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Abstract

This paper presents a general method to de-
rive tight rates of convergence for numeri-
cal approximations in optimal control when
we consider variable resolution grids. We
study the continuous-space, discrete-time,
and discrete-controls case. Previous work
described methods to obtain rates of con-
vergence using general or linear approxima-
tors (Bertsekas & Tsitsiklis, 1996; Tsitsik-
lis & Van Roy, 1996; Gordon, 1999), multi-
grids (Chow & Tsitsiklis, 1991), random or
low-discrepancy grids (Rust, 1996). These
results provide bounds on the error on the
value function in terms of the representation
power of the class of approximators consid-
ered, thus for uniform grids, in terms of the
space discretization resolution (or the num-
ber of grid-points). Consequently, they do
not explicitly consider the benefit of using
non-uniform resolutions. However, empirical
results (Munos & Moore, 1999b) have shown
the importance of using variable resolution
discretizations, especially for problems with
high-dimensional state-spaces (in order to at-
tack the “curse of dimensionality”). This pa-
per provides some bounds on the approxi-
mation error of the value function in terms
of the local interpolation error. Addition-
ally, we are able to predict the effect that lo-
cally increasing the grid-resolution has on the
quality of approximation of the value func-
tion, thus opening a way for designing effi-
cient grid-refinement procedures. This anal-
ysis can be applied to stochastic or determin-
istic problems and can be used with many
function approximators, including grid inter-
polators based on kd-trees, multi-grids, ran-
dom, or low-discrepancy grids.

1. Introduction

This paper has two contributions. The first is a new
technique for safely bounding the error caused by value
function approximation. The second contribution ex-
ploits the first in order to decide where to increase the
resources of the value function approximator.

This paper introduces new notational and formal
frameworks for handling these issues, and a side-effect
is unavoidable denseness. To help the reader through
this development of concepts, we will now provide a
road-map summary of the questions each part of the
paper are answering:

e What kinds of value function approxima-
tors is this applicable to? (Section 2.1) This is
applicable to Markov Decision Processes (MDPs)
in which the state space is too large to be tabu-
lated explicitly and is thus approximated with a
discretized MDP. The classic example is continu-
ous state space. The paper is applicable to any
discretization in which some finite set of points
{@1,2a,... xy} represent the states of an MDP,
and their transition probabilities are created by
a combination of interpolation and discretization
of the next state probability distribution. Exam-
ples include simple binning of a state space, av-
eragers, plecewise linear or multi-linear interpola-
tions, random or low-discrepancy grids, either in
uniform resolution or variable resolution lattices.

e How is the error of approximation defined?
(Section 2.2) There are two error expressions. The
local interpolation error is relatively easy to esti-
mate directly from the form of the value function
and the specifics of the grid interpolation. It mea-
sures the extent to which the approximate backup
operator is unable to represent the value function
even if all next points were seeded with the cor-
rect values. The approzimation error is the error
we want to minimize, and is harder to estimate



directly. It measures the difference between the
true and the approximate value functions.

e What computation is used to bound this
error? (Section 2.3) We first show how a global
bound on the interpolation error can provide a
loose bound on the approximation error. But then
we describe a procedure by which the loose bound
can prove that certain actions in some states can-
not possibly form part of the true optimal policy.
Then a computation with the restricted set of pos-
sible actions can tighten the approximation error
bounds. This process can be repeated to create
tighter and tighter bounds until no further actions
can be eliminated.

¢ How does one state influence another? (Sec-
tion 3.2) We then briefly review earlier work defin-
ing the extent to which one state “contributes” to
the value function of another state. This concept
is needed for the next question.

e How should we choose where to add re-
sources if we want to improve the accuracy
of the approximate value function at some
area of the state space? (Section 3.3) If we
have a set of start states (possibly the whole state
space) for which we want to increase the accuracy
of the approximate value function, we can use the
above analysis to decide where to increase the res-
olution. Unsurprisingly it turns out that the area
most deserving of an increase is not necessarily
near the start states.

¢ What if we do not care about the value
function, but only the policy? Usually the
policy, not the value function is the main goal of
an optimal control problem. The above analysis
can be extended to provide some bounds on the
loss to occur if we follow an approximate (sub-
optimal) policy. Moreover, we can deduce the
parts of the state space where an increase of the
resolution will significantly reduce this loss. Be-
cause of space limitations, this will be further de-
veloped in a future work.

2. Analysis of Error Bounds

2.1 Grid Approximations

We consider a Markov Decision Process (MDP) with a
continuous state-space X and a discrete control-space
U. The time is discrete and the probabilities of tran-
sition from state x, control u to next states y are
p(yle, ). We consider the problem of finding the con-
trol that maximizes the expected sum of discounted

rewards r(z, u). For any function W, we introduce the
operators:

W (z) = 7 /X Py, u).W (y)dy

T W () is the discounted expected next values (with
a discount factor v < 1) of the W function if we apply
action u in state z.

TW(z) = Zneagqu(x)
TW(xz) is the largest available discounted expected
next values of W at z.

T W(z) =T W(x)+r(z,u)

T, W(x) is similar to T',WW(«), except it incorporates
the immediate reward.

TW(z) = max T, W(x)
uel
T 1s the Bellman operator. It is a contraction operator
and its fixed point V is called the value function,
and satisfies the dynamic programming (DP) equation
V(x) = TV(z). The optimal control u*(z) is the
argument of maxy,ep T, V().

In the deterministic case, when there is a unique suc-
cessor y(x,u) of (state x, control u), the operator

T W () is simply yW (y(z, u)).

This paper concerns approximate MDPs built from a
finite grid-representation Xy composed of N points
{@;}i=1. n. Those representations include averagers
(Gordon, 1999) such as kernel regression, piecewise lin-
ear or multi-linear interpolations (Davies, 1996; Munos
& Moore, 1998) within triangular or hypercuboid cells,
random and quasi-random grids (Rust, 1996) either in
uniform or variable resolution. For a given grid, each
of the above operators has an approximate equivalent,
respectively T TN TN “and TV:

u

N
wi(z) = 'yZpN(xi|x, w). W ()
i=1
Mwi(z) = ma{}(FuNW(x)
ue
TNW(z) = TVW(x)+ry(z,u)
TNW () ma{}(TéVW(x)
ue

that use some approximate transition probabilities pa
and reward function ry. The approximate value
function V¥ is the solution to the DP equation
VN (z) = TN (V). The approximate optimal con-
trol u%(z) is the argument of max, ey TN VY (z).



2.2 Interpolation and Approximation Errors

This paper is about estimating the error in the value
function caused by the use of finite grids. The first im-
portant point is that there are two kinds of errors, and
we begin by defining and distinguishing them. The lo-
cal interpolation error of the approximate operator
on the value function is:

TV (2) = TV ()]
TNV (2) — TV (2)]|

R
®
|

which measure the immediate local error in doing a
backup of the true value function. Next, we introduce
the approximation error:

en (2) =TV VN (2) = T,V (x)]
and: EN(l‘) = |TNVN(l‘) —-TV(x)| = |VN(1’) — V()|

which measures the difference between the approxi-
mately backed up approximate value function and the
exactly backed up true value function.

Previous work (Chow & Tsitsiklis, 1991; Bertsekas &
Tsitsiklis, 1996; Rust, 1996; Tsitsiklis & Van Roy,
1996; Gordon, 1999) have considered global bounds
for general function approximators, that could be used
for variable resolution (VR) grids only in a worst-case
analysis in which we consider the lowest resolution of
the grid. This paper proposes a method to estimate
tight bounds on the error of approximation of the value
function for VR grids.

In Section 2.3 we provide bounds on the approximation
error ¢V in terms of the interpolation error e . Next,
we estimate in Section 3 the non-local dependencies in
the value function estimations. Then, we illustrate in
Section 4 how the interpolation error can be derived
from the local curvature of the value function and the
specifics of the grid interpolation. Therefore, we are
able to deduce the approximation error for a given VR,

grid.

Table 1 summarizes some useful notation that will be
used in the following discussion.

2.3 Bounds on the Approximation Error of
the Value Function

In this section, we give bounds on the approximation
error ¢V in terms of the interpolation error e?V. Sec-
tion 2.3.1 shows that this bound satisfies a DP equa-
tion (Equation (2) below) and Section 2.3.2 shows that
the bound is the expected sum of the discounted in-

terpolation errors obtained along a Markov process.

Table 1. Some useful notation

V =TV (real)

VN = TNVN (approximate)
Optimal control:| u* = argmaxyer Ty V (real)

uy = argmaxyey T VY (approx.)
vi = argmax,ep TV (virtual)

DP equation:

* N_N
ul = argmaXyel, Ff\‘f €

*
Uy = arg maXyeu!, €,
M
M

local interpolation)

approximation error)
M)

Error: e
€
eN (bound on ¢

Global error: Eq(Xn) for grid Xn

Fg (bound on Fq(Xn))

2.3.1 DP REPRESENTATION OF ERROR BOUNDS

The error of approximation satisfies the following in-
equality:

N@) = [TVVN(2) =TV (z)|
TNV (&) = TNV ()| + [TV V (2) — TV ()]

|TNVN(x) — TNV(J:)| + 6N(l‘)

INIA

Thus, 1t is easy to derive global rates of conver-
gence. Indeed, let ¢ be a global bound for eV (z).
Since I'YY is a contraction operator of (max-) norm ,
we have: eV(z) < max, |TN [VN - V] (2)] + &Y =
max, [TNeN(2)] + ¥ < 5||eV]|| + V. Thus &V is
bounded by ﬁeN.

However, we can do much better than that if we con-
sider local instead of global bounds. Indeed we have
(using the simplified notation u instead of u(xz) when
there is no possible confusion):

TNV (2) = TVV (2)]

and: 6N(l‘) =

T VY (&) = T V()|

UN

TR V(@) = Tus V()]

where u* and v}, (defined above) are respectively the
optimal control (derived from V') and the approximate
optimal control (derived from V%), and v (z) is de-
fined as the argument of max, TVV(z). This latter
does not have any physical interpretation; instead, it
represents the control that would optimize the next
values based on the real value function V, but using
the approximate operator 7. We introduce this vir-
tual control v}, for convenience. We thus obtain:

N () S|TN VN (0)=T% V(2) TV (2) =T V()]

< max  {TNVY —V)(x)} + max el ()
1 ue{v;‘\,,u*

Tue{uy vy }




{rVeN (@)} +  max el (z)

EN(l‘) <  max
ue{v;‘\,,u*}

T ueful,vit

This inequality can be used to derive several DP equa-
tions whose solutions give bounds on V. Basically,
we can derive two obvious bounds depending on the
knowledge we have of the approximate optimal con-
trol:

e Let us assume we do not know anything about
the optimal control «* and the virtual control v},.

Then the best bound &V on eV (i.e. satisfying:
e < eN) is obtained by solving the DP equation:

N(z) = NN } N
eN(x) Zneag{ w eV (x) —I—Znea[}(eu (z)

e On the other hand, if we know that the controls
u*, u}y, and v}y are identical, then a tighter bound
eN satisfies the Bellman equation:

Na) =T @)+l (@) (1)

Now, in general, if we are uncertain about the virtual
control vy, and the optimal control u* but we know
that there exists two subsets Uy (z) and Uj (x) of U
such that v} (2) € Un(2) and u*(z) € U\ (), then a
bound eV is obtained by solving the DP equation:

eN(w) = + max 6uN(l‘) (2)

uEU]’\,(x)

max
u€Un(z)

{TVeN (@)
Of course, the smaller the subsets Uy and U}, the
tighter the bound obtained.

A way of choosing Uy and Uy is to already have a
first bound N on the error of approximation. In-
deed, we can choose Uy (z) to be the set of controls u
such that the difference between the expected values
Té\?fv V¥ (z) obtained by choosing the approximate opti-
mal control u};(z) and the expected values TNV (z)
obtained by choosing another control u is less than
the sum FUN?VEN(Z‘) + TN (z) of the expected errors

of approximation (see figure 1):

Un(z) = {u clU Té\}:\fVN(l‘) — FUN?VEN(Z‘)

<TYVY @)+ YN (@)} (3)

And similarly, we define:

U;V(x):{u evu

\ g, (@)
<TIVN (@) + TN (@) + el ()} (4)

N
TU1V(x)

IACE
1

Tu1V(x) —

Figure 1. Illustration of the sets Un(z) and Upy(z) on a
simple example. The black dots represent the values
Tf:VN(x) for several controls u,...,us. Control u; pro-
vides the highest value thus u; = uj(z). On the right
side of each dot, the first vertical line represents the pos-
sible value of T, V(z), knowing the bound on the error
FuNl 5_N(x) The second line represents the possible value
of T,,,V(z), knowing the local interpolation error euNl (x).
In this example, the control us is neither in UN(x) nor in
Up(x) (defined in (3) and (4)), which is illustrated graph-
ically by the second vertical line being under the bottom
horizontal dashed line. Thus, we are sure that uz is not the
optimal control u*(z). Now, usz is not in Un(z) (the first
vertical line is under the top horizontal dashed line) but is
in Up(x) (the second vertical line goes over the second hor-
izontal dashed line). Thus us might be the optimal control
but is definitely not the virtual control vy (z). A similar
reasoning shows that us € Uy(z). Thus, in this example,
we have: Un(z) = {ur,us} and Uy () = {u1, us, us}.

It is easy to show that we have the property:

un(z) € Un(z) CUN(z) CU

Moreover, the theorem that follows states that for a
given bound £V on the error of approximation, this is
a safe way of choosing Un and U};.

Theorem. The virtual optimal control v (x) is in
Un(z) and the optimal control w*(x) is in Ul (z),
where Un and Ul are defined in (3) and (4).

Proof. Since E_N(x) is an upper bound of VN(l,) B
V(x)|, we deduce that: Té\?’VVN(x) B Té\;va(l‘) <

I eN(z) and TN V(z) = TN VN () < TN eN(x).
But, from the definition of v};, we have: Té\?f\f‘/(l‘) <



N

v ()

V(z). Thus:

TNVN(2) TN eN(z) < TN V()
N N N
<TNV(z) < TNVN(2)+TN N ()
N N N

and vy (z) € Un(2).

Additionally, from the definition of e, we have:
Té\?va(l‘) — TU?VV(l‘) < euN?V(x) and Ty-V(z) —
TNVN(z) < eN.(z). Then, from the definition of
eN(x), we have: TNV (x) — TNVN(2) < TN.eN(x).
Finally, from the definition of u*, we have Tys V(z) <
Ty+V (z) from which we deduce:

N NN ZN(, _ N N _ N
TV (%) L e (%) eu;v(a:) §TU?VV(1‘) ey ()

STy V(x) < T V(z) < TNV
N
<TNVN(2) + 18N

and u*(x) € Upy(2). O

So from an initial bound on the approximation error
of the value function, we build the safe sets Uy and
Ul from which to choose the control from when we
solve the DP equation (2). The solution to this equa-
tion provides us with a tighter bound E_N, which, in
turn, can be used to define more restricted subsets Uy
and U} . We can repeat this process until the newly
created subsets Uy and U} do not change anymore.
We conjecture that the error bound thus obtained is
the best possible safe bound for a given grid approxi-
mation.

An efficient way to compute it without having to loop
several times between estimations of bounds and of
subsets Uy and U} is the following:

In the process of solving the DP equation (2) —let’s
say we use regular value iteration— we start with ini-

tial errors £} = oo (thus Uy = Uy = U) and ap-
ply the iterative rule €Y, | (#) = maxy, {FUNJ(l‘)} +

maxgy, e (z) in which the subsets Uy and U4 are up-

dated (accordingly to J) at every iteration. We can
prove that J is a decreasing function of step n, thus
once a control has been removed from the subsets Uy
and Ul it will never be used again. This algorithm
is reminiscent of the action elimination procedure de-
scribed in (Puterman, 1994).

Yi00= Vi)

X

Figure 2. Example of a deterministic process. The optimal
trajectory starting from x is shown in bold. The local er-
ror ¢” made when interpolating the value W (y) at a point
y by a weighted linear combination Zl plzi|z, w)W(x;)
of values at grid-points is graphically illustrated by the
gray areas. In the case of u) = u* = v} the error
of approximation 5_N(x) is the expected sum of the dis-
counted interpolation errors y*e™(x(k)) when x(k) fol-
lows the Markov chain: #(k) — z(k + 1) with probability
p (ol + D]a(k), uk(o(k))).

2.3.2 MARKOV REPRESENTATION OF THE ERROR
BOUND

From the DP equation (2), we deduce the Markov rep-
resentation:

z(0) =«

o) =E u(k) = u:<x<k>>] )

> eV (k)

where (k) follows the Markov process: z(k) — x(k +
1) with probability py(z(k + 1)|z(k), uX(x(k))), with
u?(x) being the argument of max, ey (o) NN (2).
Let us assume for now that the optimal control u*,
the virtual control v};, and the approximate control
ujy are equal. Figure 2 illustrates the error of approx-
imation E_N(l‘) for a deterministic process I',W(xz) =
YW (y(x,u)) with y(z,u) being the successor state of
state x, control u. The interpolation at y(xz,u) in-
troduces a stochasticity in the approximate operator:
LYW (2) = v >, p(xilz, w)W (x;). Section 4.1 analyzes
the interpolation error when using piecewise linear in-
terpolation.

Thus, the quality of approximation at x depends on
the interpolation error only at the areas of the state
space that are reachable by the Markov process follow-
ing the approximate optimal control.

Now, if w3, is not equal to v}, everywhere (see figure
3), the error of approximation still satisfies (5). How-
ever, the interesting parts of the state space are no



Figure 3. Same deterministic process. A trajectory follow-
ing the approximate optimal control u} is shown in bold.
In the gray area, the control u} (that maximizes FuNe_N)
differs from u};, thus the error of approximation at x is the
expected interpolation errors at the set of dots, and not
around the trajectory.

longer the areas reachable by the Markov process fol-
lowing the approximate optimal control uj;, but the
areas reachable by the Markov process following the
control u¥ (that maximizes FUNE_N)

In both cases, the Markov representation (5) implies
that we only need to consider the areas reachable by
the Markov process z(k) that follows the control u.

Thus, instead of having a global rate of convergence
that depends on the worst interpolation error over the
whole state space, we obtain a much tighter rate that
only considers the parts of the state space that have
some influence on the area of interest. We define more
precisely this notion of influence in the next section.

3. Error on the Value Function
3.1 Global Error

Here we want to analyze the quality of approxima-
tion of the value function for a given variable reso-
lution grid. Depending on the optimization problem
considered, we can define a criterion Eq(Xpy) that
gives a global estimation of how well a variable res-
olution grid Xy performs (£ is a specific area of in-
terest). For example, if we want to approximation the
value function on a subset Q (possibly the whole state
space), the global error Eqo(Xy) (to be minimized)
would be the average (fxeﬂ eV (x)dz) or the maximal
(sup,eq eN(z)) error of approximation of V on .

In Section 3.3, we describe how to estimate this error
for any specific grid Xy. But more importantly, we
also provide a method for computing the effect that
an increase of the local interpolation error has on the
global error, thus allowing us to design adaptive res-
olution refinement methods. This effect is expressed
as the partial derivative of the global error Eq(Xn)

with respect to a local decrease of the interpolation
error eV . In Section 4.1, we give an example of grid
implementation and an estimation of the impact that
locally adding new point to the grid has on the de-
crease in the interpolation error. By combining these
results, we are able (Section 4.2) to predict the change
in Fq(Xn) when we increase locally the resolution of
the grid Xp.

But first, we describe a useful tool to measure non-
local dependencies of a function satisfying a Bellman
equation: the notion of influence of a Markov chain.

3.2 Influence of a Markov Chain

In (Munos & Moore, 1999a) we introduced the notion
of influence of a Markov Chain as a way to measure
non-local correlations between states. Briefly stated,
if we have a set Xy of N values v(i) satisfying some
Bellman equation:

v(i) = va(ju)v(j) +7()

then, the influence I, (¢]j) of a state i on another state
J is the partial derivative of v(j) with respect to r(i):

dv(J)

The influence measures the extent to which the state
¢ “contributes” to the value of state j. We define
the influence of a state ¢ on a subset Q as [, ({|Q2) =

In (Munos & Moore, 1999a), we showed that the in-
fluence satisfies the following property:

1 if

it
which is not a Bellman equation since the sum of the
probabilities >, p(i|k) may be greater than 1. How-
ever, this 1s a fixed-point equation whose operator is
contraction in 1—norm, thus has a unique solution
—the influence— that can be computed by successive
iterations.

For example, the influence I,(#|Q2) on a subset € is
obtained by taking the limit of the iterated:

1 if

L (i]9) eyZp(i|k).[v(k|Q)+{ L i€Q

i¢Q

Therefore, the computation of the influence I, (¢|Q2) is
cheap and is equivalent to solving a Markov chain.



3.3 Approximation of the Value Function

Let us consider the problem of minimizing the global
error Eq(Xy) = fxeﬂ eN(z).

For a given grid Xy, the approximate value function
VN is computed by solving VN = TNVVN . Then
the bound on the error of approximation £V is com-
puted by solving (2) and using the procedure described
at the end of section 2.3.1. Thus, we deduce that
Eq = fxeﬂ eV (z) is an upper bound for Eq(Xy) and

Eq = Y e eXnnq E_N(l‘l) approximates a proportion
(depending on the number of grid point in Q) of Fgq.

Furthermore, now we estimate the partial contribution
of each local interpolation error to the global error
FEq(Xn), in the hope of deriving a adaptive refinement
procedure that will increase locally the resolution of
the grid at the most important areas of the state space
for minimizing Eq(Xn).

First, if we are interested in decreasing the error at
some state x;, then we want to find for every other
state xz; the extent to which a change in the local in-
terpolation error at z; will affect the error of approx-
imation at state z;. Thus, we want to compute the
partial derivative of the bound &V (z;) with respect to
the local error eN(xj). A convenient way to do this is
to note from (2) that eV is the solution of a Markov
chain whose Bellman equation 1s:

eN(2i) = ThoeN () + el (a:) (7)
with ul(x;)
maxyevy(e) Lo € (#;) and wui(x;) the argument
of maxyev/ (z,) eN(z;). From the previous section,
the influence provides the desired solution:

being the argument of

Il = S

Now, if we want to minimize the bound eN over a
subset €, we can derive the partial derivative of the
—N . .
bound E with respect to eV (z;) by computing the

influence I—(z;|2):

0Ty 0%.cat (@)
deN (z;) - deN (z;)

Consequently, for a given grid zy, the states z; of
highest influence I(z;|Q2) show the areas in which
decreasing the local interpolation error would decrease
the most the global error Fq(Xy). Hence, a new grid
can be built by locally increasing the resolution of the
grid around those states z;. A more precise formula-
tion is given in section 4.2.

= Ix(;]Q) (8)

4. An Example of Grid Implementation

In section 4.1, we show a simple example of grid imple-
mentation for a deterministic problem and establish a
first-order estimation of the decrease Ae™ of the lo-
cal interpolation error when we add AN points to the
grid. As aresult, we can derive efficient VR refinement
methods in section 4.2.

4.1 Piecewise Linear Interpolation

Let us consider the special case of a deterministic pro-
cess. We denote y = y(x,u) the successor state of
(state x, control u). The operator is Ty (z)W(z) =
v.W(y) + r(x,u). Let us use the approximate reward
function r,, = r.

We consider a triangulation of the state space for
which a function W is linearly interpolated inside
each simplex: for y € Simplex{zy,...,xzq4} (d is the
dimension of the state space) we approximate W (y)
by Zgzo Ai(y)W (x;) with the coefficients A;(y) be-
ing the x;-barycentric coordinates of y. These co-
efficients satisfy: A;(y) > 0, Zfzo Ai(y) = 1, and
Zg:O Ai(y).z; = y. For a given point y inside a sim-
plex {xg, ..., 24}, the barycentric coordinates exist and
are unique. Thus, the approximate operator is:

TNW () = ~. Z i)W (i) + (2, u)

i=0

Define d(z,u) to mean the local discretization step
around y, which means that the grid-points {«;} used
for the interpolation at y are at a distance propor-
tional to d(x,u) from y. TFrom Taylor’s theorem,
we have W(z;) = W(y) + (z; — y)DW(y) + %(1‘2 —
y)D*W (y)(z; — y)T + o(d(x,u)?) (where T means the
transpose of the vector). If we assume that V is locally
C?, we can deduce the interpolation error:

d
1
N ()= D Mi(v) (@i =) DV () (i =) +0(0(x)?)
i=0
with y = y(x,u}) being here the successor of state x
when choosing the control u}, and §(x) being 6(xz, u}).
Thus:

6N(l‘) = %'yDZV(y).é(x)z + 0(5(1‘)2)

Now, if we increase the resolution of the grid by adding

AN new points around y, the discretization step ()
will decrease as —Ad(z) ~ ﬂdﬂ.%, because the num-
ber of points N ~ fX %' Thus, the local interpola-
tion error will decrease as:



§%(z) AN
1N (9)

~AeN(z) ~ 7DV (y)

Remark. In general, the local interpolation error
eN(z) (and thus Ae™(z)) depends on both the local
resolution of the grid used for the back-up interpola-
tion and some measure of the curvature of the value
function V. In the previous implementation it depends
on the second order differential of V. In random or
low-discrepancy grids (Niederreiter, 1992; Rust, 1996)
it depends on the variation of V. Since V is unknown,
we need to estimate this curvature by using the ap-
proximate value function V™V at neighboring points.
This important point will be developed in future work.

4.2 Algorithms for Variable Resolution

By combining the results of Sections 3.3 and 4.1 we
are able to predict the effect that locally refining the
grid has on the global error we are minimizing. In-
deed, in the previous implementation, adding AN
new points around y would decrease the local inter-
polation error of —Ae (z) (according to (9)), which
from Section 3.3, will increase the global error by

—N sEN N .

AE = —(%N—(‘;).Ae () (according to (8)). An ef-
ficient variable resolution refinement procedure would
build a new grid by adding new points around the ar-

N
eas of highest AA}?@? thus minimizing the bound on the

expected global error.

Also we may consider removing points from the grid
around the areas of lowest influence on the global error.
Doing so can save us some computational resources,
which can be used to increase the resolution of the
grid somewhere else.

5. Conclusion

This paper has introduced new ideas for bounding the
error of value function approximations. Equation (2)
provides bounds on the approximation error in terms
of the interpolation error. This latter mainly results
from the specifics of the grid interpolation and the
curvature of the value function. We also showed how
to use a prior error bound to safely eliminate prov-
ably sub-optimal controls, thus tightening even more
the bound on the approximation error. For a given
VR grid, the Markov representation (5) expressed this
bound as the expected sum of the discounted interpo-
lation errors obtained in some specific area of influ-
ence, which can be easily computed. Thus, tight rates
of convergence that only need to consider a restricted
area of the state space can be derived.

Finally, the paper discussed the main consequence of

obtaining these bounds: it showed us where to increase
the resources of the approximator for the purpose of
decreasing the error in the value function approxima-
tion.

In future work, we will extend this analysis for provid-
ing bounds on the loss to occur (based on the bounds
in the value function) if we follow an approximate (sub-
optimal) policy and deduce the parts of the state space
where an increase of the resolution will reduce this loss
(which are not necessarily the same parts as for reduc-
ing the value function error). Furthermore, we will in-
vestigate possible use in reinforcement learning, where
the dynamics must be obtained from experience.
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