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Abstract

A graph G = (V, E) on n vertices is super e-regular if (i) all vertices have degree
in the range [(d — €)n, (d+€)n], dn being the average degree, and (ii) for every pair of
disjoint sets S, T C V, |S|, |T| > en, e(S,T) is in the range [(d—¢€)|S||T|, (d+¢€)|S||T|].
We show that the number of perfect matchings lies in the range [((d — 2¢)” -5, (d +
2¢)” 2], the number of Hamilton cycles lies in the range [(d — 2€)™n!, (d + 2¢)"n!|
and the number of spanning trees lies in the range [(d — 2¢)" 1n"2, (d+2¢)"~1n"2].

1 Introduction

Let G = (V,E) be a graph with |[V| = n. Let 0 < d < 1 and € > 0 be constants
(independent of n) where € is assumed to be small compared with d. We assume that the
density of G is dn i.e. |E|/(}) = dn. Suppose that the following two conditions hold:

e If du denotes vertex degree in G then
(d—e)n <dg(v) < (d+e)n for allv e V. (1)

o Iffor S, T CV,S5NT = we let e(S,T) denote the number of edges of G with one

end in S and the other in T and d(S,T) = Tgﬂ;:? then

|d(S,T)—d| <eforall S, TCV,SNT =0,|5],|T| > en. (2)
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A graph satisfying (1),(2) said to be super e-reqular. We assume that n = 2v is even.
Let m(G) denote the number of perfect matchings in G, let h(G) denote the number of
Hamilton cycles in G and let ¢(G) denote the number of spanning trees of G. In this paper
we prove

Theorem 1 If € is sufficiently small and n is sufficiently large then

(a)

(b)
(d—2¢)"n! < h(G) < (d+ 2¢)"n!.

()

(d—26)" n"2 < t(G) < (d +2)" 'n"2,

In all cases the bounds are “close” to the expected number of in the random graph G, 4.
The results here are strongly related to the result of Alon, Rédl and Ruciniski [1]. They
considered bipartite graphs H with vertex partition A, B where |A| = |B| = n. Assuming
(1) and (2) for S C A and T' C B they proved

Theorem 2 [1/
(d—2¢)"n! <m(G) < (d+ 2¢)"nl.

Michael Krivelevich has made some interesting observations on Theorem 1: First of all,
part (b) of Theorem 1 improves Corollary 2.9 of Thomason [7] which estimates the number
of Hamilton cycles in a pseudo-random graph. Secondly, if G is dn-regular and the second
eigenvalue of the adjacency matrix of G is at most ndn for small 7, then G is super €(n)-
regular (see for example Chung [3] Theorem 5.1) and so our result holds for such graphs.
Finally, an examination of the proof of part(c) reveals that we do not use e-regularity. We
have in fact proved

Theorem 3 Let G be a connected graph with minimum degree at least (d — €)n and mazi-
mum degree at most (d + €)n then

(d—26)" "2 < HG) < (d+2)" 'n" 2

We prove Theorem 1(a) in the next section, Theorem 1(b) in Section 3 and Theorem 3
in Section 4.



2 Perfect Matchings

Let A, B, |A| = |B| = v be a partition of V. We re-express (2) in terms of v i.e.
|d(S,T) —d|<eforall SC A, TC B|S|,|T| > 2ev. (3)

Furthermore, if A, B is a random partition and H = H(A, B) is the bipartite sub-graph of
G induced by A, B then whp dg(v) € [(d — e —0o(1))v, (d+ €+ 0(1))v] for all v € V. Thus
the conditions of Theorem 2 are satisfied with v replacing n and 2¢ replacing €. It follows
immediately that

m(G) > (1 - o(1)) (’Z) x V(d — 2€)” x 2i — (1 = o(1))—=—(d — 2€)". (4)

The factor 2%, accounts for the fact that each perfect matching occurs in 2¥ different graphs
H, assuming we consider the partition A, B distinct from B, A. There is slack in the
calculation in [1] and this will absorb the 1 — o(1) term and so (4) proves the lower bound
in Theorem 1.

For the upper bound we follow [1] and use the Minc conjecture [6] proved by Bregman
[2]. For a partition A, B and v € A let dg(v) denote the number of G-neighbours of v in
B. The Minc conjecture then states that

m(H) < [[(da(w))!/?®.
Thus
m(G) < 2i > T @dsw))rHese). (5)

A,B veA

For a fixed A, welet Ay = {v € A: dg(v) > (d+¢€)v}. Property (1) implies that |4;| < en.
Now since (z!)'/% increases with z, we see, after using Stirling’s approximation and (1),
that

L C R CO M)
<

veA
(d * Ev) ’ 2enp 00,
e
Hence 1 (n\ (d+e \" n!
completing the proof of part (a) of Theorem 1. O



3 Hamilton Cycles

A Hamilton cycle is the union of two perfect matchings and so h(G) < m(G)? and the
upper bound in part (b) of Theorem 1 follows from the upper bound in part (a).

The lower bound requires more work. For 1 < k < |n/3], let ®; be the set of all
2-factors in GG containing exactly k cycles, and let & = U, ®;, be the set of all 2-factors. Let
fr = |F&| so that f; = h(G). If M is a perfect matching of G, let aps denote the number of
perfect matchings of GG that are disjoint from M. Since deleting M only disturbs e-regularity
marginally, we see by part (a) that ay > (d — 2€)”-%;. Thus

vI2v

12 1
Ay = Z ay > ((d — 26)"n—) > (d — 2¢)"n! x a1/ (6)

vi2v
Me@
On the other hand, we have

[n/3]
Ay < Z 2 f;. (7)
k=1

We will show by a relatively crude argument that where k; = [m]

it s 1<k<k. (8)

fr —

We then use an idea from Dyer, Frieze and Jerrum [4]. In this paper they show that if an
n vertex graph G has minimum degree §(G) > (1 + a)n for a positive constant a, then a
polynomial fraction of the 2-factors of G are Hamilton cycles. We extend their argument
to e-regular graphs.

Let 8= 720 ;. Let ko = |Blnn], and for 1 < k < n, define y(k) = nPk!(BInn)*,

(d—2¢)(d—e)? "
and
v(k), if k< ko
o(k) = 1 T o
v(ko), otherwise.
Lemma 1 Let ¢ be the function defined above. Then

1. ¢ is non-increasing and satisfies
min{$(k — 1), p(k — 2)} = ¢(k — 1) > (BInn)k~ ¢(k);

2. ¢(k) > 1, for all k.

Proof Observe that -y is unimodal, and that & is the value of k£ minimizing y(k); it fol-
lows that ¢ is non-increasing. When k < kg, we have ¢p(k—1) = y(k—1) = (BInn)k1v(k) =
(BInn)k~1¢(k); otherwise, ¢p(k — 1) = y(ko) = ¢(k) > (BInn)k~¢(k). In either case, the
inequality in part 1 of the lemma holds.



Part 2 of the lemma follows from the chain of inequalities

1 1 (Blnn)k
(k) = (ko) =

o= (Blnn)F
T <n 52% =n"Pexp(flnn) = 1.
! P !

Define

U={(FF):Fe®,F c®,,k <k, and F & F' is a 6-cycle},

where @ denotes symmetric difference. Observe that I' = (®, ¥) is an acyclic directed
graph; let us agree to call its component parts nodes and arcs to avoid confusion with
the vertices and edges of G. Observe also that if (F, F') € ¥ is an arc, then F’ can be
obtained from F' by deleting three edges and adding three others, and that this operation
can decrease the number of cycles by at most two. Thus every arc (F, F') € U is directed

from a node F' in some ®; to a node F' in ®;_; or $_».

Our proof strategy is to define a positive weight function w on the arc set ¥ such that
the total weight of arcs leaving each node (2-factor) F' € ®5, is significantly greater than

the total weight of arcs entering F'. We will show below that

Y w(F,F*)>100¢(k)n’*Inn FeFnk>k
F+:(F,F+)c®

Y w(F,F) < 9(k)n’H, FeFk>1
F—:(F—,F)c¥

where H, = Y i"! <Inn + 1 is the nth harmonic number.

Now let
Wk,l = Z ’LU(F, F’)

FeFy,FleF;
(F,F')ew

Then (9) and (10) imply that for k& > k,

9 frd(k)n’H,
100 fré(k)n® Inn.

Wito, + Weiik

<
Wig—1+Wip—2 >

Now (12) implies that either
(i) Wex—1 > 50fd(k)n®Inn so that from (11)(k-1) we have

foor oK)
o =28k 1)

or
(ii) Wi r—2 > 50frp(k)n®Inn so that from (11)(k-2) we have

fos . S(R)
o = 2%k-2)

5

©)

(10)



It follows that if k > kg + 2 then

fk S 5_(k_k0)/2 IIlaX{fk0+1, fko}'

Then from (7) we see that

V5 —2 V5 —2

Furthermore, since F' € F,k > k; implies that

Yo wFEFH- Y wF,F)>1

F+:(F,F+)e¥ F—:(F-,F)e¥

ko+1 ko+1
Aws L N arp V5 gn Y g (13)

the total weight of arcs entering ®;, is an upper bound on the number of 2-factors in G

with more than k; cycles and the maximum total weight of arcs entering a single node
Jei+1+fey 2t +Fn/3) Thus
fk]_ :

in ®;, is an upper bound on the ratio p =

p < 9¢(1)n*H, = O(n**P).
Combined with (13) and (8) we see that
Ay <nPWfy

and the lower bound in Theorem 1(b) follows from (6), modulo taking advantage of slack
to absorb the n°®) term.

3.1 Proofs of (9) and (10)

The weight function w : ¥ — R™' we employ is defined as follows. For any arc (F', F)
with F' € ®;: if the 2-factor F' is obtained from F' by coalescing two cycles of lengths I,
and I, into a single cycle of length I, + Iy, then w(F', F) = (I;* +1;")¢(k); if F results from
coalescing three cycles of length [, Is and I3 into a single one of length Iy + [ + I3, then
w(F', F) = (7" + 157" + 15 (k).

Let F' € ®; be a 2-factor with k£ > 1 cycles Cy,Cy, ... ,Cy, of lengths ny, ns, ... ,ng. We
proceed to bound from below the total weight of arcs leaving F'. For this purpose imagine
that the cycles C1,Cs,... ,Cy are oriented in some way, so that we can speak of each
oriented edge (u,u') in some cycle C; as being “forward” or “backward”. For each vertex a
we can then let (a,7(a)) be the unique forward edge containing a. Since we are interested
in obtaining a lower bound, it is enough to consider only arcs (F, F*) from F of a certain
kind: namely, those for which the 6-cycle C = F & F'* is of the form C = (z,2',y,v, 2, Z),
where (z,z') € F is a forward cycle edge, (y,y') € F is a forward edge in a cycle distinct
from the first, and (z, 2’) € F is a backward cycle edge. The edge (z, z') may be in the same
cycle as either (z,2') or (y,y'), or in a third cycle. Observe that (z',y), (v/,2) and (2, z)
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must necessarily be edges of F*. It is routine to check that any cycle C = (z,z',y, vy, 2, 2')
satisfying the above constraints does correspond to a valid arc from F. The fact that (z, 2)
is oriented in the opposite sense to (z,z') and (y,y’) plays a crucial role in ensuring that
the number of cycles decreases in the passage to F™ when only two cycles are involved.

First, we estimate the number of cycles C for which a fixed (z, ') is contained in a
particular cycle C; of F. We say that C is rooted at C;. Let Z' be the neighbour set of z
in G and Z = w(Z'). Similarly, let Y be the set of neighbours of =’ which do not belong
to C; and let Y = w(Y'). If |Y'| > en then by e-regularity there are at least (d — 2¢)n
vertices z € Z which have at least (d — €)|Y'| > (d — €)((d — €)n — n;) neighbours y’
in Y'. Let §; = lp,<(d—2e)n- We see that 6; = 1 implies (z,2') is contained in at least
(d — 2¢)(d — €)((d — €)n — n;)n cycles. Note also that Z 6 >k — 5

We can now bound the total weight of arcs leaving F'. Each arc (F F+) defined by a
cycle C rooted at C; has weight at least n; ' min{¢(k —1), $(k—2)}, which, by Lemma 1, is
bounded below by (8Inn)(kn;)~*¢(k). Thus the total weight of arcs leaving F' is bounded
as follows:

k

Y wFFY) > Y (d—2¢)(d—e)((d—e)n - m)nmM (14)

° kn;
F+.(F,F+)ct i=1
> B(d—26)(d — (k) (d Cem ﬁ - %) n?Inn (15)
> B(d— 26)(d — (k) L =—n?nn,
> 100¢(k)n’Inn (16)

where we have used the fact that £ > k;. Note that the presence of a unique backward
edge, namely (z, 2'), ensures that each cycle C has a distinguishable root, and hence that
the arcs (F, F) were not overcounted in summation (14). This completes the proof of (9).

We now turn to the corresponding upper bound on the total weight of arcs (F'~, F) € ¥
entering F. It is straightforward to verify that the cycle C = (z,2,y,y',2,2') = F~- @ F
must contain three edges — (z,z'), (y,vy') and (z, 2') — from a single cycle C; of F, the
remaining edges coming from F~. The labeling of vertices in C' can be made canonical in
the following way: assume an ordering on vertices in V', and assign label z to the smallest
vertex. The condition (z,z') € F uniquely identifies vertex z', and the labeling of the other
vertices in the cycle C follows.

Removing the three edges (z,z'), (y,y’) and (z,2') from C; leaves a triple of simple
paths of lengths (say) a — 1, b — 1 and ¢ — 1: these lengths correspond (respectively) to
the segment containing z, the segment containing z’, and the remaining segment. Going
round the cycle C;, starting at ' and ending at z, the vertices z, z', y, %/, z, 2/ may appear
in one of eight possible sequences:

) ’ )
m’y’y’z’z’m7
' ' I
m’z’z’y’y’m7
' )

m’z’z’y’y’m
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A R TR
'y, y, 2,2, x;
',y 2, 2, x;
', 2,2,y y,
:EI’ y’ y” z’ z” 'r'E'

For a given triple of lengths (a, b, c), each of the above sequences corresponds to at most
n; possible choices for the edges (z,z'), (y,y’) and (z, 2'), yielding a maximum of 8n; in
total. To see this, observe that the edge (z,z') may be chosen in n; ways (minimality
of z fixes the orientation of the edge), and that the choice of (z,z') combined with the
information provided by the sequence completely determines the triple of edges.

The eight sequences divide into five possible cases, as the first four sequences lead to
equivalent outcomes (covered by case 1 below). Taken in order, the five cases are:

1. For at most 4n; of the choices for the edges (z,z'), (y,y') and (z,2'), C; & C is a
single cycle;

2. for at most n; choices, C; @ C is a pair of cycles of lengths b and a + ¢;
3. for at most n; choices, C; @ C is a pair of cycles of lengths a and b + ¢;
4. for at most n; choices, C; @& C is a pair of cycles of lengths ¢ and a + b;
5. for at most n; choices, C; @ C is a triple of cycles of lengths a, b and c.

The first case does not yield an arc (F'~, F'), since the number of cycles does not decrease
when passing from F'~ = F @ C to F, but the other four cases do have to be reckoned with.
The total weight of arcs entering F' can be bounded above as follows:

S w(F,F) < gn@(k) 3 [(1+;+1)+

_. — a,b,c>1
F .(F ,F)G‘I’ atbtomn

1 1 1 1 1 1
=+ + (- + +{ =+
(a b-l—c) (b a+c) (c a-l—b)}

- gniqﬁ(k) > [ngbic}

a,b,c>1
a+btc=n;

k n;—1 6 3
< Z nid(k)n [; o a}

< 9¢(k)n’H,.

This completes the proof of (10).



3.2 Proof of (8)

We show that if F' € F and 2 < k < k; then there is at least one arc (F, F') € ¥. Since
each F’ is the terminus of at most n® arcs, (8) follows immediately.

Let C; be the largest cycle of F. Then |Ci| > n/ki > d—;n.

Case 1: |C1| < n — 3en.

e-regularity implies that there are at most en vertices X which have fewer than (d—e)|C} |
neighbours in C;. As there are at least 3en vertices not in Cy, there are vertices z;, x5 ¢ X
which are neighbours on a cycle Cy # C;. Let A;,i = 1,2 be the neighbour sets of z; on
C: and let B; = w(4;) for ¢ = 1,2. By assumption, |B;| > 1d*(d — €)n for i = 1,2 and
so we can choose B C B;, i = 1,2 such that B} N B} = 0 and |Bj| = |Bj}| > td(d — €)n.
e-regularity implies that there is at least one edge joining Bj, Bj. Suppose this is the edge
(b1,bs). Then zq, 7 1(b1), by, ba, 7 (bs), T2, 7, defines the requisite 6-cycle.

Case 2: |C;]| > n — 3en.

Just take any two vertices which are neighbours on a cycle other than C;. Each has
at least (d — 4¢)n neighbours in C; and we can argue the existence of a 6-cycle as in the
previous case. O

4 Spanning Trees

For the lower bound let @ = {f : V = V : (v, f(v)) € E,for all v € V} be the set of
functions defined by each v € V' choosing a neighbour f(v). Clearly

Q| = [] de(v) > (d — e)"n™. (17)

Each f € Q defines a digraph Dy = (V, Ay), Ay = {(v, f(v) : v € V}. A weak component
of Dy consists of a cycle C' with a rooted forest whose roots are in C. Suppose that D; has
ks weak components. We obtain a spanning tree of G by (i) deleting the lexicographically
first edge of each cycle of Dy and then (ignoring orientation) extending the k; components

to a spanning tree. We claim that if o = 4/v/d — € and
UM ={feQ: k <ayn}
then
] = [$2]/2. (18)

Assume that (18) holds. Each spanning tree is obtained by deleting k; edges of a Dy and
then adding k; — 1 edges. It follows that each spanning tree can be obtained in at most

(;\%)2, N = () ways from a member of ;. Thus

and the lower bound in (c) follows.



Proof of (18)
Let f be chosen randomly from 2 and write

1
k=D 1K,

veV

where K, is the weak component containing v.
We will argue that

k2
Pr(|K,| <k) < kE>1 19
(K <R < oo (19)
Given (19) we have
(d—e)n 1 1
E(K,™") < —(Pr(|K,| <k)—Pr(|K,| <k—1)) + ——
(™) 30 (Pe(i] <) = el S k= 1)+
(d—e)n
SR LAEDN
= - k(k + 1) (d — e)n
4/ (d—e)n 1 1
< +
k=1 (d - 6)’n’ (d — E)n
B 2
(d—é€)n
Thus i
24/n
E(k;) <
( f) = m
and (18) follows from the Markov inequality.
To verify (19), start with v and follow v, f(v), f2(v), ... , until there is a repetition in the
sequence. The probability of a repetition at the ith step is at most -, since there are

) (d—e)n?
always at least (d — €)n random choices for f*(v). If there are no repetitions by step k then

|K,| > k. Thus
k

Pr(|K,| < k) <
Kl <Y
and (19) follows. O
For the lower bound let Q* = {f: V —> V : (v,f(v)) € Eor f(v) =vforallv € V}.
Then

HG) < || < ((d+e)n+1)" < (d+ 2¢)" 'n™ 2.
To see this consider the following injective map from the spanning trees of G into {2*: orient
each edge of tree T towards vertex 1 and then put f(1) = 1.

Acknowledgement We thank Michael Krivelevich for his earlier comments and for point-
ing out the simple proof of the upper bound in Theorem 3.
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