Edge-Disjoint Paths in Expander Graphs

Alan M. Frieze
Department of Mathematical Sciences,

Carnegie Mellon University,
Pittsburgh, PA15213. *

Abstract

Given a graph G = (V, E) and a set of k pairs of vertices in V', we are interested
in finding for each pair (a;,b;), a path connecting a; to b;, such that the set of
paths so found is edge-disjoint. (For arbitrary graphs the problem is AP-complete,
although it is in P if & is fixed.)

We present a polynomial time randomized algorithm for finding edge disjoint
paths in an r-regular expander graph G. We show that if G has sufficiently strong
expansion properties and 7 is sufficiently large then all sets of k = Q(n/logn) pairs
of vertices can be joined. This is within a constant factor of best possible.

1 Introduction

Given a graph G = (V, E) with n vertices, and a set of x pairs of vertices in V, we are
interested in finding for each pair (a;, b;), a path connecting a; to b;, such that the set of
paths so found is edge-disjoint.

For arbitrary graphs the related decision problem is A'P-complete, although it is in P if
k is fixed — Robertson and Seymour [17]. Peleg and Upfal [16] presented a polynomial time
algorithm for the case where G is a (sufficiently strong) bounded degree expander graph,
and k < n° for a small constant ¢ that depends on the expansion property of the graph.
This result has been improved and extended by Broder, Frieze, and Upfal |2, 3], Frieze [5],
Leighton and Rao [12] and Leighton, Rao and Srinivasan [13, 14]: In these papers G has
to be a (sufficiently strong) bounded degree expander and & can grow as fast as n/(logn)?,
where 6 depends only on the expansion properties of the input graph, but is at least 2.

Let D be the median distance between pairs of vertices in G. Clearly it is not possible
to connect more than O(m/D) pairs of vertices by edge-disjoint paths, for all choices of
pairs, since some choice would require more edges than all the edges available. In the
case of an r-regular expander, this absolute upper bound on & is O(n/logn) (assuming r

*Supported in part by NSF grant CCR9530974. E-mail: alan@random.math. cmu. edu.

is independent of n). In this paper, we show that if G has sufficiently strong expansion
properties and r is sufficiently large then all sets of k = Q(n/logn) pairs of vertices can be
joined. This therefore, is within a constant factor of the optimum. The precise definition
of “sufficiently strong” is given after the theorem.

Theorem 1 Let G = (V, E) be an n-vertex, r-reqular graph. Suppose that G is a suffi-
ciently strong expander. Then there exist €1,€3 > 0 such that G has the following property:
For all sets of pairs of vertices {(a;,b;) | i =1, ..., k} satisfying:

(i) k = [ern/logn].

(ii) For each vertex v, |{i:a; =v}| + |{i: b = v}| < er.
There exist edge-disjoint paths in G, each of length O(logn), joining a; to b;, for each i =
1,2,..., k. Furthermore, there is a polynomial time randomized algorithm for constructing
these paths.
€1, €2 depend only on certain expansion parameters a, 3,y defined below. They do not depend
onmn orr.

The algorithm we use is based on the one used in Frieze and Zhao [7] which dealt with
random r-regular graphs. In [7] we can take k = [e;(rlogr)n/logn].

1.1 Preliminaries

We define expanders in terms of edge expansion (a weaker property than vertex expansion).
Let G = (V, E) be a graph and let n = |[V|. For § C V let out(S) = outg(S) be the
number of edges with one end-point in .S and one end-point in V' \ S, that is

out(S) = H{u,v} | {u,v} € E,u € S,v¢& SH .
Similarly,
in(S) = H{u,v} | {u,v} € E,u,v € SH
A graph G = (V, E) is a #-expander, if for every set S C V, |S| < n/2, we have
out(S) > 6|S5]|.
An r-regular graph G = (V, E) is called an (a, 8, v)-expander if for every set S C V

(1—a)r|S] i[5S <n
out(S) > {5r|5| if yn < |5| <n/2

We naturally assume that § < 1 — a.

By “sufficiently strong” in Theorem 1, we mean that (3, are arbitrary and « is suffi-
ciently small. Then everything will work provided r is sufficiently large.

Since 2in(S) 4 out(S) = r|S| we see that in an («, 3,y)-expander

in(S) < ar|S|/2 |S| < yn. (1)

In particular random regular graphs and the (explicitly constructible) Ramanujan
graphs of Lubotsky, Phillips and Sarnak [15] are (a, 3,y)-expanders. (See discussion in

2)

The paper contains a few unspecified absolute constants. Exact values could be given
but it is easier for us and the reader if we simply give the relations between them. New
constants will be introduced as Cy, ..., sometimes without further comment. Furthermore,
specific constants have been chosen for convenience. We made no attempt to optimize
them, and, in general, we only claim that inequalities dependent on n or r hold for n or r
sufficiently large.

For a graph G = (V,E) and v € V we let dg(v) denote the degree of v in G. We use
4(G) and A(G) to denote the smallest and largest degrees respectively. For a set S C V
we let S =V \ S and define its neighbor set, Ng(S), as

Ng(S) ={v € §: Fw € S such that {v,w} € E}.

Forv eV and S CV we let dg(v, S) = |[Ng(v) N S|.
Let ®5 = out(S)/|S| and let the (edge)-expansion & = ®(G) of G be defined by

® = min &g.
sSCvV
[S|<n/2

We need an algorithm for splitting a strong expander into ten expander graphs. We could
use the algorithm of [2] or [6]. The latter gives a better split and we arbitrarily choose to
use it. € > 0 is a small constant. The expansion requirements for the algorithm are

@ > 70¢™? and ® > 40¢ 2logr, (2)

which for us means
B > 40e *r'logr. (3)
The result we need from this paper (Theorem 2) is:

Theorem 2 Suppose that (2), (8) hold and that G is an r-regular (a, B, y)-expander. Then
there is a randomised polynomial time algorithm (O(n?logd =)' which with probability at
least 1 — & constructs Ey, Es, ... ,Eyg such that the edge-expansion ®; of G; = (V, E;)
satisfies

¢
o, > (1—6)E—(04+26)’I",

fori=1,2,...,10.

2 Overview of the algorithm

Our algorithm divides naturally into the three phases sketched below.

!The paper only claims n®U°87) expected time but changing the definition of X, in [6] to deal with
smaller | S| easily yields this improvement

Phase 0: Partition G into ten edge-disjoint graphs G; = (V, E;), 1 <i<10. Phase 1 will
use only the graphs GG; and G5; Phase 2 will use only the graphs GG3, G4 and G5; and Phase
3 will use only the graphs Gg — G-

Phase 1: Choose two random sets A, B of & vertices in V. Connect the endpoints A = {a; :
i=1,2,...,k} to the newly chosen points Ainan arbitrary manner via edge-disjoint paths
in G; using a flow algorithm. Similarly, connect the endpoints B = {b; : ¢ =1,2,... ,k}
to the newly chosen points B, this time using Go. Let @; (resp. Ez) be the vertex connected
to a; (resp. b;). The original problem is now reduced to finding edge-disjoint paths from a;
to b; for each i.

Phase 2: We split this into parts (a),(b),(c).

(a) At this point we want @;, 4 = 1,2,... ,k to be a random ordering of a random set of
vertices and so we randomly re-order a;,as, ... ,a, to ensure this. We do the same with
b1,bs, ..., bs. We then randomly generate x;,zs, ... ,z, from V with replacement.

(b) For each i in turn, we connect @; to z; by a path of minimum length in G3. We remove
the edges of this path from Gj.

(c) For each i in turn, we connect b; to z; by a path of minimum length in G4. We remove
the edges of this path from Gj.

Most pairs (@;,b;) will be successfully connected via z; in this phase. For such a pair,
the final path from a; to b; is the concatenation of the paths indicated as follows

ai—&i—:vi—bi—bi

It is important in our analysis to ensure that random walks are done on subgraphs which
are expander graphs. We use G as a backup for ensuring that this is done.

Phase 3: At the end of Phase 2, there will with probability > 1/2, be at most n/(log n)*
pairs (@;, b;) which have not been joined by paths. We use the algorithm of [5] to join them
by edge disjoint paths, using only the edges of G — G1¢, and then construct the final paths

from q; to b; as above.
To prove Theorem 1 it suffices to show that:
e Phases 0 and 1 will succeed for all choices of a1, ... ,b, and almost every choice of
A, B.

e Phases 2 and 3 are successful for almost every choice of A, B and any bijection A — B

3 Detailed description of the algorithm

The input to our algorithm is a sufficiently strong (a, 3, v)-expander graph G and a set of
pairs of vertices {(a;, ;) | i = 1, ..., k} satisfying the premises of Theorem 1. The output is
a set of k edge-disjoint paths, Py,... , P, such that P, connects a; to b;.

3.1 Phase 0.

We start by partitioning G into ten edge-disjoint graphs G; = (V, E;), for 1 <i < 10. We
use the algorithm SPLIT of Theorem 2. We take ¢ = « in the theorem and assume that
B > a. Thus each G; satisfies

®; = (G;) > for, (4)
where
Bo=P _4a>3a>0. (6)
10

3.2 Phase 1.

Choose A, B C V uniformly and randomly without replacement. We are going to replace
the problem of finding paths from a; to b; by that of finding paths from a; to b;.

We connect A to A via edge-disjoint paths in the graph G; using network flow tech-
niques. We construct a network as follows

e Each undirected edge of GG; gets capacity 1. 3
e Each v € V becomes a source of capacity |{i : a; = v}| and each member of A
becomes a sink of capacity 1.

Then we find a flow from A to A that satisfies all demands. Since the maximum flow has
integer values, it decomposes naturally into | A| edge-disjoint paths (together perhaps with
some cycles). If a path joins a; to z € A, then we let &; = 2.

We carry out a similar construction involvin(g B and B in Gs.

Thus Phase 1 finds edge-disjoint paths ml) from a; to @; and W'i(4) from Ez to b;,
1 < 4 < k, where the vertices a1, b1, Gz, bs, . - . ,dx, b € Vs are chosen uniformly at random
without replacement. On the other hand there may be some difficult conditioning involved
in the pairing of &; with b;, 1 < i < . We deal with this in Phase 2(a).

3.3 Phase 2.
3.3.1 Algorithm GENPATHS.

We (try to) construct edge-disjoint paths connecting a;, z;, b for1<i <k. For1<i< kwe
try to connect a; to x; in graph I's by a shortest path W;.@). Here I'; = (V}, Fj),j = 3,4,5
denotes G, after the deletion of some vertices and edges. We construct these paths in
the order a;,as, ... ,a,. The edges of each such path are deleted before the next path is
constructed. This keeps the paths edge-disjoint. This constitutes Phase 2(b).

In Phase 2(c) we use the same ideas and I'y to join b1,bs,... ,be t0 T1,Z0,... T by a
shortest path W;.(?’).

It is important for the above analysis to ensure that the construction of any shortest
path takes place on a graph I' = (K, F) which is an expander. We can ensure this by
keeping the degrees of vertices in the I'; close to their degree in G;. This may involve
deleting some vertices after a walk. We use the routine REMOVE to do this.

If the proposed start vertex v of a path on I' does not lie in K then we try to connect
it back to K by a path in I's. The terminal endpoint of this walk is denoted by v'. We use
a subroutine CONNECTBACK for this purpose. We do not expect to succeed all the time
and our failures are kept in a set L for later consideration.

The walk from a; to b; is then the catenation of walks m(t), t=1,...,4. These walks
may each include a short walk W at the beginning provided by CONNECTBACK.

1. Algorithm GENPATHS

2. begin

3 [; + G;, 1 =3,4,5.

4. for i=1to k do

5. Execute REMOVE(I's)

6 Execute CONNECTBACK(V3, d;, &},i, Wep)

7 ifi ¢ L then

8 Execute CONNECTBACK(V3, z;,), %, Wep)
9 ifi ¢ L then

10. Construct a shortest path VVi(z*) from a; to z in T's.
11. WP — (Wog, W), Ty « T3 \ E(W)

11. fi

12. od

13. fori=1toxdo

14. Execute REMOVE([y)

15. Execute CONNECTBACK(V}, b;, b},4, Weg)
16. ifi ¢ L then

17. Execute CONNECTBACK(Vy, z;, 2!, 4, Weg)

18 ifi ¢ L then

19. Construct a shortest path VVi(?’*) from l;i to 2} in I'y.
19. WS — (Wep, W), Ty « Ty \ EW™)

20. fi

21. od

22. end GENPATHS

3.3.2 Subroutine REMOVE

The purpose of REMOVE is to delete vertices which might prevent a graph (or graphs)
from being an expander. In GENPATHS we apply REMOVE to I'3, or I'y. In CONNECTBACK
we apply REMOVE to I's.

In Step 4 we remove the set of vertices Ry which have so far lost more than Syr/4 edges
through the deletion of shortest paths. We then iteratively (Steps 5-12) remove vertices

6

which have at least Sor/4 neighbours among previously removed vertices. We therefore see
that for ¢t = 3,4

v € V, implies dr,(v) > dg,(v) — Bor/2 > Bor/2. (7)
1. Algorithm REMOVE(T;)
2. begin
3 Ry ={v € V;: dr,(v) <dg,(v) — Bor/4}.
4 £+ 0.
5. begin
6 Rg +—V \ Ry.
7 d < max,{dr,(v,R;) : v € Ry}.
8. if d < for/4 terminate REMOVE, otherwise
9. Ry + Ry U{w}; Vi = V; \ {w} where w € R, is such that dr,(w, Ry) = d.
10. L1041
11. goto 6.
12. end

13. end REMOVE

We can see from (7) that throughout the algorithm
Or, > O, — Bor/2 > Bor/2 for t = 3, 4. (8)
Indeed, (7) implies that for S C V; we have

outr,(S) > outg,(S) — Bor|S|/2 > (®: — Lor/2)|S|.

3.3.3 Subroutine CONNECTBACK.

The purpose of CONNECTBACK is to connect a vertex x by a random walk to a set K = V3
or V} of vertices of large degree in a particular subgraph. (If z already has large degree then
CoNNECTBACK does nothing except to relabel z as z'). All walks are done on vertices Vs
and in Step 3 we check that the start point z lies in V5. If not, we put ¢ into L, where
T = @;,b;,z; or z}. Edge disjoint paths for the pairs (a;,b;),7 € L are found in Phase 3.
Let

w = [loglogn]>.

We do a random walk Wgp from x until we reach K or make w steps. In the latter case
we add the corresponding ¢ to L.

1. subroutine CONNECTBACK(K, z,z’,i, Wep)

2. begin

3. if x € K then 2’ + z exit fi else

4. Execute REMOVE(I';)

5 if z ¢ V5 then L + LU {i} exit fi else

6 Do a random walk Wgp starting at z in ['s, until K is reached or

w steps have been taken.

7. In the latter case L < L U {i} and we exit else
8. I'g « I's \ Wer
9. end CONNECTBACK

3.4 Phase 3.

There is still the set L of pairs (@;, b;) which have not been connected by paths. We will
show later that with probability at least 1 — o(1), |L| is at most n/(logn)*. As such, these
pairs can be dealt with by the algorithm of [5], using graphs G¢ — G1o.

4 Analysis of Phase 1

In this section we show that if (4) holds and

Por > 1 and €3 < fBo (9)
then after we run SPLIT, we can find edge-disjoint paths from a; to G; in G; and edge
disjoint paths from b; to b; in G5, for 1 < ¢ < k&, for any choi(ze of a, - - - , b consistent with
the premises of Theorem 1, and every choice for ay,... ,a,b1,- .. ,bs.

Let A and A be as defined in Section 3.2. For § C V, let
a(S) = |{i: a; € S}| and £(S) =|S N A|.

For sets S,T C V, let eg,(S,T) denote the number of edges of G; with an endpoint in S
and the other endpoint in T'. It suffices to prove that

eG1(S’ 5) > 5(5’) - 04(5'), VSCV. (10)

Given (10), the existence of the required flow in G; is a special case of a theorem of Gale
[8] (see Bondy and Murty [1] Theorem 11.8). In which case we see that (10) implies a
successful run of Phase 2.

Now

and so

phay
\E_Q/I
I
2
\E_Q/I
INA
S
D)
i)
I
A
+
Q
=
L
INA
Q
=
L

Thus (4) verifies (10) for |S| < n/2 provided we have e < fy. For |S| > n/2 we have
®; > 1 and then

€6, (5, 5) = e, (8, 9) > @3] > |[AN 5| > |AN 5| — &+ a(S) = £(8) — a(3)

and so Phase 1 succeeds with respect to A, A. The same argument applies to B, B. To
ensure these paths are of length O(logn) we can solve a minimum cost maximum flow
problem as indicated in Kleinberg and Rubinfeld [11].

5 Analysis of Phase 2

Lemma 1 Throughout the algorithm
|V7| > (1_70)’”” j:3a4a

where
oy

7= 0.

Proof: First consider V3. We know from (8) that I'; is a (8gr/2)-expander throughout the
execution of Phase 2. We can use the strong edge-expansion of I'; to prove some vertex-
expansion and conclude the diameter of I's is at most 71 = [2log;, 4,/,m] + 1. Indeed, in a
Or-expander, every set S, |S| < n/2, has at least 6|S| neighbours. Thus the total number
of edges in the paths that are removed from G3 is < k7;. Hence the vertices B3 of GG3 which
are incident with for/4 edges of these paths satisfy

4
By <t < 18
,80’1" 3
provided
BoYo Bo
< —1 1+—]. 11
€1 = %5 og + 9 (11)
Let X = {z1,2,...,} be the remaining vertices removed by REMOVE. We claim that if

|Bs| < 2n then |X| < 2|B;| < 2°n implying that V3] > (1 — yo)n.
Indeed, if X; = {z1, 2, ... ,z;} then X; U B; has i + | B;| vertices and contains at least
iBor /4 edges. The existence of z;, i = 2| B3| contradicts (1) with .S = X; U Bs. So,

in(S) > |Bs|Bor/2 > |S|Bor/6 > |S|ar/2

using (6). This proves the lemma for V3 and the argument for V, is identical. O

Our next task is to bound the size of the set L of pairs of vertices which are left to
Phase 3. For this we need to establish some facts about random walks on graphs.

5.1 Random Walks

A random walk on an undirected graph G = (V, F') is a Markov chain {X;} on V associated
with a particle that moves from vertex to vertex according to the following rule: The
probability of a transition from vertex v, of degree d,, to a vertex w is 1/(2d), if {v,w} € E
and 0 otherwise. The particle stays at v with probability 1/2. This removes the possibility
of periodicity and allows us to use the conductance bound of Jerrum and Sinclair. Its
stationary distribution, denoted by 7, is given by 7(v) = 2‘1;3' forveV.

Let P be the transition matrix of the associated Markov chain. Let A be the second

largest eigenvalue of P. According to Jerrum and Sinclair [18]

\112
AS1—— (12)

where ¥ denotes the conductance of a random walk on G.
Here,

. 1
U = n(TS'I)uinﬂ @ Z m(v) P(v, w)

veS
w¢s

> min 1 Z do . i
— x($)<1/2 w(S) e AlV| 2d,
wgs
min out(S)
=(5)<1/2 2A|V|7(S)
o
— 2A%

(13)

Another fact we will need is

| Pt (v, w) — m(w)| < \/?/\t. (14)

A proof of this can be found for example in [18].

Now consider our random walks. Arguing as in Lemma 1 we first note that since
kw = o(n) we will have |V5| = n — o(n) throughout the algorithm.

The minimum and maximum degrees of I'5 will satisfy

,80T/2S5SAST‘

Thus I's has at least (1 — 0(1))Born/4 edges and then for sufficiently large n, the steady
state for a random walk on I's will always satisfy

2
@Sw(v)<— for all v € V,

2n ~ Bo(1 = o(1))n

where 7 denotes the steady state distribution of a random walk on T's.

10

From (8) and (13) we see that the conductance ¥ satisfies

2
v > bo (15)
8

Applying (12) we see that the second eigenvalue A of a random walk on I's always satisfies

Ba

A <1—=—.

=7 64

Using this in (14) we obtain that

[P (u,v) = m3(0)] < e 0, (16)

So we see that if
70 = 2566, *Inn

then

PSR (u,v) — m;(w)| = O(n™*). (17)

We also need a large deviation result. This can be taken from the works of Dinwoodie
[4], Gillman [9] and Kahale [10]. We quote the consequences of Theorem 2.1 of [9]: Let ¢
be the distribution of the start vertex of a random walk on a graph G. Let S be a fixed
set of vertices of G. Let Y denote the number of visits to S in the first ¢ steps.

Pr(Y —tn(S) < —u) < (1 + %) qu—(l—k)uz/(%t)’ (18)

2\ 1/2
n-(5%5)

5.2 Analysis of CONNECTBACK

where

Fix j = 3 or 4. Consider all calls to connect back a vertex to V;. Let L = Ls U Ly where
Ly consists of the indices added to L in Step # of CONNECTBACK.

To probabilistically bound |Ls| we first bound the expected value of the number M;, j =
3,4 of vertices which are incident with 5 or more walks in executions of Step 6 of CON-
NECTBACK which connecting back to V;. Fix a j = 3 or 4 and enumerate these walks as
Wi, Wa, ... , Wy, m < 2k. Here walk W; can have one or zero vertices if the proposed start
vertex z satisfies z € V; or z ¢ V5. Then for ¢ = 9/,

E(M;) < Z Pr(W,,,t=1,...,5 go through v)

2150 585,0

< (3 (o) =0 (o) ®

11

Explanation of (19) We first show that cw/(n — o(n)) bounds the probability that
walk W;, = (w1, ws, ... ,w,) passes through v, given W;,,1 < s < t pass through v.

Suppose first that j = 3. Then, given X = {a,,8s,... ,85,-1}, (or X = {z1,2,,...
,Zj—1}) w1 = @j, is chosen randomly from V3 \ X (or w; = z;, is chosen randomly from
V).

1 3
P =9) < < — 20
e =) € foos < (o) (20)
If j = 4 the argument is identical.
By induction on t we get
r(z; =v) Z Pr(z; ; = w)P(w,v) < Z i7r(w)P(w,v) = i77(11) < 9
- Bo Po ~ Bin

weVg weVs

and we have the claimed bound of ;3—‘”n for the (conditional) probability that W;, goes

through v. There are at most () choices for W;,,1 < s < t and n choices for v and (19)
follows.
It follows from (19) and the Markov inequality that

Pr (MJ > @) = o(1).

In addition to these M = M3 + M, vertices we consider those vertices which are removed
by REMOVE(I's). Arguing as in Lemma 1 we see that if M = o(n) then |Ls| < 3M. We
deduce that

(|L5| > ﬁ) = o(1). (21)

We now estimate the probability that ¢ € L;. We apply (18) with G =T, S =V;, j =3

or 4, and ¢q(v) = 1T‘Z(|1) for v € V5. Then we have

B4 (3)”2 37
1—-A> N, < and 7(S)>1— — >
— 64 Bo (%) Bo —

[\D|I—l

Pr(W NV, = 0) = O(e—ﬂgw/smo)

and so \
E(|L|) = O(e %04/51%)

n
L —— | =o(1).
P (112 g =)
Combining this with (21) we see that Pr(|L| > n/(logn)*) = o(1).

and

12

6 Analysis of Phase 4

We join the pairs in L using the algorithm of [5]. The algorithm is capable of joining
Q(n/(logn)* M) distinct pairs, provided the graph has sufficient edge-expansion. No-
tice that di,gi are chosen as distinct vertices. We briefly describe how we can make
this algorithm route m < ﬁ pairs using the graphs Gg — G19, assuming only that
<I)6,... ,<I>10 > 1. Let A = [logn]

(a) The aim here is to choose w;, W;, 1 < j < 2m such that (i) w; € W;, (ii) |W;| = A+1,
(iii) the sets W;,1 < j < 2m are pairwise disjoint and (iv) W; induces a connected subgraph
of Gg.

As in [12] we can partition an arbitrary spanning tree T' of Gs. Since T' has maximum
degree at most » we can find 2m vertex disjoint subtrees T;, 1 < j < 2m of T, each
containing between A + 1 and (r — 1)A + 2 vertices. We can find T} as follows: choose an
arbitrary root p and let @1, Q)s, ... ,Q, be the subtrees of p. If there exists [such that ¢
has between A+ 1 and (r — 1)A + 2 vertices then we take T} = @);. Otherwise we can search
for Ty in any @, with more than (r — 1)\ + 2 vertices. Since T \ T; is connected, we can
choose all of the T}’s in this way. Finally, W; is the vertex set of an arbitrary A + 1 vertex
subtree of T; and w; is an arbitrary member of W; for j =1,2,... ,2m.

(b) Let S4,Sp denote the set of sources and sinks that need to be joined. Using a
network flow algorithm in Gg connect in an arbitrary manner the vertices of S4 U Sp to
W = {ws,... ,wam} by 2m edge disjoint paths. The expansion properties of Gg ensure
that such paths always exist.

Let ay, (resp. Bk) denote the vertex in W; that was connected to the original end-point
ay, (resp. bg). Our problem is now to find edge disjoint paths joining d to by for1 < k < m.

(c) If w, has been renamed as dy (resp. Bk) then rename the elements of W, as ay,,
(resp. brye,) 1 < £ < A Choose §;,1 < j < dm and 7;,1 < j < Am independently at
random from the steady state distribution 7 of a random walk on G19. Using a network flow
algorithm as in (b), connect {Gre:1 <k <m,1 <L <A} to {11 < j < Am} by edge
disjoint paths in Gg. Similarly, connect {Ek,g 1<k<m,1<L< A to{n;:1 <5< AIm}
by edge disjoint paths in Gy. Rename the other endpoint of the path starting at @, (resp.
Ek,g) as Gye (resp. Bk,g). Once again the expansion properties of Gg, Gg ensure that flows
exist.

(d) Choose Zre,1 < k <m,1 <{ <)X independently at random from the steady state
distribution 7 of a random walk on Gy. Let W,Q,Z (resp. W,é’ ;) be a random walk of length

flogn from dy 4 (resp. Bk,g) to Iy .. Here 0 is sufficiently large that a random walk of this
length on G is “well mixed”. The use of this intermediate vertex £ ¢ helps to break some
conditioning caused by the pairing up of the flow algorithm.

Let Bj, (resp. By) denote the bundle of walks Wy ,,1 < £ < X (resp. Wi/,,1 < £ <).
Following [14] we say that W} , is bad if there exists k' # k such that W , shares an edge
with a walk in a bundle Bj, or Bj,. Each walk starts at an independently chosen vertex
and moves to an independently chosen destination. The steady state of a random walk is
uniform on edges and so at each stage of a walk, each edge is equally likely to be crossed.

13

Thus

2Am6?(log n)? 1
P ' < — 2 7 -)
r(Wy, is bad) < Bt 0 (logn)

We say that index k is bad if either Bj or B} contain more than A\/3 bad walks. If
index k is not bad then we can find a walk from dy ¢ to by, through 2y, for some ¢ which
is edge disjoint from all other walks. This gives a walk

ay — O — Opp — Qg — Tpp — Bk,l — b — by — by,
which is edge-disjoint from all other such walks.
The probability that index k is bad is at most

2Pr(B()\,0(1/(logn)) > A/3) = O(n™?).

So with probability 1-o(1) there are no bad indices. O

Acknowledgement: We thank Aravind Srinivasan for a careful reading of the paper.

References

[

[2]

[3]

[4]

8]

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland
1976.

A.7Z. Broder, A. M. Frieze, and E. Upfal, Eristence and construction of edge disjoint
paths on expander graphs, STAM Journal on Computing 23 (1994) 976-989.

A. 7. Broder, A. M. Frieze, and E. Upfal, Ezistence and construction of edge low
congestion paths on expander graphs, Random Structures and Algorithms 14 (1999)
87-109.

[.LH.Dinwoodie, A probability inequality for the occupation probability of a reversible
Markov chain, The Annals of Applied Probability 5 (1995) 37-43.

A M. Frieze, Disjoint Paths in Expander Graphs via Random Walks: a Short Sur-
vey, Proceedings of Random ’98, Lecture Notes in Computer Science 1518 (1998)
Springer, 1-14.

A M Frieze and M.Molloy, Splitting an erpander graph, Journal of Algorithms 33
(1999) 166-172.

A M Frieze and L.Zhao, Edge disjoint paths in random regular graphs, Proceedings
of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (1999) 291-
299.

D. Gale, A theorem on flows in networks, Pacific Journal of Mathematics 7 (1957)
1073-1082.

14

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

D.Gillman, A Chernoff bound for random walks on expander graphs, SIAM Journal
on Computing 27 (1998) 1203-1220.

N.Kahale, Large deviation bounds for Markov chains, DIMACS Technical Report,
DIMACS, Rutgers University, New Brunswick NJ, 1994.

J.Kleinberg and R.Rubinfeld, Short paths in expander graphs, Proceedings of the
37th Annual IEEE Symposium on Foundations of Computer Science, (1996) 86-95.

T.Leighton and S.Rao, Circuit switching: a multicommodity flow based approach,
Proceedings of a Workshop on Randomized Parallel Computing 1996.

T.Leighton, S.Rao and A.Srinivasan, Multi-commodity flow and circuit switching,
Proceedings of the Hawaii International Conference on System Sciences, 1998.

T.Leighton, S.Rao and A.Srinivasan, New algorithmic aspects of the local lemma
with applications to partitioning and routing.

A. Lubotsky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8
(1988) 261-277.

D. Peleg and E. Upfal, Constructing disjoint paths on expander graphs, Combina-
torica 9, (1989) 289-313.

N. Robertson and P. D. Seymour, Graph minors-XIII: The disjoint paths problem,
to appear.

A. Sinclair and M. Jerrum, Approzimate counting, uniform generation, and rapidly
mizing Markov chains, Information and Computation 82 (1989) 93-133.

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

15

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

