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Abstract

The notion of graph expansion was introduced as a tool
in coding theory by Sipser and Spielman, who used it to
bound the minimum distance of a class of low-density
codes, as well as the performance of various iterative
decoding algorithms for these codes. In spite of its
usefulness in establishing theoretical bounds on iter-
ative decoding, graph expansion has not been widely
used to design codes. Instead, random graphs are the
primary means used to obtain graphs for codes, rais-
ing the question of whether comparable performance
can be achieved using explicit constructions. In this
paper we investigate the use of explicit algebraic ex-
pander graphs and algebraic subcodes, and show that
the resulting coding schemes achieve excellent perfor-
mance, competitive with standard low-density parity-
check codes over a wide range of block lengths. Since
the code constructions are based on graphs of groups,
the Fourier transform can be used to obtain fast en-
coding algorithms for these codes.

1. Introduction

Gallager’s low-density parity-check codes [3] have
been the focus of a great deal of recent work in coding
theory. Low-density parity-check codes with regular
bit-degree sequences have been shown experimentally
to perform very well [7], and variations that make use
of irregular degree sequences and non-binary alphabets
achieve outstanding performance [8] on the Gaussian
channel. The work presented here is motivated by the
fact that most low-density code techniques are based on
random constructions and average case analysis over an
ensemble of random codes. This raises the question of
whether comparable performance can be achieved us-
ing explicit constructions—ideally, one would like to
have specific codes with provable properties and good
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experimental performance. An additional motivation
for the current work is that while capacity has been
shown to be effectively achieved for long codes, the rel-
ative performance of coding schemes for shorter block
lengths is not well understood. Our approach is in-
spired by Tanner’s formulation of codes defined hierar-
chically on algebraically constructed graphs [11], and
by Sipser and Spielman’s analysis [10] showing the im-
portance of graph expansion.

In this paper we study three families of explicit ex-
pander codes. The first family of codes is closely re-
lated to the explicit asymptotically good family of ex-
pander codes constructed in [10]. These codes are built
on Cayley graphs of the non-abelian group PSLo(Fy),
using Hamming subcodes as constraints. The result-
ing codes achieve excellent performance; however, the
constructions are somewhat elaborate, and the block
sizes and parameters of the codes are limited. We also
consider much simpler constructions in terms of ex-
pander graphs for the dihedral groups D,,, and cyclic
groups Cy,. In each case the constructions perform well
when decoded using the sum-product algorithm, with
lower bit-error rates than regular low-density parity-
check codes with similar parameters on the Gaussian
channel. While lower error rates can be obtained by
using random graphs with irregular degree sequences
and non-binary alphabets, the results presented here
demonstrate that explicit, algebraically defined low-
density codes can be competitive with random con-
structions for a range of block lengths.

2. Preliminaries on Expander Graphs

Graph expansion is a measure of the degree of con-
nectivity of a graph—in a good expander every subset
of vertices has a large number of neighbors that are not
in the subset. More precisely, the following definitions
are standard.

Definition1. A graph T' = (V; E) with n vertices



is said to be an s-expander if for any vertex subset
S C V with |S| < n/2, |0(S)| > ¢|S|, where 0(S) =
{veV/S | (s,t) € E for some s € S}.

An error correcting code can be viewed as a bipar-
tite graph by associating the left nodes with variables,
and the right nodes with constraints (linear or nonlin-
ear). Intuitively, if this graph is a good expander, then
iterative decoding may work well on the graph because
a small group of erroneous variables will give rise to
a large number of violated constraints. Some of these
constraints will be able to correct some of their neigh-
boring bits, decreasing the number of erroneous bits
in each round of iterative decoding. The Sipser and
Spielman results give a precise statement and justifica-
tion of this intuition, and show the necessity of expan-
sion for asymptotically good codes. Unfortunately, the
bounds established in the associated spectral analysis
are quite weak, and do not fully explain the spectac-
ular performance of the best low-density parity-check
coding schemes. For example, using an intricate anal-
ysis based on spectral bounds, it is shown in [10] that
expander codes on PSLy(FF,) can be designed with min-
imum distance bounded away from zero, but falling well
below the Gilbert-Varshamov bound, as shown in Fig-
ure 1. However, as we show below, these same codes
in fact perform better than low-density parity-check
codes.

A useful bound on expansion is given in terms of
the spectral gap of the underlying graph [1].

Definition 2. A connected k-regular graph is said to
be a Ramanujan graph if p1 < 2+/k — 1, where u; is
the second-largest absolute value of any eigenvalue of
the graph’s adjacency matrix. This is asymptotically
the best spectral gap possible, as a consequence of the
inequality Uminf, oo p1(Xn ) > 2vk — 1 where the
infimum is taken over all k-regular graphs with n ver-
tices [1].

In this paper all of the codes that we consider are
built on Ramanujan graphs. In particular, we use Cay-
ley graphs of abelian and non-abelian groups: given
a group G and a set of generators {s;}, we form the
graph T'(G, {s;}) with vertices labeled by G, and with
edges given by (s,s;9). By a Cayley code [5] we mean
a code constructed in terms of a Cayley graph, where
the bits (variables) are placed on either the vertices or
the edges of the graph. If the adjacency matrix of the
graph is sparse (equivalently, the chosen set of genera-
tors of the group is small), then we say that the code is
low-density. The bits labeling the neighbors of a given
vertex are required to form a codeword in some sub-
code, the simplest example being a parity check. A
Cayley code inherits symmetries from the group. All
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Figure 1: The provable minimum distance [10] of expander
codes on PSL3(F,), compared with the Gilbert-Varshamov
bound. The empirical performance of these codes (see Fig-
ure 2) shows that this lower bound is quite weak.

of the classical cyclic codes are Cayley codes, with the
bits on the vertices, where the group G is Z /nZ, and
the subcode is a parity check. Fourier analysis can be
used to obtain efficient encoding algorithms for these
codes in general [5].

3. Expander Codes on PSLy(IF,)

The Lubotzky-Philips-Sarnak graphs [6] are Cayley
graphs of the group PSLy(F;). Recall that SLy(F,) is
the special linear group of 2 X 2 matrices of determinant
one having entries from the finite field F of ¢ elements.
The projective special linear group PSLo(F,) is obtained
by dividing SLy(FF,) by its center, {£1} where I is the
2 x 2 identity matrix. It is a simple finite group of Lie
type for ¢ > 5.

We suppose that ¢ = 1 (mod 4). Let p be another
prime which is a quadratic residue (mod ¢). For p >
3 the LPS graphs X?4 are (p + 1)-regular graphs on
PSLy(Fy) determined by the generating matrices

1 (agtiar aztiaz (1)
\/ﬁ —a2+ia3 ao—ia1

where i = v/—1 (mod q), and (ag,a1,as,as) vary over
the p + 1 integral solutions to the equation a2 + a2 +
a3+ a2 = p having ag > 0 and odd and a;,as, a3 even.

Not only are the LPS graphs good expanders, they
also have large girth: girth(X?4) > 2log, q = Q(log n).
This is important for iterative decoding, since the inde-
pendence assumption that the sum-product algorithm
makes is invalid after a number of iterations equal to
the girth of the graph.

Taking p = 13, we obtain 14-regular graphs on the
group G = PSLy(F,) with g(¢> — 1)/2 vertices. To con-



struct a code with rate % on these 14-regular graphs,

we use the following procedure. By puncturing the
[15,11, 3] Hamming code we obtain a [14,11] code &;.
Expurgating the even codewords of & yields a [14, 10]
code Sy. Assigning §; to a proportion 0 < a < 1 of
the constraint nodes, and 83 to the remaining propor-
tion of 1 — a constraint nodes, we obtain a code with
overall rate of at least 1 — w = ?"LTO‘ Choos-
ing o = % yields a code of rate at least % and block
length %q(q2 — 1). A sample simulation is shown in
Figure 2 with ¢ = 17 and ¢ = 29, giving codes of
block length 17,136 and 85,260. These expander codes
achieve a coding gain of approximately 0.25 dB over
(3, 6)-regular low-density parity-check codes with equal
block length.
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Figure 2: The leftmost and center waterfall curves are for
LPS graphs for PSL2(Fa9 ) and PSLa(F17) respectively, each
using modified Hamming codes as subcodes, to obtain a rate
of (at least) . The rightmost curve is for a Gallager code
with degrees (3,6) and block length n =17,136, equal to the
length of the PSL2(Fi7) code.

4. Expander Codes on C,, and D,

The primary technique used in finding expanders
on cyclic groups is the bounding of character sums.
This method also applies to dihedral groups, yielding
a family of Ramanujan graphs that we use to design
codes. In contrast to the LPS graphs, these graphs
are asymptotically of unbounded degree; however, they
are still useful for building codes with moderate block
lengths, in the range of 500-50,000 bits.

If C,, = Z/nZ is the cyclic group of order n, and
S ={ai,...,ar} is a symmetric set of generators, then
the eigenvalues of the Cayley graph I'(C,,, S) are given
by Zle 0%, where 6 ranges over the n-th roots of
unity. Letting n = p? — 1, where p is prime, we have

that FY, = Fy (w), where w is the root of an irreducible
quadratic polynomial in F,[z]. The key technical fact
is a theorem of Katz on character sums: if ¢ is any
multiplicative character on F,(w), then

> plwti) < b

iCF,

Using this result, Chung [2] observes that the following
generating set yields a Ramanujan graph. Let g be a
generator for IF';‘2 , and define a; = log (w+1). Then the
set S = {:I:ai}f;(]l generates Z /nZ, and has size 2p—2 <
|S| < 2p. Katz’s theorem, applied to the character
¥(g) = 0, shows that the Cayley graph I'(C,,S) is
Ramanujan.

Schellwat [9], modifies this construction to build
Ramanujan graphs on the dihedral group Dpz2_;. The
dihedral group D,, is made up of two copies of C,
pasted together by an involution: a natural presen-
tation is Dy, = {({r,s) |r™ = s? = (sr)? = 1}. Each el-
ement can be written either as ¥ or sr* for suitable
k. Let g,w, and a; be as given above. Then the set
D = {sr%} generates D, and furthermore, is sym-
metric, since (sr*)? = 1. By Katz’s theorem, this gives
a family of bipartite Ramanujan graphs I'(Dp2_1, D)
of degree p. Numerical calculation of the spectrum, as
well as our code simulations, indicates that they are
much better expanders than the Chung graphs.

A simple variant of Katz’s theorem allows us to add
or delete small numbers of generators and still obtain
Ramanujan graphs. For example, a simple use of the
triangle inequality shows that the addition or deletion
of an arbitrary element b to D implies that

| > omxt | <ypt1<2y/(pED) -1
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for p > 3. Taking p = 17, this allows us to delete
an element and use an extended Hamming code as a
subcode.

Figure 3 shows the simulation of a code on Ds3,
with a block length of n = 2,184 bits, and constraints
of size 13, for which we use punctured Hamming codes,
similar to those used for PSLy(Fy). A (3,6)-regular
Gallager code is shown for comparison. Figure 4 shows
a simulation of the code on D7, where we delete one
of the generators to obtain constraints of size 16, for
which we use an extended Hamming code. A compa-
rable rate—% Gallager code is also shown.

5. Decoding Complexity

The expander codes described above are decoded
using the sum-product algorithm, where in each itera-
tion the BCJR algorithm is carried out on the minimal
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Figure 3: Expander code on D32 4, having block length
n = 2,184 and rate % (lower curve) compared to a Gallager
code with similar parameters.

trellis assigned to each constraint node. While the trel-
lises we use are more complex than those needed for
simple parity checks, there are fewer constraint nodes
than in a Gallager code with the same rate and block
length; however, there is certainly greater complexity
overall.

To quantify the additional complexity, we note that
on a trellis with F edges and V vertices, the BCJR al-
gorithm requires 2F —V 41 floating point operations—
we’ll refer to these as trellis operations, or “tops.” In
terms of this measure of trellis complexity, one itera-
tion of the sum-product algorithm on a rate—% Gallager
code requires 14.5 tops/bit. Using punctured and ex-
purgated Hamming subcodes for graphs on PSLy(F,)
requires 32.9 tops/bit. The use of an extended Ham-
ming subcode for the dihedral group codes requires 57.4
tops/bit.

6. Conclusions

Recent work on low-density, parallel concatenated
codes and iterative decoding methods has relied al-
most exclusively on random graphs. While graph
expansion—a notion that arose from work in theoreti-
cal computer science—has been useful as an analytical
tool, the results in this paper indicate that it can also
be useful for designing explicit low-density codes. All of
the algebraic constructions based on expanders that we
have investigated are competitive with standard low-
density parity-check codes. Though variations such as
irregular degree sequences and non-binary fields give
comparable gains, there are many further possibilities
in designing codes within the framework of hierarchical
codes defined on algebraic expander graphs.
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Figure 4: Expander code on Di,2_;, with a generating
set of size 16, resulting in a code of block length n = 4,608,
using an extended Hamming code as subcode (lower curve),
compared to a (3,6)-regular Gallager code with the same
block length and rate.
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