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Abstract

This paper studies the data locality of the work-stealing scheduling
algorithm on hardware-controlled shared-memory machines. We
present lower and upper bounds on the number of cache misses
using work stealing, and introduce a locality-guided work-stealing
algorithm along with experimental validation.

As a lower bound, we show that there is a family of multi-
threaded computations

���
each member of which requires ��� � �

total instructions (work), for which when using work-stealing the
number of cache misses on one processor is constant, while even on
two processors the total number of cache misses is �	� � � . This im-
plies that for general computations there is no useful bound relating
multiprocessor to uninprocessor cache misses. For nested-parallel
computations, however, we show that on 
 processors the expected
additional number of cache misses beyond those on a single proces-
sor is bounded by ��� �� � ����
������ , where � is the execution time
of an instruction incurring a cache miss, � is the steal time, � is the
size of cache, and ��� is the number of nodes on the longest chain
of dependences. Based on this we give strong bounds on the total
running time of nested-parallel computations using work stealing.

For the second part of our results, we present a locality-guided
work stealing algorithm that improves the data locality of multi-
threaded computations by allowing a thread to have an affinity for
a processor. Our initial experiments on iterative data-parallel appli-
cations show that the algorithm matches the performance of static-
partitioning under traditional work loads but improves the perform-
ance up to � � � over static partitioning under multiprogrammed
work loads. Furthermore, the locality-guided work stealing im-
proves the performance of work-stealing up to � � � .

1 Introduction

Many of today’s parallel applications use sophisticated, adaptive
algorithms which are best realized with parallel programming sys-
tems that support dynamic, lightweight threads such as Cilk [8],
Nesl [5], Hood [10], and many others [3, 16, 17, 21, 32]. The core
of these systems is a thread scheduler that balances load among the
processes. In addition to a good load balance, however, good data
locality is essential in obtaining high performance from modern
parallel systems.

Several researches have studied techniques to improve the data
locality of multithreaded programs. One class of such techniques
is based on software-controlled distribution of data among the lo-
cal memories of a distributed shared memory system [15, 22, 26].
Another class of techniques is based on hints supplied by the pro-
grammer so that “similar” tasks might be executed on the same
processor [15, 31, 34]. Both these classes of techniques rely on
the programmer or compiler to determine the data access patterns
in the program, which may be very difficult when the program has
complicated data access patterns. Perhaps the earliest class of tech-
niques was to attempt to execute threads that are close in the com-
putation graph on the same processor [1, 9, 20, 23, 26, 28]. The
work-stealing algorithm is the most studied of these techniques [9,
11, 19, 20, 24, 36, 37]. Blumofe et al showed that fully-strict com-
putations achieve a provably good data locality [7] when executed
with the work-stealing algorithm on a dag-consistent distributed
shared memory systems. In recent work, Narlikar showed that work
stealing improves the performance of space-efficient multithreaded
applications by increasing the data locality [29]. None of this pre-
vious work, however, has studied upper or lower bounds on the
data locality of multithreaded computations executed on existing
hardware-controlled shared memory systems.

In this paper, we present theoretical and experimental results
on the data locality of work stealing on hardware-controlled shared
memory systems (HSMSs). Our first set of results are upper and
lower bounds on the number of cache misses in multithreaded com-
putations executed by the work-stealing algorithm. Let ��� � ��� de-
note the number of cache misses in the uniprocessor execution and� �!� ��� denote the number of cache misses in a 
 -processor ex-
ecution of a multithreaded computation by the work stealing algo-
rithm on an HSMS with cache size � . Then, for a multithreaded
computation with ��� work (total number of instructions), �"� criti-
cal path (longest sequence of dependences), we show the following
results for the work-stealing algorithm running on a HSMS.

# Lower bounds on the number of cache misses for general
computations: We show that there is a family of computa-
tions

���
with ����$%��� � � such that � � � ����$'& � while

even on two processors the number of misses �)( � ���)$��� � � .
# Upper bounds on the number of cache misses for nested-

parallel computations: For a nested-parallel computation, we
show that � � *+� � � ����,�- ��. , where . is the number of
steals in the 
 -processor execution. We then show that the
expected number of steals is ���  � ��� 
	����� , where � is the
time for a cache miss and � is the time for a steal.

# Upper bound on the execution time of nested-parallel com-
putations: We show that the expected execution time of a



0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

Number of Processes

linear
work-stealing

locality-guided workstealing
static partioning

Figure 1: The speedup obtained by three different over-relaxation
algorithms.

nested-parallel computation on 
 processors is ��� � � � � �
� ,�  � ��� �	����,�� � ,�� � ����� , where ��� � ��� is the uniprocessor

execution time of the computation including cache misses.

As in previous work [6, 9], we represent a multithreaded com-
putation as a directed, acyclic graph (dag) of instructions. Each
node in the dag represents a single instruction and the edges repre-
sent ordering constraints. A nested-parallel computation [5, 6] is a
race-free computation that can be represented with a series-parallel
dag [33]. Nested-parallel computations include computations con-
sisting of parallel loops and fork an joins and any nesting of them.
This class includes most computations that can be expressed in
Cilk [8], and all computations that can be expressed in Nesl [5].
Our results show that nested-parallel computations have much bet-
ter locality characteristics under work stealing than do general com-
putations. We also briefly consider another class of computations,
computations with futures [12, 13, 14, 20, 25], and show that they
can be as bad as general computations.

The second part of our results are on further improving the data
locality of multithreaded computations with work stealing. In work
stealing, a processor steals a thread from a randomly (with uniform
distribution) chosen processor when it runs out of work. In certain
applications, such as iterative data-parallel applications, random
steals may cause poor data locality. The locality-guided work steal-
ing is a heuristic modification to work stealing that allows a thread
to have an affinity for a process. In locality-guided work stealing,
when a process obtains work it gives priority to a thread that has
affinity for the process. Locality-guided work stealing can be used
to implement a number of techniques that researchers suggest to
improve data locality. For example, the programmer can achieve an
initial distribution of work among the processes or schedule threads
based on hints by appropriately assigning affinities to threads in the
computation.

Our preliminary experiments with locality-guided work steal-
ing give encouraging results, showing that for certain applications
the performance is very close to that of static partitioning in ded-
icated mode (i.e. when the user can lock down a fixed number of
processors), but does not suffer a performance cliff problem [10]
in multiprogrammed mode (i.e. when processors might be taken
by other users or the OS). Figure 1 shows a graph comparing work
stealing, locality-guided work stealing, and static partitioning for a
simple over-relaxation algorithm on a � � processor Sun Ultra En-
terprise. The over-relaxation algorithm iterates over a � dimen-
sional array performing a & -point stencil computation on each step.
The superlinear speedup for static partitioning and locality-guided

work stealing is due to the fact that the data for each run does not
fit into the L - cache of one processor but fits into the collective L -
cache of � or more processors. For this benchmark the following
can be seen from the graph.

1. Locality-guided work stealing does significantly better than
standard work stealing since on each step the cache is pre-
warmed with the data it needs.

2. Locality-guided work stealing does approximately as well as
static partitioning for up to 14 processes.

3. When trying to schedule more than 14 processes on 14
processors static partitioning has a serious performance
drop. The initial drop is due to load imbalance caused by
the coarse-grained partitioning. The performance then ap-
proaches that of work stealing as the partitioning gets more
fine-grained.

We are interested in the performance of work-stealing computa-
tions on hardware-controlled shared memory (HSMSs). We model
an HSMS as a group of identical processors each of which has its
own cache and has a single shared memory. Each cache contains� blocks and is managed by the memory subsystem automatically.
We allow for a variety of cache organizations and replacement poli-
cies, including both direct-mapped and associative caches. We as-
sign a server process with each processor and associate the cache
of a processor with process that the processor is assigned. One lim-
itation of our work is that we assume that there is no false sharing.

2 Related Work

As mentioned in Section 1, there are three main classes of tech-
niques that researchers have suggested to improve the data locality
of multithreaded programs. In the first class, the program data is
distributed among the nodes of a distributed shared-memory system
by the programmer and a thread in the computation is scheduled on
the node that holds the data that the thread accesses [15, 22, 26].
In the second class, data-locality hints supplied by the programmer
are used in thread scheduling [15, 31, 34]. Techniques from both
classes are employed in distributed shared memory systems such as
COOL and Illinois Concert [15, 22] and also used to improve the
data locality of sequential programs [31]. However, the first class
of techniques do not apply directly to HSMSs, because HSMSs do
not allow software controlled distribution of data among the caches.
Furthermore, both classes of techniques rely on the programmer to
determine the data access patterns in the application and thus, may
not be appropriate for applications with complex data-access pat-
terns.

The third class of techniques, which is based on execution
of threads that are close in the computation graph on the same
process, is applied in many scheduling algorithms including work
stealing [1, 9, 23, 26, 28, 19]. Blumofe et al showed bounds
on the number of cache misses in a fully-strict computation exe-
cuted by the work-stealing algorithm under the dag-consistent dis-
tributed shared-memory of Cilk [7]. Dag consistency is a relaxed
memory-consistency model that is employed in the distributed
shared-memory implementation of the Cilk language. In a dis-
tributed Cilk application, processes maintain the dag consistency
by means of the BACKER algorithm. In [7], Blumofe et al bound
the number of shared-memory cache misses in a distributed Cilk
application for caches that are maintained with the LRU replace-
ment policy. They assumed that accesses to the shared memory
are distributed uniformly and independently, which is not gener-
ally true because threads may concurrently access the same pages
by algorithm design. Furthermore, they assumed that processes do
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Figure 2: A dag (directed acyclic graph) for a multithreaded com-
putation. Threads are shown as gray rectangles.

not generate steal attempts frequently by making processes do ad-
ditional page transfers before they attempt to steal from another
process.

3 The Model

In this section, we present a graph-theoretic model for multithreaded
computations, describe the work-stealing algorithm, define series-
parallel and nested-parallel computations and introduce our model
of an HSMS (Hardware-controlled Shared-Memory System).

As with previous work [6, 9] we represent a multithreaded com-
putation as a directed acyclic graph, a dag, of instructions (see Fig-
ure 2). Each node in the dag represents an instruction and the edges
represent ordering constraints. There are three types of edges, con-
tinuation, spawn, and dependency edges. A thread is a sequential
ordering of instructions and the nodes that corresponds to the in-
structions are linked in a chain by continuation edges. A spawn
edge represents the creation of a new thread and goes from the node
representing the instruction that spawns the new thread to the node
representing the first instruction of the new thread. A dependency
edge from instruction

�
of a thread to instruction � of some other

thread represents a synchronization between two instructions such
that instruction � must be executed after

�
. We draw spawn edges

with thick straight arrows, dependency edges with curly arrows and
continuation edges with thick straight arrows throughout this paper.
Also we show paths with wavy lines.

For a computation with an associateddag
�

, we define the com-
putational work, ��� , as the number of nodes in

�
and the critical

path, ��� , as the number of nodes on the longest path of
�

.
Let � and � be any two nodes in a dag. Then we call � an an-

cestor of � , and � a descendant of � if there is a path from � to � .
Any node is its descendant and ancestor. We say that two nodes are
relatives if there is a path from one to the other, otherwise we say
that the nodes are independent. The children of a node are inde-
pendent because otherwise the edge from the node to one child is
redundant. We call a common descendant � of � and � a merger of
� and � if the paths from � to � and � to � have only � in common.
We define the depth of a node � as the number of edges on the
shortest path from the root node to � . We define the least common
ancestor of � and � as the ancestor of both � and � with maximum
depth. Similarly, we define the greatest common descendant of �
and � , as the descendant of both � and � with minimum depth. An
edge � � � � � is redundant if there is a path between � and � that
does not contain the edge � � � � � . The transitive reduction of a dag
is the dag with all the redundant edges removed.

In this paper we are only concerned with the transitive reduction
of the computational dags. We also require that the dags have a
single node with in-degree � , the root, and a single node with out-
degree � , the final node.

In a multiprocess execution of a multithreaded computation, in-
dependent nodes can execute at the same time. If two independent
nodes read or modify the same data, we say that they are RR or

WW sharing respectively. If one node is reading and the other is
modifying the data we say they are RW sharing. RW or WW shar-
ing can cause data races, and the output of a computation with such
races usually depends on the scheduling of nodes. Such races are
typically indicative of a bug [18]. We refer to computations that do
not have any RW or WW sharing as race-free computations. In this
paper we consider only race-free computations.

The work-stealing algorithm is a thread scheduling algorithm
for multithreaded computations. The idea of work-stealing dates
back to the research of Burton and Sleep [11] and has been studied
extensively since then [2, 9, 19, 20, 24, 36, 37]. In the work-stealing
algorithm, each process maintains a pool of ready threads and ob-
tains work from its pool. When a process spawns a new thread the
process adds the thread into its pool. When a process runs out of
work and finds its pool empty, it chooses a random process as its
victim and tries to steal work from the victim’s pool.

In our analysis, we imagine the work-stealing algorithm oper-
ating on individual nodes in the computation dag rather than on the
threads. Consider a multithreaded computation and its execution by
the work-stealing algorithm. We divide the execution into discrete
time steps such that at each step, each process is either working on
a node, which we call the assigned node, or is trying to steal work.
The execution of a node takes � time step if the node does not incur
a cache miss and � steps otherwise. We say that a node is executed
at the time step that a process completes executing the node. The
execution time of a computation is the number of time steps that
elapse between the time step that a process starts executing the root
node to the time step that the final node is executed. The execution
schedule specifies the activity of each process at each time step.

During the execution, each process maintains a deque (doubly
ended queue) of ready nodes; we call the ends of a deque the top
and the bottom. When a node, � , is executed, it enables some other
node � if � is the last parent of � that is executed. We call the edge� � � � � an enabling edge and � the designated parent of � . When a
process executes a node that enables other nodes, one of the enabled
nodes become the assigned node and the process pushes the rest
onto the bottom of its deque. If no node is enabled, then the process
obtains work from its deque by removing a node from the bottom of
the deque. If a process finds its deque empty, it becomes a thief and
steals from a randomly chosen process, the victim. This is a steal
attempt and takes at least � and at most � � time steps for some
constant ��� � to complete. A thief process might make multiple
steal attempts before succeeding, or might never succeed. When a
steal succeeds, the thief process starts working on the stolen node
at the step following the completion of the steal. We say that a steal
attempt occurs at the step it completes.

The work-stealing algorithm can be implemented in various
ways. We say that an implementation of work stealing is deter-
ministic if, whenever a process enables other nodes, the imple-
mentation always chooses the same node as the assigned node for
then next step on that process, and the remaining nodes are always
placed in the deque in the same order. This must be true for both
multiprocess and uniprocess executions. We refer to a determin-
istic implementation of the work-stealing algorithm together with
the HSMS that runs the implementation as a work stealer. For
brevity, we refer to an execution of a multithreaded computation
with a work stealer as an execution. We define the total work as
the number of steps taken by a uniprocess execution, including the
cache misses, and denote it by �"� � ��� , where � is the cache size.
We denote the number of cache misses in a 
 -process execution
with � -block caches as � �"� ��� . We define the cache overhead
of a 
 -process execution as ���"� ���
	�� � � ��� , where � � � ��� is
the number of misses in the uniprocess execution on the same work
stealer.

We refer to a multithreaded computation for which the transi-
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Figure 3: Illustrates the recursive definition for series-parallel dags.
Figure (a) is the base case, figure (b) depicts the serial, and figure
(c) depicts the parallel composition.

tive reduction of the corresponding dag is series-parallel [33] as
a series-parallel computation. A series-parallel dag

� � � � ��� is a
dag with two distinguished vertices, a source, ��� � and a sink,� � � and can be defined recursively as follows (see Figure 3).

# Base:
�

consists of a single edge connecting � to
�
.# Series Composition:

�
consists of two series-parallel dags� � � � � � �	� � and

� ( � � ( � � ( � with disjoint edge sets such that� is the source of
� � , � is the sink of

� � and the source of� ( , and
�

is the sink of
� ( . Moreover

� ��� � (	$�� � 	 .# Parallel Composition: The graph consists of two series-parallel
dags

� � � � � � �	� � and
� ( � � ( � � ( � with disjoint edges sets

such that � and
�

are the source and the sink of both
� � and� ( . Moreover

� �
� � (	$�� � � � 	 .
A nested-parallel computation is a race-free series-parallel compu-
tation [6].

We also consider multithreaded computations that use futures [12,
13, 14, 20, 25]. The dag structures of computations with futures
are defined elsewhere [4]. This is a superclass of nested-parallel
computations, but still much more restrictive than general com-
putations. The work-stealing algorithm for futures is a restricted
form of work-stealing algorithm, where a process starts executing a
newly created thread immediately, putting its assigned thread onto
its deque.

In our analysis, we consider several cache organization and re-
placement policies for an HSMS. We model a cache as a set of
(cache) lines, each of which can hold the data belonging to a mem-
ory block (a consecutive, typically small, region of memory). One
instruction can operate on at most one memory block. We say that
an instruction accesses a block or the line that contains the block
when the instruction reads or modifies the block. We say that an
instruction overwrites a line that contains the block � when the in-
struction accesses some other block that replaces � in the cache.
We say that a cache replacement policy is simple if it satisfies two
conditions. First the policy is deterministic. Second whenever the
policy decides to overwrite a cache line,  , it makes the decision
to overwrite  by only using information pertaining to the accesses
that are made after the last access to  . We refer to a cache man-
aged with a simple cache-replacement policy as a simple cache.
Simple caches and replacement policies are common in practice.
For example, least-recently used (LRU) replacement policy, direct
mapped caches and set associative caches where each set is main-
tained by a simple cache replacement policy are simple.

In regards to the definition of RW or WW sharing, we assume
that reads and writes pertain to the whole block. This means we do
not allow for false sharing—when two processes accessing differ-
ent portions of a block invalidate the block in each other’ s caches.
In practice, false sharing is an issue, but can often be avoided by
a knowledge of underlying memory system and appropriately pad-
ding the shared data to prevent two processes from accessing dif-
ferent portions of the same block.
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Figure 4: The structure for dag of a computation with a large cache
overhead.

4 General Computations

In this section, we show that the cache overhead of a multiprocess
execution of a general computation and a computation with futures
can be large even though the uniprocess execution incurs a small
number of misses.

Theorem 1 There is a family of computations

� ����� ��$ � � � � � � ��������	
with ��� � � computational work, whose uniprocess execution incurs& � misses while any - -process execution of the computation incurs�	� � � misses on a work stealer with a cache size of � , assuming
that � $ ��� ��� , where � is the maximum steal time.

Proof: Figure 4 shows the structure of a dag,
��� � for � $ � � .

Each node except the root node represents a sequence of � in-
structions accessing a set of � distinct memory blocks. The root
node represents ��,�� instructions that accesses � distinct memory
blocks. The graph has two symmetric components � � � and � � � ,
which corresponds to the left and the right subtree of the root ex-
cluding the leaves. We partition the nodes in

��� � into three classes,
such that all nodes in a class access the same memory blocks while
nodes from different classes access mutually disjoint set of memory
blocks. The first class contains the root node only, the second class
contains all the nodes in � � � , and the third class contains the rest
of the nodes, which are the nodes in � � � and the leaves of

��� � .
For general ��$ � � ,

���
can be partitioned into � � , � � and the �

leaves of
���

and the root similarly. Each of � � and � � contains-  �( � 	 � nodes and has the structure of a complete binary tree with
additional � leaves at the lowest level. There is a dependency edge
from the leaves of both � � and � � to the leaves of

���
.

Consider a work stealer that executes the nodes of
���

in the or-
der that they are numbered in a uniprocess execution. In the unipro-
cess execution, no node in � � incurs a cache miss except the root
node, since all nodes in � � access the same memory blocks as the
root of � � . The same argument holds for � � and the � leaves of���

. Hence the execution of the nodes in � � , � � , and the leaves
causes - � misses. Since the root node causes � misses, the total
number of misses in the uniprocess execution is & � . Now, consider
a - -process execution with the same work stealer and call the pro-
cesses, process � and � . At time step � , process � starts executing
the root node, which enables the root of � � no later than time step� . Since process � starts stealing immediately and there are no
other processes to steal from, process � steals and starts working
on the root of � � , no later than time step � ,�� . Hence, the root
of � � executes before the root of � � and thus, all the nodes in � �
execute before the corresponding symmetric node in � � . There-
fore, for any leaf of

���
, the parent that is in � � executes before

the parent in � � . Therefore a leaf node of
���

is executed immedi-
ately after its parent in � � and thus, causes � cache misses. Thus,
the total number of cache misses is �	� � ���!$ �	� � � .
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Figure 5: The structure for dag of a computation with futures that
can incur a large cache overhead.

There exists computations similar to the computation in Fig-
ure 4 that generalizes Theorem 1 for arbitrary number of processes
by making sure that all the processes but - steal throughout any
multiprocess execution. Even in the general case, however, where
the average parallelism is higher than the number of processes,
Theorem 1 can be generalized with the same bound on expected
number of cache misses by exploiting the symmetry in

���
and by

assuming a symmetrically distributed steal-time. With a symmetri-
cally distributed steal-time, for any � , a steal that takes � steps more
than mean steal-time is equally likely to happen as a steal that takes� less steps than the mean. Theorem 1 holds for computations with
futures as well. Multithreaded computing with futures is a fairly
restricted form of multithreaded computing compared to comput-
ing with events such as synchronization variables. The graph

�
in

Figure 5 shows the structure of a dag, whose - -process execution
causes large number of cache misses. In a - -process execution of�

, the enabling parent of the leaf nodes in the right subtree of the
root are in the left subtree and therefore the execution of each such
leaf node causes � misses.

5 Nested-Parallel Computations

In this section, we show that the cache overhead of an execution of
a nested-parallel computation with a work stealer is at most twice
the product of the number of steals and the cache size. Our proof
has two steps. First, we show that the cache overhead is bounded by
the product of the cache size and the number of nodes that are exe-
cuted “out of order” with respect to the uniprocess execution order.
Second, we prove that the number of such out-of-order executions
is at most twice the number of steals.

Consider a computation
�

and its 
 -process execution, � � ,
with a work stealer and the uniprocess execution, � � with the same
work stealer. Let � be a node in

�
and node � be the node that exe-

cutes immediately before � in � � . Then we say that � is drifted in
��� if node � is not executed immediately before � by the process
that executes � in ��� .

Lemma 2 establishes a key property of an execution with simple
caches.

Lemma 2 Consider a process with a simple cache of � blocks. Let
��� denote the execution of a sequence of instructions on the proc-
ess starting with cache state �"� and let ��( denote the execution
of the same sequence of instructions starting with cache state � ( .
Then ��� incurs at most � more misses than � ( .
Proof: We construct a one-to-one mapping between the cache
lines in ��� and ��( such that an instruction that accesses a line
 � in ��� accesses the entry  ( in ��( , if and only if  � is mapped to

 ( . Consider ��� and let  � be a cache line. Let
�

be the first instruc-
tion that accesses or overwrites  � . Let  ( be the cache line that
the same instruction accesses or overwrites in � ( and map  � to
 ( . Since the caches are simple, an instruction that overwrites  � in
��� overwrites  ( in ��( . Therefore the number of misses that over-
writes  � in ��� is equal to the number of misses that overwrites  (
in ��( after instruction

�
. Since

�
itself can cause � miss, the number

of misses that overwrites  � in ��� is at most � more than the num-
ber of misses that overwrites  ( in ��( . We construct the mapping
for each cache line in ��� in the same way. Now, let us show that
the mapping is one-to-one. For the sake of contradiction, assume
that two cache lines,  � and  ( , in ��� map to the same line in ��( .
Let

� � and
� ( be the first instructions accessing the cache lines in

��� such that
� � is executed before

� ( . Since
� � and

� ( map to the
same line in ��( and the caches are simple,

� ( accesses the line that� � accesses in ��� but then  � $� ( , a contradiction. Hence, the total
number of cache misses in ��� is at most � more than the misses
in ��( .
Theorem 3 Let � denote the total number of drifted nodes in an
execution of a nested-parallel computation with a work stealer on
 processes, each of which has a simple cache with � words. Then
the cache overhead of the execution is at most ��� .

Proof: Let ��� denote the 
 -process execution and let � � be the
uniprocess execution of the same computation with the same work
stealer. We divide the multiprocess computation into � pieces each
of which can incur at most � more misses than in the uniprocess
execution. Let � be a drifted node let � be the process that executes
� . Let � be the next drifted node executed on � (or the final node
of the computation). Let the ordered set � represent the execution
order of all the nodes that are executed after � ( � is included) and
before � ( � is excluded if it is drifted, included otherwise) on � in
��� . Then nodes in � are executed on the same process and in the
same order in both ��� and ��� .

Now consider the number of cache misses during the execution
of the nodes in � in ��� and ��� . Since the computation is nested
parallel and therefore race free, a process that executes in paral-
lel with � does not cause � to incur cache misses due to sharing.
Therefore by Lemma 2 during the execution of the nodes in � the
number of cache misses in ��� is at most � more than the number
of misses in ��� . This bound holds for each of the � sequence of
such instructions � corresponding to � drifted nodes. Since the
sequence starting at the root node and ending at the first drifted
node incurs the same number of misses in � � and ������� takes at
most ��� more misses than ��� and the cache overhead is at most��� .

Lemma 2 (and thus Theorem 3) does not hold for caches that
are not simple. For example, consider the execution of a sequence
of instructions on a cache with least-frequently-used replacement
policy starting at two cache states. In the first cache state, the blocks
that are frequently accessedby the instructions are in the cache with
high frequencies, whereas in the second cache state, the blocks that
are in the cache are not accessed by the instruction and have low
frequencies. The execution with the second cache state, therefore,
incurs many more misses than the size of the cache compared to
the execution with the second cache state.

Now we show that the number of drifted nodes in an execution
of a series-parallel computation with a work stealer is at most twice
the number of steals. The proof is based on the representation of
series-parallel computations as sp-dags. We call a node with out-
degree of at least - a fork node and partition the nodes of an sp-dag
except the root into three categories: join nodes, stable nodes and
nomadic nodes . We call a node that has an in-degree of at least- a join node and partition all the nodes that have in-degree � into



s

t

z

u

v

Figure 6: Children of � and their merger.

G 2

G1

u

v

s t
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two classes: a nomadic node has a parent that is a fork node, and a
stable node has a parent that has out-degree � . The root node has in-
degree � and it does not belong to any of these categories. Lemma 4
lists two fundamental properties of sp-dags; one can prove both
properties by induction on the number of edges in an sp-dag.

Lemma 4 Let
�

be an sp-dag. Then
�

has the following proper-
ties.

1. The least common ancestor of any two nodes in
�

is unique.

2. The greatest common descendant of any two nodes in
�

is
unique and is equal to their unique merger.

Lemma 5 Let � be a fork node. Then no child of � is a join node.

Proof: Let � and � denote two children of � and suppose � is a
join node as in Figure 6. Let

�
denote some other parent of � and

� denote the unique merger of � and � . Then both � and � are
mergers for � and

�
, which is a contradiction of Lemma 5. Hence �

is not a join node.

Corollary 6 Only nomadic nodes can be stolen in an execution of
a series-parallel computation by the work-stealing algorithm.

Proof: Let � be a stolen node in an execution. Then � is pushed
on a deque and thus the enabling parent of � is a fork node. By
Lemma 5, � is not a join node and has an incoming degree � . There-
fore � is nomadic.

Consider a series-parallel computation and let
�

be its sp-dag.
Let � and � be two independent nodes in

�
and let � and

�
denote

their least common ancestor and greatest common descendant re-
spectively as shown in Figure 7. Let

� � denote the graph that is
induced by the relatives of � that are descendants of � and also an-
cestors of

�
. Similarly, let

� ( denote the graph that is induced by
the relatives of � that are descendants of � and ancestors of

�
. Then

we call
� � the embedding of � with respect to � and

� ( the em-
bedding of � with respect to � . We call the graph that is the union
of
� � and

� ( the joint embedding of � and � with source � and
sink

�
. Now consider an execution of

�
and � and � be the children

of � such that � is executed before � . Then we call � the leader and
� the guard of the joint embedding.
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Figure 8: The join node � is the least common ancestor of � and � .
Node � and � are the children of � .

Lemma 7 Let
� � � � ��� be an sp-dag and let � and � be two par-

ents of a join node
�

in
�

. Let
� � denote the embedding of � with

respect to � and
� ( denote the embedding of � with respect to � .

Let � denote the source and
�

denote the sink of the joint embed-
ding. Then the parents of any node in

� � except for � and
�

is in� � and the parents of any node in
� ( except for � and

�
is in
� ( .

Proof: Since � and � are independent, both of � and
�

are different
from � and � (see Figure 8). First, we show that there is not an
edge that starts at a node in

� � except at � and ends at a node in
� (

except at
�

and vice versa. For the sake of contradiction, assume
there is an edge � � � � � such that � �$ � is in

� � and � �$ � is in� ( . Then � is the least common ancestor of � and � ; hence no
such � � � � � exists. A similar argument holds when � is in

� ( and� is in
� � .

Second, we show that there does not exists an edge that origi-
nates from a node outside of

� � or
� ( and ends at a node at

� � or� ( . For the sake of contradiction, let � � � � � be an edge such that �
is in
� � and � is not in

� � or
� ( . Then � is the unique merger for

the two children of the least common ancestor of � and � , which
we denote with � . But then

�
is also a merger for the children of � .

The children of � are independent and have a unique merger, hence
there is no such edge � � � � � . A similar argument holds when � is
in
� ( . Therefore we conclude that the parents of any node in

� �
except � and

�
is in
� � and the parents of any node in

� ( except �
and
�

is in
� ( .

Lemma 8 Let
�

be an sp-dag and let � and � be two parents of a
join node

�
in
�

. Consider the joint embedding of � and � and let
� be the guard node of the embedding. Then � and � are executed
in the same respective order in a multiprocess execution as they
are executed in the uniprocess execution if the guard node � is not
stolen.

Proof: Let � be the source,
�

the sink, and � the leader of the
joint embedding. Since � is not stolen, � is not stolen. Hence, by
Lemma 7, before it starts working on � , the process that executes� executed � and all its descendants in the embedding except for

�
Hence, � is executed before � and � is executed after � as in the
uniprocess execution. Therefore, � and � are executed in the same
respective order as they execute in the uniprocess execution.

Lemma 9 A nomadic node is drifted in an execution only if it is
stolen.

Proof: Let � be a nomadic and drifted node. Then, by Lemma 5,
� has a single parent � that enables � . If � is the first child of � to
execute in the uniprocess execution then � is not drifted in the mul-
tiprocess execution. Hence, � is not the first child to execute. Let �
be the last child of � that is executed before � in the uniprocess ex-
ecution. Now, consider the multiprocess execution and let � be the
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Figure 9: Nodes
� � and

� ( are two join nodes with the common
guard � .

process that executes � . For the sake of contradiction, assume that
� is not stolen. Consider the joint embedding of � and � as shown
in Figure 8. Since all parents of the nodes in

� ( except for � and�
are in

� ( by Lemma 7, � executes all the nodes in
� ( before it

executes � and thus, � precedes � on � . But then � is not drifted,
because � is the node that is executed immediately before � in the
uniprocess computation. Hence � is stolen.

Let us define the cover of a join node
�

in an execution as the set
of all the guard nodes of the joint embedding of all possible pairs
of parents of

�
in the execution. The following lemma shows that a

join node is drifted only if a node in its cover is stolen.

Lemma 10 A join node is drifted in an execution only if a node in
its cover is stolen in the execution.

Proof: Consider the execution and let
�

be a join node that is
drifted. Assume, for the sake of contradiction, that no node in the
cover of

�
, ��� � � , is stolen. Let � and � be any two parents of

�
as

in Figure 8. Then � and � are executed in the same order as in the
uniprocess execution by Lemma 8. But then all parents of

�
exe-

cute in the same order as in the uniprocess execution. Hence, the
enabling parent of

�
in the execution is the same as in the uniprocess

execution. Furthermore, the enabling parent of
�

has out-degree � ,
because otherwise

�
is not a join node by Lemma 5 and thus, the

process that enables
�

executes
�
. Therefore,

�
is not drifted. A

contradiction, hence a node in the cover of
�

is stolen.

Lemma 11 The number of drifted nodes in an execution of a series-
parallel computation is at most twice the number of steals in the
execution.

Proof: We associate each drifted node in the execution with a
steal such that no steal has more than - drifted nodes associated
with it. Consider a drifted node, � . Then � is not the root node
of the computation and it is not stable either. Hence, � is either a
nomadic or join node. If � is nomadic, then � is stolen by Lemma 9
and we associate � with the steal that steals � . Otherwise, � is a
join node and there is a node in its cover ��� � � that is stolen by
Lemma 10. We associate � with the steal that steals a node in its
cover. Now, assume there are more than - nodes associated with a
steal that steals node � . Then there are at least two join nodes

� �
and
� ( that are associated with � . Therefore, node � is in the joint

embedding of two parents of
� � and also

� ( . Let ��� , � � be these
parents of

� � and � ( , � ( be the parents of
� ( , as shown in Figure 9.

But then � has parent that is a fork node and is a joint node, which
contradicts Lemma 5. Hence no such � exists.

Theorem 12 The cache overheadof an execution of a nested-parallel
computation with simple caches is at most twice the product of the
number of misses in the execution and the cache size.

Proof: Follows from Theorem 3 and Lemma 11.

6 An Analysis of Nonblocking Work Stealing

The non-blocking implementation of the work-stealing algorithm
delivers provably good performance under traditional and multi-
programmed workloads. A description of the implementation and
its analysis is presented in [2]; an experimental evaluation is given
in [10]. In this section, we extend the analysis of the non-blocking
work-stealing algorithm for classical workloads and bound the ex-
ecution time of a nested-parallel, computation with a work stealer
to include the number of cache misses, the cache-miss penalty and
the steal time. First, we bound the number of steal attempts in an
execution of a general computation by the work-stealing algorithm.
Then we bound the execution time of a nested-parallel computation
with a work stealer using results from Section 5. The analysis that
we present here is similar to the analysis given in [2] and uses the
same potential function technique.

We associate a nonnegative potential with nodes in a computa-
tion’ s dag and show that the potential decreases as the execution
proceeds. We assume that a node in a computation dag has out-
degree at most - . This is consistent with the assumption that each
node represents on instruction. Consider an execution of a compu-
tation with its dag,

� � � � ��� with the work-stealing algorithm. The
execution grows a tree, the enabling tree, that contains each node
in the computation and its enabling edge. We define the distance
of a node ��� � ,

� � � � , as ��� 	 � � � � � � � � , where
� � � � � � � � is the

depth of � in the enabling tree of the computation. Intuitively, the
distance of a node indicates how far the node is away from end of
the computation. We define the potential function in terms of dis-
tances. At any given step

�
, we assign a positive potential to each

ready node, all other nodes have � potential. A node is ready if it is
enabled and not yet executed to completion. Let � denote a ready
node at time step

�
. Then we define, ��� � � � , the potential of � at

time step
�

as

��� � � �"$
� & ( 	 � 
 � � � if � is assigned;
& ( 	 � 
 �

otherwise.

The potential at step
�
, �� , is the sum of the potential of each ready

node at step
�
. When an execution begins, the only ready node is

the root node which has distance �"� and is assigned to some proc-
ess, so we start with ����$ & ( � ��� � . As the execution proceeds,
nodes that are deeper in the dag become ready and the potential
decreases. There are no ready nodes at the end of an execution and
the potential is � .

Let us give a few more definitions that enable us to associate
a potential with each process. Let ��� � � � denote the set of ready
nodes that are in the deque of process � along with � ’s assigned
node, if any, at the beginning of step

�
. We say that each node �

in ��� � � � belongs to process � . Then we define the potential of � ’s
deque as �� � � � $��
 � ��� � � �

��� � � ���
In addition, let ��� denote the set of processes whose deque is empty
at the beginning of step

�
, and let ��� denote the set of all other

processes. We partition the potential ��� into two parts

���$��� � ��� ��,��� � ��� � �
where

�� � ��� �!$ �� � ��� �� � � � and �� � ��� �!$ �� �  �� �� � � �
�
and we analyze the two parts separately.



Lemma 13 lists four basic properties of the potential that we use
frequently. The proofs for these properties are given in [2] and the
listed properties are correct independent of the time that execution
of a node or a steal takes. Therefore, we give a short proof sketch.

Lemma 13 The potential function satisfies the following proper-
ties.

1. Suppose node � is assigned to a process at step
�
. Then the

potential decreases by at least � - � & � ��� � � � .
2. Suppose a node � is executed at step

�
. Then the potential

decreases by at least � � � � � ��� � � � at step
�
.

3. Consider any step
�

and any process � in ��� . The topmost
node � in � ’s deque contributes at least & � � of the potential
associated with � . That is, we have ��� � � � � � & � � � �� � � � .

4. Suppose a process
�

chooses process � in ��� as its victim at
time step

�
(a steal attempt of

�
targeting � occurs at step

�
).

Then the potential decreases by at least � � � - � ��� � � � due to
the assignment or execution of a node belonging to � at the
end of step

�
.

Property � follows directly from the definition of the potential
function. Property - holds because a node enables at most two
children with smaller potential, one of which becomes assigned.
Specifically, the potential after the execution of node � decreasesby
at least �"� � � � � 	 �� 	 �� �!$��� �"� � � . Property & follows from a struc-
tural property of the nodes in a deque. The distance of the nodes in
a process’ deque decrease monotonically from the top of the deque
to bottom. Therefore, the potential in the deque is the sum of geo-
metrically decreasing terms and dominated by the potential of the
top node. The last property holds because when a process chooses
process � in ��� as its victim, the node at the top of � ’ s deque
is assigned at the next step. Therefore, the potential decreases by- � & ��� � � � by property � . Moreover, ��� � � �
�+� & � � � �� � � � by prop-
erty & and the result follows.

Lemma 16 shows that the potential decreases as a computation
proceeds. The proof for Lemma 16 utilizes balls and bins game
bound from Lemma 14.

Lemma 14 (Balls and Weighted Bins) Suppose that at least 
 balls
are thrown independently and uniformly at random into 
 bins,
where bin

�
has a weight � � , for

� $ � � � � � � 
 . The total weight is� $�� �� 	�� � � . For each bin
�
, define the random variable � � as

����$�
 � � if some ball lands in bin
�
;� otherwise.

If �'$ � �� 	�� ��� , then for any � in the range ����� � , we have��� � � ������	�� � 	 � � � � � 	��"� � � .
This lemma can be proven with an application of Markov’ s in-
equality. The proof of a weaker version of this lemma for the case
of exactly 
 throws is similar and given in [2]. Lemma 14 also
follows from the weaker lemma because � does not decrease with
more throws.

We now show that whenever 
 or more steal attempts occur, the
potential decreases by a constant fraction of ��� � ��� � with constant
probability.

Lemma 15 Consider any step
�

and any later step � such that at
least 
 steal attempts occur at steps from

�
(inclusive) to � (exclu-

sive). Then we have��� 
 �� 	���� � �
� �� � ��� � ��� �

� �
Moreover the potential decrease is because of the execution or as-
signment of nodes belonging to a process in ��� .

Proof: Consider all 
 processes and 
 steal attempts that occur
at or after step

�
. For each process � in ��� , if one or more of the
 attempts target � as the victim, then the potential decreases by� � � - � �� � � � due to the execution or assignment of nodes that belong

to � by property � in Lemma 13. If we think of each attempt as a
ball toss, then we have an instance of the Balls and Weighted Bins
Lemma (Lemma 14). For each process � in ��� , we assign a weight� � $ � � � - � �� � � � , and for each other process � in � � , we assign
a weight � � $ � . The weights sum to � $ � � � - � �� � ��� � . Using�+$ � � - in Lemma 14, we conclude that the potential decreases
by at least ��� $ � � � � � �� � ��� � with probability greater than � 	

� � � � � 	��"� � ��� � � � due to the execution or assignment of nodes
that belong to a process in ��� .

We now bound the number of steal attempts in a work-stealing
computation.

Lemma 16 Consider a 
 -process execution of a multithreaded com-
putation with the work-stealing algorithm. Let �"� and ��� denote
the computational work and the critical path of the computation.
Then the expected number of steal attempts in the execution is���  � ����
	����� . Moreover, for any ��� � , the number of steal at-
tempts is ���  � ����
	��� ,�� � � � � � � � with probability at least � 	�� .
Proof: We analyze the number of steal attempts by breaking the
execution into phases of  � � ��
 steal attempts. We show that with
constant probability, a phase causes the potential to drop by a con-
stant factor. The first phase begins at step

� �)$ � and ends at
the first step

�  � such that at least  � ����
 steal attempts occur dur-
ing the interval of steps ! � � � �  � " . The second phase begins at step� ( $ �  � , � , and so on. Let us first show that there are at least� steps in a phase. A process has at most � outstanding steal
attempt at any time and a steal attempt takes at least � steps to
complete. Therefore, at most 
 steal attempts occur in a period
of � time steps. Hence a phase of steal attempts takes at least �  � ��� � 
�� � 
	�$# � � � time units.

Consider a phase beginning at step
�
, and let � be the step at

which the next phase begins. Then
� ,�� * � . We will show that

we have
��� � ��� *+� & � � � �� 	%� � � � . Recall that the potential can

be partitioned as ���$ �� � ��� � , �� � ��� � . Since the phase contains � � �"
 steal attempts,
��� � �� 	���� �+� � � � � �� � ��� � 	�� � � � due

to execution or assignment of nodes that belong to a process in ��� ,
by Lemma 15. Now we show that the potential also drops by a
constant fraction of �� � ��� � due to the execution of assigned nodes
that are assigned to the processes in � � . Consider a process, say
� in ��� . If � does not have an assigned node, then ��� � � ��$%� .
If � has an assigned node � , then ��� � � � $ ��� � � � . In this case,
process � completes executing node � at step

� , � 	 �& � at the
latest and the potential drops by at least � � � � � ��� � � � by property- of Lemma 13. Summing over each process � in � � , we have�� 	���� � � � � � � �� � ��� � . Thus, we have shown that the potential
decreases at least by a quarter of ��� � ��� � and �� � ��� � . Therefore
no matter how the total potential is distributed over � � and ��� , the
total potential decreases by a quarter with probability more than

� � � , that is,
��� � �� 	���� � � � � � � �� 	�� � � � .

We say that a phase is successful if it causes the potential to
drop by at least a � � � fraction. A phase is successful with prob-
ability at least � � � . Since the potential starts at ��)$%& ( � ��� �
and ends at � (and is always an integer), the number of success-
ful phases is at most � - ��� 	 � � � ' � � ( � &� � ��� . The expected
number of phases needed to obtain � �"� successful phases is at
most & - ��� . Thus, the expected number of phases is ��� �"��� , and
because each phase contains  � ���"
 steal attempts, the expected
number of steal attempts is ���  � ��� 
 ����� . The high probability
bound follows by an application of the Chernoff bound.



Theorem 17 Let � �"� ��� be the number of cache misses in a 
 -
process execution of a nested-parallel computation with a work-
stealer that has simple caches of � blocks each. Let ��� � ��� be the
number of cache misses in the uniprocess execution Then

� �!� ���"$+� � � ����, ���  � � � ��
)���+, 
�
� � ��
�� � � � � � � �

with probability at least � 	�� . The expected number of cache misses
is � � � ����, ���  � � � ��
)�����
Proof: Theorem 12 shows that the cache overhead of a nested-
parallel computation is at most twice the product of the number of
steals and the cache size. Lemma 16 shows that the number of steal
attempts is ���  � ��� 
�� ��� ,&� � � � � � � � � with probability at least � 	��
and the expected number of steals is ���  � ��� 
������ . The number
of steals is not greater than the number of steal attempts. Therefore
the bounds follow.

Theorem 18 Consider a 
 -process, nested-parallel, work-stealing
computation with simple caches of � blocks. Then, for any ��� � ,
the execution time is

��� ��� � ���
 ,��  � � � � � ��� , � � � � � � � � , � � ,�� � � ��� , � � � � � � � � �
with probability at least � � 	�� � . Moreover, the expected running
time is

��� ��� � ���
 ,��  � � � �)���+,�� � , � � �������
Proof: We use an accounting argument to bound the running time.
At each step in the computation, each process puts a dollar into one
of two buckets that matches its activity at that step. We name the
two buckets as the work and the steal bucket. A process puts a
dollar into the work bucket at a step if it is working on a node in
the step. The execution of a node in the dag adds either � or �
dollars to the work bucket. Similarly, a process puts a dollar into
the steal bucket for each step that it spends stealing. Each steal
attempt takes ��� � � steps. Therefore, each steal adds ��� � � dollars
to the steal bucket. The number of dollars in the work bucket at the
end of execution is at most ��� �"�", � � 	 � ��� �!� ��� � , which is

��� ��� � ��� , � � 	 � �
� �
��� ��
 � ��� ,�� � � � � �  � � �

with probability at least � 	��  .
The total number of dollars in steal bucket is the total number

of steal attempts multiplied by the number of dollars added to the
steal bucket for each steal attempt, which is ��� � � . Therefore total
number of dollars in the steal bucket is

��� �
� �
� � 
 � ��� ,�� � � � � �  � � �

with probability at least � 	 �  . Each process adds exactly one
dollar to a bucket at each step so we divide the total number of
dollars by 
 to get the high probability bound in the theorem. A
similar argument holds for the expected time bound.
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Figure 10: The tree of threads created in a data-parallel work-
stealing application.

7 Locality-Guided Work Stealing

The work-stealing algorithm achieves good data locality by execut-
ing nodes that are close in the computation graph on the same proc-
ess. For certain applications, however, regions of the program that
access the same data are not close in the computational graph. As
an example, consider an application that takes a sequence of steps
each of which operates in parallel over a set or array of values. We
will call such an application an iterative data-parallel application.
Such an application can be implemented using work-stealing by
forking a tree of threads on each step, in which each leaf of the tree
updates a region of the data (typically disjoint). Figure 10 shows
an example of the trees of threads created in two steps. Each node
represents a thread and is labeled with the process that executes it.
The gray nodes are the leaves. The threads synchronize in the same
order as they fork. The first and second steps are structurally iden-
tical, and each pair of corresponding gray nodes update the same
region, often using much of the same input data. The dashed rect-
angle in Figure 10, for example, shows a pair of such gray nodes.
To get good locality for this application, threads that update the
same data on different steps ideally should run on the same proces-
sor, even though they are not “close” in the dag. In work stealing,
however, this is highly unlikely to happen due to the random steals.
Figure 10, for example, shows an execution where all pairs of cor-
responding gray nodes run on different processes.

In this section, we describe and evaluate locality-guided work
stealing, a heuristic modification to work stealing which is de-
signed to allow locality between nodes that are distant in the com-
putational graph. In locality-guided work stealing, each thread can
be given an affinity for a process, and when a process obtains work
it gives priority to threads with affinity for it. To enable this, in addi-
tion to a deque each process maintains a mailbox: a first-in-first-out
(FIFO) queue of pointers to threads that have affinity for the proc-
ess. There are then two differences between the locality-guided
work-stealing and work-stealing algorithms. First, when creating
a thread, a process will push the thread onto both the deque, as
in normal work stealing, and also onto the tail of the mailbox of
the process that the thread has affinity for. Second, a process will
first try to obtain work from its mailbox before attempting a steal.
Because threads can appear twice, once in a mailbox and once on
a deque, there needs to be some form of synchronization between
the two copies to make sure the thread is not executed twice.

A number of techniques that have been suggested to improve
the data locality of multithreaded programs can be realized by the
locality-guided work-stealing algorithm together with an appropri-
ate policy to determine the affinities of threads. For example, an



initial distribution of work among processes can be enforced by set-
ting the affinities of a thread to the process that it will be assigned
at the beginning of the computation. We call this locality-guided
work-stealing with initial placements. Likewise, techniques that
rely on hints from the programmer can be realized by setting the
affinity of threads based on the hints. In the next section, we de-
scribe an implementation of locality-guided work stealing for iter-
ative data-parallel applications. The implementation described can
be modified easily to implement other techniques mentioned.

7.1 Implementation
We built locality-guided work stealing into Hood. Hood is a multi-
threaded programming library with a nonblocking implementation
of work stealing that delivers provably good performance under
both traditional and multiprogrammed workloads [2, 10, 30].

In Hood, the programmer defines a thread as a C++ class, which
we refer to as the thread definition. A thread definition has a
method named run that defines the code that the thread executes.
The run method is a C++ function which can call Hood library
functions to create and synchronize with other threads. A rope is
an object that is an instance of a thread definition class. Each time
the run method of a rope is executed, it creates a new thread. A
rope can have an affinity for a process, and when the Hood run-time
system executes such a rope, the system passes this affinity to the
thread. If the thread does not run on the process for which it has
affinity, the affinity of the rope is updated to the new process.

Iterative data-parallel applications can effectively use ropes by
making sure all “corresponding” threads (threads that update the
same region across different steps) are generated from the same
rope. A thread will therefore always have an affinity for the process
on which it’ s corresponding thread ran on the previous step. The
dashed rectangle in Figure 10, for example, represents two threads
that are generated in two executions of one rope. To initialize the
ropes, the programmer needs to create a tree of ropes before the first
step. This tree is then used on each step when forking the threads.

To implement locality-guided work stealing in Hood, we use
a nonblocking queue for each mailbox. Since a thread is put to a
mailbox and to a deque, one issue is making sure that the thread
is not executed twice, once from the mailbox and once from the
deque. One solution is to remove the other copy of a thread when
a process starts executing it. In practice, this is not efficient be-
cause it has a large synchronization overhead. In our implementa-
tion, we do this lazily: when a process starts executing a thread, it
sets a flag using an atomic update operation such as test-and-set or
compare-and-swap to mark the thread. When executing a thread, a
process identifies a marked thread with the atomic update and dis-
cards the thread. The second issue comes up when one wants to
reuse the thread data structures, typically those from the previous
step. When a thread’ s structure is reused in a step, the copies from
the previous step, which can be in a mailbox or a deque needs to
be marked invalid. One can implement this by invalidating all the
multiple copies of threads at the end of a step and synchronizing
all processes before the next step start. In multiprogrammed work-
loads, however, the kernel can swap a process out, preventing it
from participating to the current step. Such a swapped out process
prevents all the other processes from proceeding to the next step. In
our implementation, to avoid the synchronization at the end of each
step, we time-stamp thread data structures such that each process
closely follows the time of the computation and ignores a thread
that is “out-of-date”.

Benchmark Work Overhead Critical Path Average
( ��� ) (

� �
� � ) Length ( ��� ) Par. (

� �
� � )

staticHeat � � � � � � � � �
heat � � � - � � � � - � � � � � & � � � � �
lgHeat � � � & � � � � - � � � � � & � - � � �
ipHeat � � � & � � � � - � � � � � & � - � � �
staticRelax � � � � � � � � �
relax � & � � & � � � � � � � & � � � - � � � �
lgRelax � � � - - � � � � � � � & � � � & & � � �
ipRelax � � � - - � � � � � � � & � � � & & � � �

Table 1: Measured benchmark characteristics. We compiled all
applications with Sun CC compiler using -xarch=v8plus -O5
-dalign flags. All times are given in seconds. � � denotes the
execution time of the sequential algorithm for the application and� � is � � � � � for Heat and 40.99 for Relax.

7.2 Experimental Results
In this section, we present the results of our preliminary experi-
ments with locality-guided work stealing on two small applications.
The experiments were run on a � � processor Sun Ultra Enterprise
with � � � MHz processors and � M byte L2 cache each, and running
Solaris 2.7. We used the processor bind system call of Solaris
2.7 to bind processes to processors to prevent Solaris kernel from
migrating a process among processors, causing the process to loose
its cache state. When the number of processes is less than num-
ber of processors we bind one process to each processor, otherwise
we bind processes to processors such that processes are distributed
among processors as evenly as possible.

We use the applications Heat and Relax in our evaluation.
Heat is a Jacobi over-relaxation that simulates heat propagation
on a - dimensional grid for a number of steps. This benchmark was
derived from similar Cilk [27] and SPLASH [35] benchmarks. The
main data structures are two equal-sized arrays. The algorithm runs
in steps each of which updates the entries in one array using the data
in the other array, which was updated in the previous step. Relax
is a Gauss-Seidel over-relaxation algorithm that iterates over one a

� dimensional array updating each element by a weighted average
of its value and that of its two neighbors. We implemented each
application with four strategies, static partitioning, work stealing,
locality-guided work stealing, and locality guided work stealing
with initial placements. The static partitioning benchmarks divide
the total work equally among the number of processes and makes
sure that each process accesses the same data elements in all the
steps. It is implemented directly with Solaris threads. The three
work-stealing strategies are all implemented in Hood. The plain
work-stealing version uses threads directly, and the two locality-
guided versions use ropes by building a tree of ropes at the begin-
ning of the computation. The initial placement strategy assigns ini-
tial affinities to the ropes near the top of the tree to achieve a good
initial load balance. We use the following prefixes in the names of
the benchmarks: static (static partitioning), none, (work steal-
ing), lg (locality guided work stealing), and lg (lg with initial
placement).

We ran all Heat benchmarks with -x 8K -y 128 -s 100
parameters. With these parameters each Heat benchmark allo-
cates two arrays of double precision floating point numbers of � � � -
columns and � - � rows and does relaxation for � � � steps. We ran all
Relax benchmarks with the parameters -n 3M -s 100. With
these parameters each Relax benchmark allocates one array of &
million double-precision floating points numbers and does relax-
ation for � � � steps. With the specified input parameters, a Relax
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Figure 13: Number of steals in the Heat
benchmarks.

benchmark allocates � � Megabytes and a Heat benchmark allo-
cates - � Megabytes of memory for the main data structures. Hence,
the main data structures for Heat benchmarks fit into the collective
L2 cache space of � or more processes and the data structures for
Relax benchmarks fit into that of � or more processes. The data
for no benchmark fits into the collective L1 cache space of the Ul-
tra Enterprise. We observe superlinear speedups with some of our
benchmarks when the collective caches of the processes hold a sig-
nificant amount of frequently accessed data. Table 1 shows charac-
teristics of our benchmarks. Neither the work-stealing benchmarks
nor the locality-guided work-stealing benchmarks have significant
overhead compared to the serial implementation of the correspond-
ing algorithms.

Figures 11 and Figure 1 show the speedup of the Heat and
Relax benchmarks, respectively, as a function of the number of
processes. The static partitioning benchmarks deliver superlinear
speedups under traditional workloads but suffer from the perform-
ance cliff problem and deliver poor performance under multipro-
gramming workloads. The work-stealing benchmarks deliver poor
performance with almost any number of processes. the locality-
guided work-stealing benchmarks with or without initial placements,
however, matches the static partitioning benchmarks under tradi-
tional workloads and delivers superior performance under multi-
programming workloads. The initial placement strategy improves
the performance under traditional work loads, but it does not per-
form consistently better under multiprogrammed workloads. This
is an artifact of binding processes to processors. The initial place-
ment strategy distributes the load among the processes equally at
the beginning of the computation but binding creates a load imbal-
ance between processors and increases the number of steals. In-
deed, the benchmarks that employ the initial-placement strategy
does worse only when the number of processes is slightly greater
than the number of processors.

The locality-guided work-stealing delivers good performance
by achieving good data locality. To substantiate this, we counted
the average number of times that an element is updated by two
different processes in two consecutive steps, which we call a bad
update. Figure 12 shows the percentage of bad updates in our
Heat benchmarks with work stealing and locality-guided work-
stealing. The work-stealing benchmarks incur a high percentage
of bad updates, whereas the locality-guided work-stealing bench-
marks achieve a very low percentage. Figure 13 shows the num-
ber of random steals for the same benchmarks for varying number
of processes. The graph is similar to the graph for bad updates,
because it is the random steals that causes the bad updates. The
figures for the Relax application are similar.
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