most important characteristics of the PCI bus is the ability to
abort a transaction and restart it later. This significantly affects response time, and therefore must be considered in
the implementation. Although in the actual system aborts can occur at any time, during verification they must be
restricted. The reason is that if an unlimited number of aborts can occur, the maximum transaction time is infinity.
Even though this is a possible behavior, it occurs rarely, and it does not provide any information about the behavior
of the system in most cases.

In order to restrict the number of aborts we have implemented an abort counter in the model that is incremented
whenever an abort happens. Then we used the LTL formula G abort counter < H to select the paths considered
for verification. This method produced information about the protocol for a specific subset of execution sequences
without the need to change the model. More information about this analysis can be found in [7].

4.2 Selective Quantitative Analysis — Over Intervals

In this section we adapt the minimum and maximum algorithms of Figure 1 to apply to a set of selected intervals in a
given structure T .

Given two sets of states C F M W F and G�X H�M Y and an LTL formula G , we compute the lengths of a shortest and a longest
intervals from a state in C F M W F to a state in G�X H�M Y such that G holds along the interval. Here the formula G is interpreted
over intervals and we consider only the intervals between C F M W F and G�X H�M Y that satisfy G .

We will use a special formula prop to identify the set of tableau states that contain only atomic propositions.

Z > R Z 2L[ C \ C!D ]
3 ^!0�9 _ `
We will also use a CTL formula a to identify the set of states over which the maximum algorithm is computed.

a 2�bEG�X H�M Y c d�e bEG�X H�M Y fg3 h W I h!c d�i G�X H�M Y 9 j `
This formula is true of a state C if C is not in final. Furthermore, there exists an interval that leads from C to a state in
prop without going through states in final, and this interval has a continuation to a state in final.
The Interval Selective minimum and maximum Algorithms:

1. Construct the tableau for G ,
U 3 G�9 .

2. Construct the product 0 of
U 3 G�9 and T .

3. Use the model checking system SMV on 0 to identify the set of states that satisfy the CTL formula a .

4. Let J K�2�C M F 3 G�9�A�J K < > K and let G�HB2 Z > R Z A�N�P�< Q . The algorithm minimum 3 C F 6 G�H�9 applied to 0 will return
the length of the shortest interval between C F M W F and G�X H�M Y that satisfies G . The algorithm maximum(st, final,
a ) applied to 0 will return the length of a longest interval between C F M W F and G�X H�M Y that satisfies G .
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The correctness of the algorithm relies on the fact (stated in Lemma 1) that k contains all intervals that are both inl�m n�o
and p . Moreover, intervals of

l�m n�o
from q r s m n�o to t u v t satisfy

n
. Thus, the algorithms computed shortest

and longest lengths over intervals from q s r u s to
n�w x r y that satisfy

n
.

When the maximum algorithm is computed over the set not final of states not in final, it is necessary to require
that the transition relation of the structure is total in order to guarantee that the computed intervals terminate at a state
in final. Here the maximum algorithm is computed over the set of states satisfying the formula z . This guarantees that
the computed intervals terminate at final without the need to require that the transition relation is total.

4.3 Interval Model Checking

Given a structure p and two set of states q s r u s and
n�w x r y , we say that an interval {}|g~ q � � � � � � q � � from a state in

q s r u s to a state in
n�w x r y is pure iff for all ��� w � x , q � is neither in q s r u s nor in

n�w x r y .
Given a structure p , two sets of states q s r u s and

n�w x r y , and an LTL formula
n

, the interval model checking is the
problem of checking whether the formula

n
, interpreted over intervals, is true of all pure intervals between q s r u s andn�w x r y in p .

Interval model checking is useful in verifying periodic behavior of a system. A typical example is a behavior
occurs in a transaction on a bus. If we want to verify that a certain sequence of events, described by an LTL formulan

, occurs in a transaction we can define q s r u s to be the event that starts the transaction and
n�w x r y to be the event that

terminates the transaction. Interval model checking will verify that
n

holds on all intervals between q s r u s and
n�w x r y .

Let p , q s r u s , n�w x r y , and
n

be as above. The algorithm given below determines the interval model checking
problem using the algorithm minimum of figure 1.

1. Construct the tableau for � n ,
l�m � n�o .

2. Compute the product k of
l�m � n�o and p .

3. Apply the algorithm minimum
m q s � n�x�o to k with q sE|�q r s m � n�o�� q s r u s and

n�x |Ot u v t � n�w x r y .
4. If minimum results in � then there is no pure interval from q s r u s to

n�w x r y that satisfies � n . Thus, every such
interval satisfies

n
.

If minimum returns some value � , then the interval found by minimum can serve as a counterexample to the
checked property.

5 A Distributed Real-Time System

In this section we analyze a distributed real-time system using the techniques presented in this paper. This is a
complex and realistic application, its components are existing systems and protocols that are actually used in many
real situations. The example consists of three main components, a FDDI network, a multiprocessor connected to this
network and one of the processors in the multiprocessor, the control processor.

The FDDI network is a 100Mb/s local/metropolitan area network that uses a token ring topology [3]. It has gained
popularity recently, particularly in real-time applications, since it allows communication time to be bounded. There
are several stations connected to the network in the system. They generate multimedia and sensor data sent to the
control processor, as well as additional traffic inside the network. There is a deadline of 100ms between the generation
of multimedia data and its processing by the control processor.

The traffic in the network has been modeled as proposed in [27]. Under this protocol, stations choose a target
token rotation time (TTRT). Each station is then allocated a synchronous capacity such that if all stations use all their
synchronous bandwidth, the token returns to a station at most 2*TTRT time units after leaving it [27]. In this example
the TTRT is 8. Traffic is modeled such that every 16 units (2*TTRT) the stations utilize the network as follows: video
station, 6 units; audio station, 1 unit; and remainder network traffic, 8 units (in this example we will analyze only the
behavior of video and audio. Therefore all the remaining traffic in the network has been grouped together).

In the multiprocessor, four active processors are connected through a Futurebus+ [18]. The first is the network
interface, it receives data from the network and sends it to the control processor. The network interface uses the bus
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Figure 2: System Architecture

Process Period Exec. Time¦ § 100ms 5ms¦ ¨ 150ms 78ms¦ © 160ms 30ms¦ ª 300ms 10ms¦ « 100ms 3ms

Figure 3: Timing requirements for tasks in the control processor

for 7ms at each time. A sensor processor reads data from sensors every 40ms. It buffers this data and sends it once
every four readings to the tracking processor. The tracking processor processes this data and sends it to the control
processor. Both sensor and tracking data use the bus for 3ms each. The deadline for sensor data to be processed is
785ms. Access to the bus is granted using priority scheduling. Priorities are assigned according to the rate-monotonic
scheduling theory, processors with shorter periods have higher priority.

In the control processor there are several periodic tasks. The timing requirements for these tasks can be seen in
figure 3. Priority scheduling is also used in the control processor, with priorities being assigned by the rate-monotonic
theory. Two of the tasks in the control processor have special functions, ¬ ­ processes sensor data, and ¬ ® processes
multimedia data.

Each of the components of the system (FDDI, network and control processor) has been implemented separately.
No data is actually exchanged between the components in the model. Data has been abstracted out of the model,
because data dependencies would significantly increase the size of the model and the complexity of verification.

However, while simplifying verification, abstractions can also introduce invalid execution sequences. The con-
straints imposed by data dependencies significantly reduce the number of execution sequences that can actually be
reached. In an abstract model such dependencies do not exist. In this example, selective quantitative analysis has
been used to ensure that only execution sequences that are valid have been considered during verification.

The first deadline to be checked is the deadline of 100ms between the generation of multimedia data (signaled by
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variablevideo.start) and its processing in the control processor by process ¯ ° (signaled by variablet5.finish).
Ideally, we would like to compute these time bounds usingMIN{MAX}[video.start, t5.finish]. However,
since in our model we have abstracted out synchronization between tasks, this would consider paths in the model in
which t5 finishes executing just after video, without going through the network interface. This execution sequence
corresponds to t5 processing data generated by previous instantiations of video.

In order to identify the valid paths in the model, we have computed the same time bounds as before, but now
considering only paths that satisfy the constraint F interface.finish. Unfortunately, this is still not accurate
enough, as it allows for execution sequences in which interface executes before video finishes, or after t5
starts. The actual formula used to characterize the correct paths is

F (video.finish & F (interface.finish & F t5.start))

This formula guarantees that the events video.finish, interface.finish and t5.start must occur, and
in that order. Moreover, by using bounded selective quantitative analysis we also guarantee that these events must
happen after video.start and before t5.finish. We are then able to eliminate from consideration all false
paths introduced in the model, and determine the correct response times.

Using this formula for computing the time between video.start and t5.finish resulted in the interval [24,
96] (values are presented in the form [min, max]), that is, the multimedia traffic is schedulable. The audio traffic has
been analyzed in a similar way, and will not be presented here for brevity. The response time for the audio station is
[16, 96].

This analysis also uncovered an ambiguity in the system description. Initially, we assumed that process ¯ ±
processed the multimedia traffic in the control processor. In the original description this point is not clear. However,
the same analysis using ¯ ± instead of ¯ ° produces the interval [100, 148], which is clearly not schedulable. Discussions
with the authors of the original paper then clarified the issue, and in the model we introduced process ¯ ° to handle
multimedia traffic.

Finally, we must check the deadline between a sensor reading in the sensor processor and the processing of this
data by ¯ ² in the control processor. This deadline is 785ms. In order to determine how long it takes for data to go
from the sensor processor to the control processor we must use a similar approach to the one described. The direct
computation of MIN{MAX}[sensor observation, t3.finish] searches through paths in which data does
not have time to go through all the steps in the protocol.

We must, therefore, compute this time provided that a LTL formula describing the correct data path is satisfied.
The formula that must be satisfied in this case is

F (sensor.finish & F (track.start & F (track.finish & F t3.start)))

By using this formula we have obtained the time between sensor observation and ¯ ² processing to be in the
interval [197, 563], well within the deadline. However, by looking into the design we noticed a potential source for
inefficiencies in the Futurebus. Using standard model checking techniques we then printed a counterexample for the
longest response time. It confirmed our speculations.

In this system both sensor and tracking processors access the bus periodically, sending data every 160ms. In the
counterexample, however, data required two periods of 160ms to reach the control processor. It was sent by the sensor
processor to the tracking processor, but this processor would only send it to the control processor in the next period.
Before this time, data was blocked at the tracking processor because of its periodicity. Further investigation of the
model showed that this was caused by the priority order in which processors accessed the bus. The tracking processor
had a higher priority than the sensor processor. This means that when the sensor processor sends data to the tracking
processor, it had already used the bus for this period, and would only request access again in 160ms.

The rate-monotonic theory was used to assign priorities to bus requests, and it states that shorter periods have
higher priorities. In this case however, both processors have the same period, and their relative priority is irrelevant
(from the rate-monotonic perspective). From the data transfer pattern, though, it seemed that exchanging the order of
these two processors would yield a better result. We modified the design by changing the priorities, and the response
time became [37, 403], an improvement of almost 50% in the response time.

Moreover, we have been able to compare the performance of both designs using interval model checking. One
of the most important problems with real-time systems is priority-inversion. It occurs when high-priority tasks are
blocked by low priority tasks. This can happen even with priority scheduling, in most cases caused by synchronization.
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Determining the existence of priority inversion is extremely important in the analysis of real-time systems. In our
example we have been able to check this parameter using interval model checking.

We are interested in determining the existence of priority inversion between the time the sensor produces data until
the time the tracking processor processes this data. Priority inversion occurs in this interval if the bus is idle or the
lower priority process is executing. The lower priority process is either the sensor or tracking processor, depending
on the priority order. In both cases the network interface has higher priority, because it has a shorter period.

Using interval model checking we have been able to check the LTL formula G !(bus idle | bus granted
= lower priority) on the intervals between the sensor processor finishing sending data and the tracking pro-
cessor sending its data to the control processor. The original design showed the existence of priority inversion, as
expected. In the modified design, on the other hand, the formula above is true in all intervals under consideration.
Notice that the formula is clearly false outside these intervals. This shows that the modified design is optimal with
respect to the prioritized utilization of the bus.

The modified design has a better response time, and is clearly preferred in this application. But in other applications
this might not be true. There might be cases, for example, in which the tracking processor sends data to the sensor
processor. In those cases the modified design is worse than the original one. This again shows how selective
quantitative analysis and interval model checking can be used to analyze the different facets of a system. The designer
can choose to optimize the behavior of a critical application, even if at the expense of a less critical one. It would
be easy to adapt this analysis to a different data pattern, and optimize the response time for any application that is
considered more important. In this example we considered the data path from the sensor to the control as the most
important one.

This example shows how the proposed method can assist in understanding the behavior of complex systems. We
have been able not only to check properties of the whole system, but also to analyze specific execution sequences of
interest. This allowed us to uncover subtleties about the application that might have been very difficult to discover
otherwise. We believe that this method can be of great use in analyzing and understanding other complex systems, as
it has been in analyzing this one.
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