Learning Filaments

Geoffrey J. Gordon
Andrew Moore

GGORDON@CS.CMU.EDU
AWM@CS.CMU.EDU

Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA

Abstract

This paper is about new statistics and new ef-
ficient algorithms for a form of mixture model
that learns filamentary structures. Such
models are important in several areas of sci-
entific data analysis, but in this paper our
main example is identification of large-scale
structure among galaxies. We describe soft-
ware which can extract the positions of spher-
ical and line-shaped clusters from data about
the locations of objects such as galaxies. We
do so by fitting a particular type of Gaussian
mixture model to the galaxy locations. The
most interesting feature of our model is that
it directly represents line segments in the dis-
tribution, unlike standard Gaussian mixture
models which can only handle ellipses. Be-
cause we fit the line segments directly, we do
not need to do any post-processing to extract
their locations. We use a modification of the
k-means algorithm to find model parameters.
Since our software needs to deal with large
data sets, it is important to accelerate model-
fitting as much as possible. So, we store the
galaxy locations in a multi-resolution kd-tree,
and we introduce new pruning algorithms
that allow us to skip over large parts of the
tree in each k-means step. We provide eval-
uations on both synthetic and real data sets.

1. Introduction

Sky surveys are an important part of modern astron-
omy. As telescopes improve, each new survey collects
more data: the Las Campanas Redshift Survey (Shect-
man et al., 1996), the source of the galaxy data in this
paper, measured about 25,000 galaxy positions, while
the in-progress Sloan Digital Sky Survey will soon be
collecting 5,000,000 galaxy positions per month.

One of the answers that astronomers hope to deter-
mine from sky survey data is which of several physical

models are capable of explaining the qualitative fea-
tures of the distribution of galaxies in the universe. It
is easy to see by examination (see Figure 3) that this
distribution is not uniform. Instead, galaxies tend to
clump together, sometimes in roughly spherical groups
and sometimes along lines or sheets. Different physi-
cal models predict different types of clumpiness in the
distribution of galaxies. So, it is important to mea-
sure statistics such as the number, size, and shape
of clumps in the actual distribution of galaxies, since
these statistics may help us discriminate among the
competing physical models.

We also believe that these same statistics will be useful
in domains other than astronomy. For example, we
have considered fitting filaments to the distribution of
protein locations produced in a 2D gel electrophoresis
(which separates proteins according to their mass and
charge), and to the distribution of mitochondriain the
cytoplasm of cells exposed to various drugs.

In this paper we describe software which can extract
the positions of groups and lines from data about the
locations of galaxies (we consider only two-dimensional
slices through the three-dimensional universe, so we
do not need to look for sheets). We do so by fitting a
particular type of Gaussian mixture model, described
below, to the galaxy locations. The most interesting
feature of our model is that it directly represents line
segments in the distribution, unlike standard Gaus-
sian mixture models which can only handle ellipses.
Because we fit the line segments directly, we do not
need to do any post-processing to extract their loca-
tions from the model parameters.

We use a modification of the k-means algorithm to find
model parameters. The modifications are to account
for clusters whose centers are line segments instead of
points. The original k-means algorithm alternates be-
tween assigning the data points to their closest cluster
center (the E-step) and moving each cluster center to
the mean of its assigned data points (the M-step). In
our modified k-means algorithm, we still assign each
data point to its closest cluster center; but, since some

of the cluster centers are line segments rather than
points, we need to change the M-step. The new M-
step still tries to minimize the sum of squared distances
between the data points and their assigned cluster cen-
ters, but since line segments may share endpoints, and
since the locations of points in the middle of a line seg-
ment are a function of the locations of the endpoints,
we end up with a sparse system of linear constraints we
must respect during the minimization. (See Section 2
for more detail.)

Since our software needs to deal with large data sets, it
is important to accelerate the model-fitting process as
much as possible. To accelerate parameter fitting, we
store the galaxy locations in a data structure called a
multi-resolution kd-tree. The tree, which we review in
Section 4, allows us to skip over large portions of the
data during each iteration of the k-means algorithm
while still preserving the accuracy of the resulting pa-
rameter estimates. For more detail about how we de-
cide which portions of the tree to skip, see Section 5.

In Section 6 we evaluate our algorithm with experi-
ments on data from the Las Campanas Redshift Sur-
vey. Finally, in Section 7, we discuss future research.

2. The Filament Model

The standard k-means model assumes that each data
point is generated in two steps: first, we select one
of k cluster centers at random with probabilities p;
(1 < j < k). Then, the sample is equal to the location
y; of cluster center j plus a zero-mean displacement,
which we will assume is normally distributed with fixed
covariance 021,

The problem with this model is that it doesn’t cap-
ture the kind of structure we’re interested in, which 1s
a network of long, thin filaments. While it might be
possible to reconstruct such a structure from the out-
put of the k-means algorithm, it is not clear how to do
so, and in any case the extra step would introduce un-
necessary errors. So instead, we will fit a model which
represents the filaments more directly.

In the filament model, there are k¥ point-like cluster
centers, just like the centers in the standard k-means
model. We will call these centers vertices. In addi-
tion, any two of the vertices may be connected by an
edge, say k° edges in all. Points may be generated ei-
ther from edges or from vertices. To generate a new
sample, first we pick a vertex or edge at random, with
probabilities p7 and p; (with Zf;l Py —1—21:; pe =1).
Then, if we picked an edge, we choose a point on the
edge uniformly at random. We will call the chosen
point (a vertex or a point along an edge) the gener-

ating point for this sample. Finally, to the generating
point we add a normally distributed displacement.

The bottom-right panel of Figure 2 shows a filaments
model along with a sample of data points generated
from it. In this model, £ = 5 and k° = b5; of course,
in the actual galaxy data, £ and k° will be larger.

For most of this paper, we will assume that the struc-
ture of the model (the number of vertices and edges
and their connectivity) is given in advance. So, the
problem will be to fit the model parameters o, p}, pr,
and y;. At the end of the paper, we will return briefly
to how one might fit the structure as well.

Since we have altered the standard k-means model,
we will no longer be able to use the standard k-means
algorithm to fit its parameters. Fortunately, it will
turn out that we can fit the new model by using an
algorithm that is almost as simple. The next section
describes this algorithm.

3. Parameter Fitting
3.1 The Original k-means Algorithm

The standard k-means algorithm alternates between
two steps, called the E-step and the M-step. In the
E-step, we assign each data point to its closest clus-
ter center, breaking ties arbitrarily; in the M-step, we
move each cluster center to the mean of its assigned
data points. Both the E-step and the M-step are guar-
anteed not to increase the sum of squared distances be-
tween data points and their assigned cluster centers.
Since there are finitely many possible assignments of
points to clusters, this means that eventually the clus-
ter assignments and center locations will converge (ex-
cept that a point may jump back and forth between
two centers at exactly the same distance).

The E- and M-steps of the k-means algorithm can
be viewed as a limiting case of the Expectation-
Maximization algorithm for fitting a mixture of Gaus-
sian distributions. In this more general EM algorithm
(which is also called fuzzy k-means), we start by pre-
tending that we know which clusters generated which
points. Define indicator variables z;; which are 1 if
point ¢ belongs to cluster j and 0 if it does not; then
the pdf of the k-means model is

P(zily;, zij, 0)

- ﬂ(2r0)

i=1

exp —szz'jllri—yjll
j=1

Here we have written N for the number of samples,
z; (1 < ¢ < N) for the samples themselves, and d

for the number of dimensions (that is, the number of
coordinates in each vector #;). Recall y; is the location
of vertex j.

Since we don’t actually know the values of the indica-
tor variables z;;, we can get the true pdf by marginaliz-
ing z;; out of P(x;|y;, z:;,0). That is, we can compute

ZP Zz]|y]a

where the summation is over all possible assignments
to z;;. We would then try to find y; and ¢ to maximize
P(x;ly;,0). Unfortunately, finding the maximizing y;
and o directly is intractable.

P(z;|y;,0) P(zily;, zij,0)

However, the EM theorem (Dempster et al., 1977)
tells us how to find y; and o iteratively. It says
that we should alternate between two steps: the E- or
expectation-step, in which we compute the expected

log likelihood

y]a ZP ZZ]|y]a

and the M- or maximization-step, in which we find
the values of y; and ¢ that maximize [. Notice that
l(y;, o) is similar in form to P(z;|y;, 0); the only dif-
ference is that we are taking the expected value of
In P(x;|y;, zi;, o) instead of P(x;]y;, zi5, o). This small
difference makes all the difference: since In P is linear
in z;;, we can move the expectation operator inwards
and find the expected log likelihood just by computing
the expected value of each z;; given the current val-
ues of y; and . This expected value is the posterior
probability that point ¢ was generated from cluster j.

1HP($Z|y],Z”,)

The end result is that, to perform one iteration of EM,
we compute the expected value of each z;;. Then for
each cluster j we find the weighted average of all of
the points, with weights equal to E(z;), and set y;
equal to this average. Finally, we can either hold o2
and p; fixed at some a priori values, or we can set
o= %Z” E(zij)||lzi — yj])* and p; to the expected
fraction of points assigned to center j.

To go from fuzzy k-means to hard k-means, we can
take the limit as ¢ — 0. In this limit, F(z;;) will
always (w.p.1) be either zero or one, so the E-step will
assign each point to its closest cluster center. After
running EM to convergence, we can update o and p;.

3.2 An Extension to k-means

In the next subsection we will describe a version of
k-means which works on our filament model. As a
stepping-off point, in this subsection we will consider
what happens if we add the constraint that one of
the centers (say center 2) has to be exactly halfway

between two others (say 1 and 3). (Any linear function
of the locations of other centers would work as well, so
in addition to introducing k-means for filaments, this
sort of constraint may be useful in its own right.)

First, suppose that we know z;; for all 7 and j. Also,
for the purposes of this subsection, assume ¢ is fixed
at 1. Then the conditional negative log likelihood is

Nd 1
Tln(%) t3 ST e —wll+
{il711=1}

1

3 S e = (n +us)/2
{il#10=1}

1

3 > lwi—wsll +
{il#10=1}

where the ellipsis hides terms corresponding to vertices
other than 1, 2, or 3. Since y, is no longer an inde-
pendent parameter, we have replaced it by %(yl +ys3).
Taking the derivative of this log-likelihood with re-
spect to y; yields

Z (y1 — ;) +

{ilzs,1=1}

S (o +8)/2— w)/2
{ilzs,2=1}

As one might expect, the points assigned to center 2
affect the location of center 1, but not as much as the
points assigned to center 1 do.

Setting this derivative to zero gives

Z l‘i—i-%

{ilzs,1=1}

> -

{ilz:,2=1}

niyr + na(yr +ys)/4 =

and similarly for other y;s, where we have written n;
for the number of points assigned to center j.

We can write these equations more compactly by re-
defining z; ; to be 1 if point ¢ belongs to vertex 1 and
% if point ¢ belongs to vertex 2, and similarly for z; 3.
(To keep notation simple, define z; 2 = 0 for all i.)
With this redefinition, the negative log likelihood is

2

1
Z 2% Zzijyj

d J

+ gln(%’)

Taking the derivative with respect to y; yields
i j i
So, taking derivatives with respect to all y; and setting

to zero yields the likelihood equations

77y = 77X

where we have written X for the N x d matrix whose
tth row i1s x;, Y for the k x d matrix whose jth row is
yj, and 7 for the N x k matrix whose entries are z;;.

If there were no constraints on the locations of any
centers, the matrix Z would have all elements 0 or 1,
with exactly one 1 in each row. So, ZTZ would be
diagonal, and its j, jth entry would be the number of
data points assigned to vertex j. Since the jth row of
ZT X would be the the sum of all data points assigned
to center j, in this case the likelihood equations would
reduce to the ordinary k-means update. More gener-
ally, the r, sth element of ZT Z is the sum over all data
points ¢ of z;,z;5. So, the only off-diagonal elements
of ZTZ that can be nonzero are 1,3 and 3,1, both
of which are equal to % of the number of data points
assigned to center 2.

Just as in the ordinary k-means algorithm, if we don’t
know Z ahead of time, the EM theorem tells us to re-
place expressions involving 7 by their expected values.
This time, though, we need more than just E(7): we
also need E(Z1Z). Fortunately, E(Z1Z) is easy to
calculate. Terms F(z;r2;5) will be zero unless » = s or
r,s € {1,3}. Since z; 12; 3 = % if point ¢ belongs to ver-
tex 2 and zero otherwise, E(z; 1% 3) = %P(ziyz =1).
Because 22, = z;, for p & {1,3}, in those cases F(z7)
is just F(zy). Finally, E(zil) is the probability that
point ¢ belongs to vertex 1 plus a quarter of the prob-
ability that it belongs to vertex 2. (All expectations
in this paragraph are conditional on the values of y;
and ¢ at the end of the previous M-step.)

3.3 Fitting Filaments

The EM algorithm for networks of filaments works the
same way as the EM algorithm for constrained ver-
tices. The only difference is that, if datum ¢’s generat-
ing point was 27% of the way from vertex r to vertex
s, we will set z; = .73 and z;s = .27. The intuition for
this definition is that an edge from vertex r to vertex
s can be conceptually broken down into a sequence of
constrained vertices, one at a fraction ¢ of the distance
between r and s, another at 2¢, and so forth.

The remainder of the derivation proceeds as before.
The conditional pdf is

P(X|Y,Z,0)

—Nd 1 .
= (271'0') exp <_ﬁ [|X — ZY||F)

where we have defined [|A||% to be the sum of the
squares of the elements of the matrix A. The nega-
tive log likelihood is

1
Ndlog (vVara) + S X = 2Vl
o

Figure 1. A kd-tree. Left: nodes at level 3. Right: nodes
at level 5. The dots are the individual data points. The
sizes and positions of the disks show the node counts and
centroids. The ellipses and rectangles show the covariances
and bounding boxes.

which means that the derivative with respect to Y 1is

% (Zvzy - 77 X)

and with respect to ¢ is

Nd ,
— 12Y - X||p

leaving us with the equations
E(ZY2)Y = E(2)"X

Ndo® = E (||ZY - X||§)

to solve at each step of the EM algorithm. (As before,
expectations are conditional on the values of Y and o
at the end of the previous M-step.) These equations
will usually be sparse, since the r, sth entry in E(Z"'7)
can only be nonzero if either r = s or vertices r and s
are connected by an edge.

4. The Multi-Resolution kd-tree

A MRKD-tree records a d-dimensional data set con-
taining N records. Tt is a conventional kd-tree (Fried-
man et al., 1977) decorated, at each node, with extra
statistics about the data within the node. Each node
represents a set of data points. It records their count,
centroid, covariance, and bounding box. A node con-
taining fewer than Ry,j, pointsis a leaf. Non-leaf nodes
have two children, obtained by splitting the widest di-
mension of the parent’s bounding box. Figure 1 shows
an example.

MRKD-trees can be built quickly, in time O(N +
(dN/Rumin)log N 4+ d? N/ Ruin). Although we have not
needed to do so, they can modified to become disk-
resident for data sets with billions of records, and
they can be efficiently updated incrementally. It 1is

well known that kd-trees can accelerate proximity and
range queries. But with the cached statistics, differ-
ent kinds of tree traversal algorithms can accelerate
(by several orders of magnitude) kernel methods, lo-
cally weighted regression, Gaussian mixture models,
and simple k-means on large data sets (Deng & Moore,
1995; Moore et al., 1997; Moore, 1999; Pelleg & Moore,
2000). The essence of these traversals is that instead
of iterating over all the data points, we can iterate over
the tree nodes. Then, a combination of geometric and
statistical bounds can often permit local proofs that
approximating the contents of a node with its cached
distribution will have negligible effect on the compu-
tation.

5. Accelerating the M-step
5.1 Overview

Once we have built the MRKD-tree, we can use
it to help us sum up the contribution of each data
point to the likelihood equations. The reason that
the MRKD-tree helps us is that we can use the in-
formation stored in any node of the tree to compute
bounds on E(Z) and E(Z1Z). If these bounds are
tight enough, we can then approximate the contribu-
tion of the data points stored below the current kd-tree
node without examining the node’s children.

In this paper we will only describe the computations
for the hard k-means algorithm. The fuzzy k-means al-
gorithm requires more complicated computations, and
we leave 1t for another paper.

First consider computing E(z;;) for a data point i un-
der the current kd-tree node and some vertex j. We
can decompose E(z;;) into the sum of several pieces:
write ¢;; and gf,. for the probability that point ¢ was
generated from vertex j or edge r. Write start(r) and
end(r) for the vertices at each end of edge r. Write a,
for the value that 2; syart(,) Would take if ¢ were gener-
ated from r; note that z; ena(r) = 1 — 2 start(r) 18 the
fraction of the way from start(r) to end(r) that ¢’s gen-
erating point would lie. Then, if A = {r|start(r) = j}
and B = {r|end(r) = j},

Ezig) = qfy+ Y airoir + 3 g5 (1= i)

reA reB

Next, consider computing E(zf]) Because the terms
of E(z;;) are mutually exclusive, the possible contri-
butions to E(zf]) are exactly the same except that the
contributed values are squared. So, we have

E(z5) =g+ Y dhoi+ Y a5 (1—aip)?
reA reB

Finally, consider computing F(2; start(r)Zi,end(r)) fOT
a data point ¢ under the current node and some
edge r. (All products of z;s other than zizj and
Zi start(r)%i,end(r) are identically zero.) If point i be-
longs to a vertex there is no contribution to this ex-
pectation, while if point ¢ belongs to edge r there is a
contribution a;, (1 — a;,.). So we have!

E(Zi,start(r)zi,end(r)) = Z qfrair(l - air)
reAUB

5.2 Distance Bounds

We can bound E(z;;), E(zizj), and F(2; start(r) %i,end(r))
by bounding the ¢"s, ¢°s, and as. In this subsection
we will consider bounding the ¢”s and ¢°s.

Define ¢;; to be the squared Euclidean distance from
point ¢ to vertex j and ¢, to be the squared Euclidean
distance from point ¢ to edge r. Whichever ¢ corre-
sponds to the minimal ¢ will be 1 and the rest will be
0; if several es are equal, their corresponding ¢s will be
equal and sum to 1. (The case of equal es does have
nonzero probability. For example, a point in the far
upper-right region of the last panel of Figure 2 would
project onto a corner of the filaments network and so
would be equidistant from two of the edges and one of
the vertices.)

To bound the distances we will use the bounding box
stored in the current node of the kd-tree. Since the
bounding boxes are axis-parallel, the upper and lower
bounds on €f; can be found coordinate by coordinate,
in time linear in the number of dimensions d.

To find the lower bound on ¢, we can solve a simple
convex quadratic program: the variables are z and «,
the location of a point within the bounding box and
the coordinate of a point on edge r. The constraints
are that z must remain within the bounding box and
that o must be in [0, 1]. The objective is to minimize
the squared distance between x and y(a) = a¥end(r) +
(1 - a)ystart(r) .

¢

To find the upper bound on €5, we divide edge r into
at most d 4+ 1 pieces by cutting along the midpoint of
the bounding box in each dimension. As we vary o
from 0 to 1, the farthest corner of the bounding box
from y(«r) changes only at piece boundaries. So, within
each piece we compute the smallest distance from y(«)
to the corresponding corner of the bounding box; then

'The equations for E(zf]) and B(%; start(r) %iend(r)) are
where fuzzy k-means differs from hard k-means. In hard
k-means, a;, is always equal to the coordinate of the pro-
jection of point ¢ onto edge r, while in fuzzy k-means «;,
is a random variable that follows a truncated normal dis-
tribution.

we take the minimum over all pieces to find the dis-
tance from the segment to the farthest corner of the
bounding box. This upper bound is not tight: we are
computing min, max; ||y(a) — z||?, while the actual
maximum distance is max, ming ||y(a)—z||*. The lat-
ter expression, while guaranteed to be no larger, seems
harder to compute.

5.3 Bounds on «o;,

In order to complete the derivation of our bounds on
E(Z) and E(ZTZ) we now need to bound a;, and a?,
for each edge r. For any r there is a linear function
a-x+bso that oy = max(0, min(1,a-z;+5)). We can
use the bounding box for the current kd-tree node to
compute upper and lower bounds on a - z; 4+ b for any
point ¢ under the current kd-tree node. If the upper
bound 18 < 0 or the lower bound i1s > 1, we are done:
since oy, 18 constant, we can use its constant value
along with our bounds on ¢f,. to bound the contribu-
tions to E(Z) and E(ZTZ) from the points under the
current kd-tree node.

If the bounds are both between 0 and 1 inclusive, we
will use an approximation: we will pretend that g¢;,
and ay, vary independently as we vary . While this as-
sumption is false, the error introduced is usually small
by the time we are far enough down in the kd-tree to
consider pruning. So for example, we replace

S el = (£t (7

€K 1EK 1EK

where K is the set of data points under the current £d-
tree node. Since we know 0 < ar < 1fori € K, ay, 18
a linear function of z; for i € K. So, we can compute
ZiEK oz?r from the stored mean and covariance in the
current kd-tree node.

Finally, if the bounds on a - ; + b include either 0
or 1, we can use Chebyshev’s inequality, along with
the recorded covariance matrix of the points under the
current node, to bound the error we would introduce
by changing some of the a - x; + b values to 0 or 1.

5.4 When to Prune

By pruning we mean deciding to replace a group of
terms in our estimates of F(Z) and E(Z'Z) by the
best approximation we can compute without examin-
ing the portion of the kd-tree below the current node.
For this approximation, we generally choose the aver-
age of the upper and lower bounds we have computed.

“A group of terms” means all of those terms that come
from comparing a vertex j or an edge r to each of the
examples ¢ that fall within the bounding box of the

current kd-tree node. This means that we can prune
any part of our network of filaments while continuing
to examine the children of the current kd-tree node
for the benefit of the remaining part of the network.
This usually happens when we have proven that some
vertex or edge has its corresponding ¢ identically zero
for all examples under the current kd-tree node, but it
can also happen if we prove (for example) that all of
the ¢s are between % and %, and there are few enough
examples left in this branch of the kd-tree that this
range is insignificant.

This ability to prune any part of the network, instead
of waiting until we are ready to prune the entire net-
work, can be a source of significant savings: while there
may be hundreds of vertices and edges in the network,
once the bounding boxes get small enough only a few
of them are likely to have nonzero probability.

In order to decide when to prune, we introduce a pa-
rameter 7 € [0, 1]. Whenever we compute new bounds
on ¢;;, we consider both how tight the bounds are and
what is the sum of previously computed ¢;; for other
points s. For example, if there are n points under the
current node with a < ¢; < b, and if we have pre-
viously computed g¢{; values for other samples s that
sum to S, we will prune if n(b —a) < S+ na. That is,
we will prune only if it will introduce a relative error
less than 7. (Of course, we may prune several terms
which add up to a relative error of more than r.)

Whenever we compute new bounds on ¢f,., we do a two-
stage test. First we compare how tight the bounds are
to the sum of previous terms for this edge, just as we
did for vertices. Then we compute the bounds on «;,
and compare them to the same cutoff. Only if both
tests predict an acceptable level of error do we prune.

The scheme described here 1s only an approximation to
what we might like to do, which is to compute the rel-
ative magnitude of the error we are considering intro-
ducing into the final solution E(Z12)"1E(Z)TX. We
believe that this latter expression is too complicated
and too expensive to compute in our tree-traversal
code.

6. Experimental Results

Our first experiment, shown in Figure 2, demonstrates
that we can recover a simple filaments model from
data. We began by drawing a sample of size 10,000
from an artificial model with five vertices and five
edges. Then we ran EM from the starting point shown,
which has the correct structure but moderately incor-
rect parameters. The top left panel of the figure shows
that we achieved significant pruning; the remaining

Figure 2. Fitting a simple filaments model. Top left shows
initial position of model and pruning of kd-tree for first M-
step. Area of each disk indicates number of samples pruned
(r = .01), while gray level indidicates which center they
were assigned to. Remaining three pictures show position
of model after 1, 2, and 10 steps of EM.

panels show the filaments model superimposed on the
(unpruned) training data.

Our second experiment shows that we can achieve
significant speedup over the version of k-means that
doesn’t use kd-trees. We ran our EM code to fit a fil-
aments model to the locations of 20,731 galaxies from
the Las Campanas Redshift Survey. The LCRS con-
tains data on the position of about 25,000 galaxies
located in six fan-shaped two-dimensional slices of the
sky, three stacked on top of one another in the northern
hemisphere and three stacked on top of one another in
the southern hemisphere. For each galaxy, the LCRS
indicates which fan it is in, its angular position within
the fan, and its approximate distance from Earth as
computed from its redshift. We selected the galaxies
between 30 and 100 megaparsecs from Earth. Then
we merged each fan with the others from the same
hemisphere to produce two composite fans, one north
and one south. See Figure 3 for a plot of the northern
composite fan.

Since we have not yet implemented structure fitting,
we started the EM iteration with a hand-drawn model
that has 240 vertices and 282 edges. This model, not
shown, has a reasonable guess at the structure in the
northern fan of galaxies, but is deliberately incorrect
in the southern fan.

Table 1 shows the time required to build the likeli-
hood equations. Building the likelithood equations is

Figure 3. Galaxy data from the northern fan of the LCRS.
Locations of 10,004 galaxies between 30 and 100 mega-
parsecs from Earth.

the most expensive part of each iteration of the EM al-
gorithm. The numbers are seconds of wall-clock time
on a 600MHz DEC Alpha 21164 with 4GB of main
memory, averaged over 100 repetitions, plus or minus
the sample standard deviation. All differences are sta-
tistically significant at better than the p = .001 level.

Times are given for the k-means algorithm with and
without the accelerations described in Section 5; for
the accelerated k-means algorithm, we tried three dif-
ferent levels of the relative accuracy parameter 7. The
table shows up to a two-fold speedup for the kd-tree-
based algorithm; we expect that this ratio will increase
as we move from the LCRS to larger data sets with
millions instead of thousands of entries.

The different values of 7 resulted in differing levels of
error. The table shows the root mean square error
both in the coefficients E(Z) and E(ZTZ) of the like-
lihood equation (“Error”) and in the number of data
points assigned to each center (“Count Err”). By way
of comparison, the 2-norm of the vector containing all
computed likelihood coefficients and counts is about
2,420. All values are averages over 100 replications.
Count errors were generally larger than coefficient er-
rors, since it is difficult to tell whether a sample was
generated from a vertex or from one of the edges con-
nected to it. But, count errors are also less harmful,
since they only affect the p; and pj parameters, which
are ignored until the last step of hard k-means.

7. Discussion

There are other possible approaches to finding
filament-like structure. One group of approaches in-
cludes methods from computer vision that match para-

metric or semiparametric models to images. These

Table 1. Performance of k-means on LCRS data.

| Method || Time to | Error | Count Err |
Plain 15514+ 1.02 — —
T=0.01] 10.114+0.14 | 12.97 106.85
7=0.1 9.33+0.12 | 111.19 162.62
T=0.5 7.27+0.09 | 370.02 389.08

methods are usually designed for raster data, but could
be modified to accept point sets like our galaxy loca-
tions. An example of such a method is Beveridge and
Riseman (1997), which describes a local search algo-
rithm to find matches between a set of line segments
and an image. The search minimizes an error criterion
similar to the one we use here, but unlike our filaments
algorithm, 1t considers only affine transformations and
not deformations of the model. Another example is
Kass et al. (1988), which describes snakes, curves or
rings that optimize their positions according to cri-
teria designed to detect smooth contours. A second
group of approaches includes statistical density estima-
tion techniques such as nonlinear PCA (e.g., (Bishop,
1995)) and principal curves (Hastie & Stuetzle, 1989).
To our knowledge, no other methods, including the
above, deal directly with fitting networks subject to
the constraint that edges must meet up at vertices.

Eventually we would like to map filament structure au-
tomatically. A natural step in this direction is struc-
ture search: finding the best topology for the network.
This has two challenges. First, defining a model selec-
tion criterion is tricky, both because it is more com-
putationally expensive to compute likelihoods than it
is to update parameters, and because hard k-means
operates at the limit of zero variance and therefore in-
finite likelihood. Second, in the almost certain absence
of a direct algorithm for finding an optimal structure
we need to define a good set of incremental structure
change operations for a structure search, perhaps us-
ing fast structure-change scoring methods similar to
those in Pelleg and Moore (2000).

Finally, we would like to generalize this model to in-
clude sheets as well as filaments. Although implemen-
tation will be complicated, the underlying theory pre-
sented here is expected to generalize straightforwardly.

Acknowledgements

Thanks to Larry Wasserman, Bob Nichol, Dan Pelleg,
Yanxi Liu, and the anonymous reviewers. Supported
by NSF KDI award number DMS-9873442 to Andrew

Moore.

References

Beveridge, J. R., & Riseman, E. M. (1997). How easy is
matching 2D line models using local search? (Tech-
nical Report CS-96-117). Computer Science Depart-
ment, Colorado State University, Fort Collins, Col-
orado.

Bishop, C. (1995). Neural networks for pattern recog-
nition. Oxford: Oxford University Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety B, 39, 1-37.

Deng, K., & Moore, A. W. (1995). Multiresolution
instance-based learning. Proceedings of the Twelfth
International Joint Conference on Artificial Intel-
ligence (pp. 1233-1239). San Francisco: Morgan
Kaufmann.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977).
An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical

Software, 3, 209-226.

Hastie, T., & Stuetzle, W. (1989). Principal curves.
Journal of the American Statistical Association, 84,

502-516.
Kass, M., Witkin, A.; & Terzopoulos, D. (1988).

Snakes: Active contour models. International Jour-
nal of Computer Vision, 1, 321-331.

Moore, A. W. (1999). Very fast mixture-model-based
clustering using multiresolution kd-trees. Advances
in Neural Information Processing Systems 10 (pp.
543-549). San Francisco: Morgan Kaufmann.

Moore, A. W., Schneider, J., & Deng, K. (1997). Effi-
cient locally weighted polynomial regression predic-
tions. Proceedings of the Fourteenth International
Conference on Machine Learning (pp. 196-204). San
Francisco: Morgan Kaufmann.

Pelleg, D., & Moore, A. W. (2000). X-means: Extend-
ing K-means with efficient estimation of the number
of clusters. Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning. San Fran-
cisco: Morgan Kaufmann.

Shectman, S. A., Landy, S. D.; Oemler, A., Tucker,
D. L., Lin, H., Kirshner, R. P., & Schechter,
P. L. (1996). The Las Campanas Redshift
Survey. The Astrophysical Journal, 470, 172.
http://manaslu.astro.utoronto.ca/~lin/lcrs. html.

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

