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Abstract. In this paper we follow up our discussion on algorithms suitable for optimization of systems gov-
erned by partial differential equations. In the first part of of this paper we proposed a Lagrange-Newton-Krylov-Schur
method (LNKS) that uses Krylov iterations to solve the Karush-Kuhn-Tucker system of optimality conditions, but
invokes a preconditioner inspired by reduced space quasi-Newton algorithms. In the second part we focus our dis-
cussion to the outer iteration and we provide details on how to obtain a robust and globally convergent algorithm.
Newton’s step is known to lead to divergence for points far from the optimum. Furthermore for highly nonlinear
problems the computation of a step by itself is very difficult (for both QN-RSQP and LNKS methods). As a rem-
edy we employ line search methods, mixing quasi-Newton with Newton algorithms and continuation. We test the
globalized LNKS algorithm on a optimal flow control problem were the constraints are the steady incompressible
Navier-Stokes equations. The objective function is the minimization of the dissipation functional. We report results
from runs on up to 128 processors on a T3E-900 at the Pittsburgh Supercomputing Center. Tests on cylinder and
wing flow problems demonstrate the very good parallelism and scalability of the new method. Moreover, LNKS is an
order of magnitude faster than reduced quasi-Newton SQP, and we are able to solve previously intractable problems
of up to 800,000 state and 5,000 decision variables—at 5 times the cost of a single PDE solution.

1. Introduction. In the first part of the paper we concentrated on the Krylov-Schur
solver–the inner iterative solver and the preconditioner that accelerate the computations of a
Newton step for the KKT optimality conditions. We also examined the parallelizability and
scalability of the LNKS algorithm. In the second part we follow up with algorithmic and
implementation details on the outer Lagrange-Newton solver. We also look at more stringent
test problems that contain many features of the most challenging PDE-constrained optimiza-
tion problems: three-dimensionality, multicomponent coupling, large scale, nonlinearity, and
ill-conditioning. The problem is one of optimal control of a viscous incompressible fluid by
boundary velocities, a problem of both theoretical and industrial interest.

Following part I, we refer to the unknown PDE field quantities as thestate variables;
the PDE constraints as thestate equations; solution of the PDE constraints as theforward
problem; the inverse, design, or control variables as thedecision variables; and the problem of
determining the optimal values of the inverse, design, or control variables as theoptimization
problem.

This paper is organized as follows: In Section 2 we present our globalization methodolo-
gies. We give details on three techniques: line search, mixing QN-RSQP steps with LNKS
steps, and continuation. To enhance robustness, these methodologies are combined in the
globalized LNKS algorithm. We also discuss inexact Newton methods and how they fit
within the context of the LNKS algorithm. Implementation specifics are given at the end
of this section.

Let us add some comments on our notation conventions. We use boldface characters to
denote vector valued functions and vector valued function spaces. We use roman characters
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2 G. BIROS AND O. GHATTAS

to denote discretized quantities and italics for their continuous counterparts. For example
u will be the continuous velocity field andu will be its discretization. Greek letters are
overloaded and whether we refer to the discretization or the continuous fields should be clear
from context. We also use(+) as a subscript or superscript to denote variable updates within
an iterative algorithm.

2. The Newton solver.Let us reconsider the constrained optimization problem formu-
lation,

min
x2RN

f(x) subject to c(x) = 0;(2.1)

wherex 2 R
N are the optimization variables,f : RN ! R is the objective function and

c : RN ! R
n are the constraints, which in our context are the discretized state equations.

The Lagrangian,

L(x;�) := f(x) + �T c(x);(2.2)

is used to convert the constrained optimization problem to a system of nonlinear equations.These
equations are the first order optimality conditions:�

@xL

@�L

�
(x;�) =

�
g(x) +A(x)T�

c(x)

�
= 0 (orh(q) = 0):(2.3)

We useg for the gradient of the objective function,A for the Jacobian of the constraints and
W for the Hessian of the Lagrangian. We use Newton’s method to solve forx and�. A
Newton step on the optimality conditions is given by�

W AT

A 0

��
px
p�

�
= �

�
g +AT�

c

�
( orKv = �h);(2.4)

wherepx andp� are the updates ofx and� from current to next iterations. In Part I we
reviewed the most popular algorithm for solving for a KKT point, the RSQP algorithm and
its quasi-Newton variant (Algorithm 3 in the first paper). Although these algorithms are
very efficient and robust, they do not scale very well with the number of decision variables.
These algorithms avoid solving (2.4) directly, but require a large number of linearized forward
solves and thus can be inefficient for large-scale PDE-constrained optimization. We argued
that a better approach would be to stay in the full space and use a Krylov method to solve
(2.4). However, the KKT matrix is notoriously ill-conditioned. In the first part of this paper
we addressed this problem by proposing efficient preconditioning techniques. The key idea
was to use approximate versions of QN-RSQP as preconditioners. We showed that RSQP
can be viewed as a block-LU factorization in which the reduced HessianWz is the Schur
complement for the decision variables and this forms the basis of the preconditioner. The
basic sketch of the LNKS algorithm given by Algorithm 1. We termed the method “Lagrange-
Newton-Krylov-Schur”, algorithm for concatenation of “Lagrange-Newton” method which
is used in the outer iteration and “Krylov-Schur” is used to converge the inner iteration. We
also provided theoritical and numerical evidence that these preconditioners work very well.
In order to isolate the inner iteration we solved problems with quadratic objective functions
and linear constraints (quadratic programs).

Nevertheless, there are two questions that should be answered before we can claim a fast
and robust general-purpose algorithm. The first one is whether LNKS algorithm is convergent
for any initial guess(x0;�0) and the second is whether we can utilize inexact1 Newton meth-
ods to further accelerate LNKS. Within this framework we examine line search algorithms,
mixing QN-RSQP and LNKS algorithms, continuation, and inexact Newton methods.

1Some authors use the term “truncated” instead of “inexact”.
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Algorithm 1 Lagrange-Newton-Krylov-Schur
1: Choosex;�
2: loop
3: Check for convergence
4: Computec;g;A;W
5: SolveP�1Kv = P�1h (Newton Step)
6: Updatex = x+ px
7: Update� = �+ p�
8: end loop

3. Line search methods.Algorithm 1 is only locally convergent. Popular methodolo-
gies to globalize Newton’s method include line search and trust region algorithms. Details
can be found in [18]. Recently, there has been an increased interest in trust region method-
ologies, especially in combination with RSQP and inexact Newton methods. These methods
have been successfully applied to PDE-constrained optimization [11], [14], [16]. Global con-
vergence proofs for these methods can be found in [3]. Trust region methods are based on
the Steihaug modification [21] of the Conjugate Gradient (CG) algorithm. However, this ap-
proach works only with positive definite systems. Since the reduced Hessian is assumed to be
positive definite CG can be used. It is not obvious how to use trust-regions with an indefinite
Krylov solver (which is required for the KKT system) and thus we have opted to use a line
search algorithm.

The basic component of a line search algorithm is the choice of a merit function; a
scalar function (of the optimization variables) that monitors the progress of the algorithm. In
contrast with unconstrained optimization, the choice of a merit function is not straightforward
since we are trying to balance minimization of the objective function with feasibility. The two
most popular choices are thel1-merit function and the augmented Lagrangian. Thel1-merit
function is given by

�(x) := f + ��kck1;(3.1)

and augmented Lagrangian by

�(x;�) := f + cT�+
��

2
cT c:(3.2)

The scalar�� is thepenalty parameter—a weight chosen to bring the right balance be-
tween minimizing the objective function and minimizing the residuals of the constraints. Both
merit functions are exact provided the penalty parameter is large enough. By exact we mean
that if (x�;��) is a minimizer for (2.1), then it is also an (unconstrained) minimizer for the
merit function. A crucial property of a merit function is that it should accept unit step lengths
close to a solution, and therefore permit Newton quadratic convergence to be observed. The
l1-merit function often suffers from the “Maratos” effect, that is, sometimes it rejects good
steps and slows down the algorithm. The augmented Lagrangian merit function does not
exhibit such behavior but its drawback is that it requires accurate estimates of the Lagrange
multipliers to perform well. Both algorithms are sensitive to the penalty parameter which
must be judiciously chosen; otherwise, it can result in an unbounded merit function, or very
slow algorithms.

The outline of the algorithm for a line search based optimization is given in Algorithm
2. We use�(0) for �(q) and�(�) for �(q + �v) (likewise for the derivativer�). The
algorithm used to compute the search directionv is left intentionally unspecified. All that
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Algorithm 2 Line search
1: Chooseq; �A > 0 and�1, �2 arbitrary constants
2: while Not convergeddo
3: Compute search directionv so that

vTr�(0) < 0
j vTr�(0)j � �1 kvk kr�(0)k
kvk � �2kr�(0)k

4: Compute� such that�(�) � �(0) + ��Av
Tr�(0) Armijo criterion

5: Setq = q+ �v

6: end while

matters to ensure global convergence, is the properties of the merit function and the properties
of v. The conditions 3 in Algorithm 2 are descent direction, sufficient angle and sufficient
step size conditions [7]. The condition in Step 4 is often called the Armijo condition. If
� is bounded and takes its minimum at a finite point, and ifv is bounded, Algorithm 2 is
guaranteed to converge to a local minimum if search directions are bounded [17]. The line
search algorithm we use is simple backtracking (with a factor of 0.5). The search is bounded
so that�min � � � 1. As mentioned before, the choice of the penalty parameter has a great
effect on the performance of the algorithm.

For thel1-merit function the update is relatively straightforward. The directional deriva-
tive for a search directionpx is given by

r�Tpx = gTpx � ��kck1:(3.3)

If Wz is positive definite it can be shown that by setting

�� = k�k1 + �; � > 0;(3.4)

we obtain a descent direction. In numerical experiments thel1-merit function performed
reasonably well. However, we did observe the Maratos effect, usually on steps computed by
QN-RSQP. To overcome this obstacle we have implemented the second order correction trick
(used only with QN-RSQP), in which an extra normal step (towards feasibility) is taken ([18],
p.570).

When an augmented Lagrangian merit function is used the penalty parameter should be
chosen differently. The inclusion of Lagrange multipliers slightly complicates the algorithm.
Some researchers consider� as a function ofx [2], [6], but others treat it as an independent
variable [3], [20]. In [22] the derivative of the merit with respect to� is taken to be zero. The
directional derivative of the augmented Lagrangian merit function is given by

r�Tv = (g +AT�+ ��A
T c)Tpx + c

Tp�:(3.5)

In LNKS we solve for� simultaneously withx and it is natural to use the stepp�. On the
other hand, QN-RSQP uses� = �A�Ts gs and it seems natural to consider� a function of
x. In this case the last term in (3.5) is given by

cTp� = cT (@x�)px;

where

@x� := �A�Ts
�
Wss Wsd

�
:
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If we set

�� =
(g+AT�)px + c

Tp� + �

cTApx
; � > 0;(3.6)

we obtain a descent direction.

4. Combining QN-RSQP with LNKS. For iterates far from the solution, relying solely
on a line search algorithm will not work since the Newton step is likely to be of very poor
quality. Usually global convergence can be shown if the reduced Hessian (Wz) is positive
definite (and not the full HessianW). If Wz is positive definite (and assuming the system
(2.4) is solved exactly), then the resulting stepv satisfies the descent criterion (for reason-
able merit functions.). This is where quasi-Newton methods have an advantage over Newton
methods. For example, by using a BFGS approximation ofWz, positive definiteness can be
guaranteed. LNKS does maintain a BFGS approximation—not for driving the outer iteration
but for preconditioning purposes. Therefore, the remedy for an indefinite reduced Hessian is
simple: if a computed search direction fails to satisfy the test of the line search algorithm,
we discard the search directions and take a QN-RSQP step. For this reason, even if we use a
different preconditioner for the reduced Hessian, we also maintain a BFGS approximation of
Wz.

5. Continuation. One of the standard assumptions in global convergence proofs is that
the Jacobian of the constraints is non-singular for all iterates of the optimization variables.
For highly nonlinear PDEs like the Navier-Stokes equations this is an unrealistic assumption.
Even if the Jacobian is nonsingular, severe ill-conditioning will cause both QN-RSQP and
LNKS algorithms to stall. Indeed, in our numerical experiments the most difficult challenge
(for iterates far from the solution) was converging theAs orK linear solves. Krylov solvers
reached their maximum iteration bounds with the (linear system) residuals not having de-
creased significantly. As a result, the iterates were of very poor quality and the algorithm
stagnated as it was impossible to compute a search direction, be it from QN-RSQP or LNKS.

A remedy to this problem is continuation. This idea (in its simplest form) works when we
can express the nonlinearity of the problem as a function of a single scalar parameter. Con-
tinuation is particularly suitable for PDE-constrained optimization because it is quite typical
for a PDE to have a parameter that scales the nonlinearities. Examples of such parameters are
the Reynolds and Mach numbers in fluid mechanics, the Peclet number in general convection
diffusion equations, and the Hartman number in magnetohydrodynamics. In problems where
such a parameter cannot be found an alternative is pseudo-transient continuation [15].

Continuation allows uphill steps (unlike monotone line search methods) to be taken and
generates good initial guesses, not only for the optimization variables, but also for the penalty
parameter in the merit function. The most important feature of the continuation algorithm is
that it globalizes trivially2. If the continuation step brings the next iterate outside the attraction
basin of the Newton method the we simply reduced the step size. In principle, the method
can be made to work without incorporating any other globalization strategy. Nevertheless,
taking a large number of continuation steps can significantly slow down the algorithm. Ex-
perience from our numerical experiments suggests that the best strategy is a combination of
line searching, QN steps for indefinite Hessians, and continuation.

6. Inexact Newton’s method.Before we discuss inexact Newton’s method in the con-
text of LNKS, we briefly summarize a few results for a general nonlinear system of equations.

2This is true only when all iterates on the continuation path are far from turning and bifurcation points. In other
words, the physics of the problem does not produce singular Jacobians.
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Assume we want to solveh(q) = 0. Further assume the following: (1)h andK := @qh are
smooth enough in a neighborhood of a solutionq�; (2) at each iteration an inexact Newton
method computes a stepv that satisfies

kKv + hk � �Nkhk;(6.1)

where�N is often called theforcing term. It can be shown that if�N < 1 thenq ! q�

linearly; if �N ! 0 thenq ! q� superlinearly; and if�N = O(khk) then we recover the
quadratic convergence rates of a Newton method. The forcing term is usually given by

�N =
kh(+) � h�Kvk

khk
:(6.2)

Other alternatives exist (for details see [5]).
The extension of inexact methods to optimization is immediate, especially for uncon-

strained optimization. In [11] a global analysis is provided for a trust region RSQP-based
algorithm. Close to a KKT point the theory for Newton’s method applies and one can use the
analysis presented in [4] to show that the inexact version of the LNKS algorithm converges.
However, the line search we are using is not based on the residual of the KKT equations but
instead on the merit function discussed in the previous session. That means that an inexact
step that simply reduceshmay not satisfy the merit function criteria. We will next show that
for points close enough to the solution inexactness does not interfere with the line search. In
our analysis we use the augmented Lagrangian merit function.We assume that, locally,A and
K are non-singular and uniformly bounded. We define�1 := maxkK�1(q)k for q in the
neighborhood of the solutionq�. We also definev as the exact solution of the (linearized)
KKT system so that

Kv + h = 0;

and~v the approximate solution so that

K~v + h = r:

We also havekrk = �Nkhk from the inexact Newton stopping criterion (6.1). By (2.3) we
get thatkhk2 = kg+AT�k2+ kck2 and sinceA is bounded, there is constant�2 such that:

kAT ck � �2khk:(6.3)

We assume the following: (1)�� is sufficiently large so that the merit function is exact and
kr�k � �3khk for some constant�3; (2) v satisfies the gradient and length conditions,
as well as the Armijo condition. From the latter it is immediate thatv satisfies the Cauchy
fraction condition3:

jr�Tvj � 2�4kr�k
2:(6.4)

We will show that if�N is small enough then the approximate step~v satisfies the Cauchy
fraction condition, and that it satisfies the gradient and length conditions. Then, we will use
a theorem from [17] to conclude that the Armijo condition is satisfied with unit steplengths
and thus if�N = O(khk) quadratic convergence is preserved.

Note that

r�T ~v = r�Tv +r�TK�1r

3The Cauchy step is a steepest descent step for the merit function.
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and thus by (6.4) we get

jr�T ~vj � 2�4kr�k
2 � jr�TK�1rj

Therefore to satisfy the Cauchy fraction condition

jr�T ~vj � �4kr�k
2;(6.5)

we need to show that

jr�TK�1rj � �4kr�k
2:(6.6)

The gradient of the merit function is given by

r� = h+ ��

�
AT c

0

�
;

and thus

jr�TK�1rj = jhTK�1r+ ��

�
AT c

0

�T

K�1rj

� �1
�
khk krk+ ��kA

T ck krk
�

� �1�N
�
khk2 + ��kA

T ck khk
�

� �1�N (1 + ���2)khk
2

� �1�N (1 + ���2)
kr�k2

�23

If

�N �
�4 �

2
3

�1(1 + ���2)
(6.7)

then (6.6) holds. If we choose a superlinearly convergent inexact Newton variant then

�N ! 0;

and therefore close to the solution (6.7) is satisfied. We also have that

~v =K�1(r� h)

k~vk � �1(1 + �N )khk

k~vk � �1(1 + �N )
kr�k

�3
:(6.8)

By combining (6.8) and (6.5) we get

jr�T ~vj � kr�k2 � kr�k k~vk;

and

kr�k k~vk � jr�T ~vj � kr�k2 )

k~vk � kr�k:
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That is, the gradient and angle conditions are satisfied. It can be shown ([17], Theorem 10.6)
that the Armijo condition can be satisfied with� bounded below, and thus by choosing�A
small enough, the Armijo condition is satisfied with unit steplength. Hence the quadratic
convergence rates associated with Newton’s method are observed, i.e. the inexactness does
not interfere with the merit function. In addition it can be shown that the augmented La-
grangian merit function allows unit steplength near the solution (see [6], [20] and the refer-
ences therein). Finally, notice that convergence does not require that�N ! 0; it only requires
that�N is small enough. This is in contrast with inexact reduced space methods which re-
quire the tolerances to tighten as the iterates approach the solution (reduced gradient needs to
be computed accurately.).

7. The globalized LNKS algorithm. In the previous sections we discussed the various
features of our globalization strategies. In this section we summarize by giving a high-level
description of implementation details and heuristics we are using in the globalized LNKS.
The statement of the algorithm is given by Algorithm 3. The algorithm uses a three-level iter-

Algorithm 3 Globalized LNKS
1: Choosexs; xd; ��; t; �A, setRe = Restart ; tol = tol0

2: AT
s �+ gs � 0 solve inexactly for�

3: while Re 6= Retarget do
4: loop
5: Evaluatef; c; g; A; W
6: gz = gd +A

T
d �

7: Check convergence:kg+AT�k � tol andkck � tol

8: P�1Kv +P�1h � 0 solve inexactly forv
9: Compute�� such thatr�T (0)v � 0

10: Compute� s.t.�(�) � �(0) + �A�(r�
T (0)v)

11: if Line search failedthen
12: Compute� s.t.kh(�)k2 < tkh(0)k2

13: end if
14: if LNKS step failedthen
15: Bzpd = �gz solve inexactly forpd
16: Asps +Adpd + c � 0 solve inexactly forps
17: AT

s �+ + gs � 0 solve inexactly for�+
18: Compute� s.t.�(�) � �(0) + �A�(r�

T (0)v)
19: if Line search on QN-RSQP step failedthen
20: ReduceRe and go to step 5.
21: end if
22: end if
23: �+ = �+ p� (only for LNKS step)
24: x+ = x+ px
25: end loop
26: Re = Re +�Re

27: Tightentol
28: end while

ation. In the outer iteration the continuation parameter number is gradually increased until the
target number is reached.The middle iterations correspond to Lagrange-Newton linearizations
of the optimality system for a fixed continuation number. Finally, the inner iteration consists
of two core branches: the computation of an LNKS search direction and the computation of
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the search direction with QN-RSQP. The default branch is the LNKS step. If this step fails to
satisfy the line search algorithm conditions then we switch to QN-RSQP. If QN-RSQP fails
too, then we reduce the continuation parameterRe and we return to the outer loop.

Here we clarify some specific features of the algorithm:
� Linear solves at steps 8, 16 and 17 are performed inexactly. We follow [5] in choos-

ing the forcing term. In steps 16, and 17 the forcing term formula useskck, whereas
in 8 it useskhk. In 7 we also usedkr�k but in numerical experiments we found no
significant differences.

� In step 6 we use the adjoint variables to update the reduced gradient. This is equiva-
lent togz = gd �A

T
dA

�T
s gs, if � is computed by solving exactlyAT

s �+ gs = 0.
When� is taken from LNKS, it includes second order terms (which reduce to zero
as we approach the solution), and when� is taken from QN-RSQP it also intro-
duces extra error since we never solve the linear systems exactly. In our numerical
experiments this approximation has not caused problems.

� We use various heuristics to bound the penalty parameter and if possible reduce
it. A new penalty parameter�+� is computed using the LNKS step and formula

(3.6). If �+� > 4�� we update the penalty parameter and we switch to QN-RSQP. If
�+� < 4�� we reducethe penalty parameter and set�+� = 0:5��. We also use the
augemented Lagrangian merit when we evaluate QN-RSQP steps. Another alterna-
tive would be to use thel1-merit function.

� We allow for non-monotone line searches. If the LNKS step is rejected by the merit
function line search we do not switch immediately to QN-RSQP. Instead we do a line
search (step 12) on the KKT residual (as if we were treating the KKT conditions as
nonlinear equations) and if the step is accepted we use it to update the variables for
the next iteration. However, we do store the iterate and the merit function gradient,
and we insist that some step satisfies the conditions of the merit line search (evalu-
ated at the failure point) after a fixed number of iterations. Otherwise, we switch to
QN-RSQP. This heuristic has been very successful. Typically, we permit two steps
before we demand reduction of the merit function.

Algorithm 4 Limited BFGS
1: q = x, andl = number of stored vectors
2: for i = k � 1; k � 2; : : : ; k � l do
3: �i = !i s

T
i q

4: q = q� �iyi
5: end for
6: z = B�1z;0q

7: for i = k � l; k � l + 1; : : : ; k � 1 do
8: � = !i y

T
i z

9: z = z+ si(�i � �)
10: end for

� We use the BFGS method for the quasi-Newton approximation of the reduced Hes-
sian. The name comes from the inventors of the method, Broyden, Fletcher, Gold-
farb, and Shanno. At each outer iteration we compute

s = p
(+)
d � pd;

y = g(+)z � gz;
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and the update of the approximation to the inverse of the reduced Hessian is given
by

B�1+ = (I � !ysT )TB�1(I � !ysT ) + !ssT ; ! =
1

yT s
:(7.1)

If we encounter an iterate that hasyT s � �kyk we skip the update.B�1 is dense;
thus for large decision-space problems, storing this matrix (or a factorization of
it) can be problematic or even impossible. Furthermore, it is not obvious how to
parallelize the application of a denseB�1 to a vector since it involves all-to-all
communication and may be very expensive on a parallel computer. For these reasons
we have opted for a limited memory version of the BFGS algorithm. When updating
we do not compute (7.1) but instead we simply stores andy. Then the action of
B�1 to a vectorx is given in Algorithm 4. Analysis and details for the convergence
properties of this algorithm can be found in [18]. The stationary preconditioner can
be combined with BFGS (used asBz;0).

� A Lanzos algorithm can be used to (approximately) check the second-order opti-
mality conditions. If the lowest eigenvalue of~Wz is negative then a QN-RSQP step
is taken without computing the full-space directions. The eigenvalues are frozen
through a single continuation step, but if a negative direction is detected they are
recomputed at each SQP iteration.

In the next section we study an optimal control problem of the steady incompressible
Navier-Stokes equations. We cite results on the existence and uniqueness of solutions and
make comparisons between the discrete and continuous forms of the optimality conditions.

8. Formulation of an Optimal Control Problem. In this section we would like to
turn our attention to the formulation and well-posedness of a specific optimization problem:
the Dirichlet control of the steady incompressible Navier-Stokes equations. We present the
continuous form of the Karush-Kuhn-Tucker optimality conditions and we cite convergence
results for finite element approximations from [12] and [13]. A survey and articles on this
topic can be found in [9]. More on the Navier-Stokes equations can be found in [8, 10]. We
are studying problems in which we specify both Dirichlet and Neumann boundary conditions.
The controls are restricted to be only of Dirichlet type but the theory is similar for distributed
and Neumann controls.

We use the velocity-pressure(u; p) form of the incompressible steady state Navier-
Stokes equations. We begin by writing a strong form of the Navier-Stokes equations:

��r � (ru+ruT ) + (ru)u+rp = b in 
;
r � u = 0 in 
;
u = ug on �u;
u = ud on �d;

�pn+ �(ru+ruT )n = 0 on �N :

(8.1)

Here� = 1=Re and the decision variables are the velocitiesud on�d. For a forward solve
we need not distinguish between�d and�u. In the optimization problem however,ud is
not known. We will present a mixed formulation that treats the tractions on the Dirichlet
boundary�d as additional unknown variables. The traction variables are used to enforce the
Dirichlet boundary conditions [1].

With L2(
) we denote the space of scalar functions (in
) which are square-integrable
and withH1(
) we denote vector functions whose first derivatives are inL2(
). H1=2(�)
is the trace space (the restriction on�) of functions belonging toH1(
). FinallyH�k(D)
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is the set of bounded linear functionals on functions belonging toHk(D), whereD is some
smooth domain inR3 . We also define

V :=
�
v 2H1(
) : vj�u = 0

	
:

We define the following bilinear and trilinear forms associated with the Navier-Stokes equa-
tions:

a(u;v) :=

Z



(ru+ruT ) � (rv +rvT ) d
 8 u;v 2H1(
);

c(w;u;v) :=

Z



(ru)w � v d
 8 u;v;w 2H1(
);

b(q;v) :=

Z



�qr � v d
 8 q 2 L; v 2H1(
):

We also use the notation(x;y)D for
R
D
x � y dD.

In the weak formulation of (8.1) we seeku 2 H1(
); p 2 L2(
) and� 2 H�1=2(�d)
such that:

�a(u;v) + c(u;u;v) + b(p;v)� (�;v)�d = (f ;v)
 8 v 2 V ;

b(q;u) = 0 8 q 2 L2(
);(8.2)

� (t;u)�d = �(t;ud)�d 8 t 2H�1=2(�d):

We also defined to be the decision field (so thatud = d). Based on the above formulation we
can proceed in defining the Lagrangian function for the optimization problem. The objective
function is given by

J (u;d) :=
�

2
a(u;u) +

�

2
(d;d)�d ;

and (the weak form of) the constraints are given by (8.2). We define the Lagrangian function
as follows:

L(u; p;d;�;�; �; � ) := J (u;d)

+ �a(u;�) + c(u;u;�)� (�;�)�d � (f ;�)
 + b(p;�)

+ b(�;u)� (� ;u� d)�d ;(8.3)

8 u 2H1(
); p 2 L2(
); � 2H�1=2(�d); d 2H
1=2(�d);

8 � 2 V ; � 2 L2(
); � 2H�1=2(�d):

Here�; �; � are the Lagrange multipliers for the state variablesu; p;�. By taking variations
with respect to the Lagrange multipliers we obtain (8.2) augmented withud = d on �d.
Taking variations with respect to the statesu; p;� we obtain the weak form of the adjoint
equations:

�a(�;v) + c(v;u;�) + c(u;v;�) + b(�;v) + (� ;v)�d = ��a(u;v) 8 v 2 V ;

b(q;�) = 0 8 q 2 L2(
)(8.4)

(t;�)�d = 0 8 t 2H�1=2(�d):

Finally, by taking variations with respect tod we obtain the decision equation

�(d; r)�d + (� ; r)�d = 0 8 r 2H1=2(�d):(8.5)



12 G. BIROS AND O. GHATTAS

Equations (8.2), (8.4), (8.5) are the weak form of the first order optimality conditions
for the optimal control problem. In [12], [13] there is extensive discussion on the existence
of a solution and the existence of the Lagrange multipliers. Hou in his PhD thesis asserts
the existence of a local minimum for the optimization problem and the existence of Lagrange
multipliers that satisfy the first order optimality conditions. Furthermore, uniqueness is shown
upon sufficiently small data. Note that in the absence of a Neumann condition (�N = ;) the
space for the control variables needs to satisfy the incompressibility condition(d �n)�d = 0.

The strong form of the adjoint and decision equations can be obtained by using the fol-
lowing integration by parts formulas:

a(u;v) = �(v;�u)
 + ((ru)n;v)�;

c(u;v;�) = �c(u;�;v)� ((r � u)�;v)
 + ((u � n)�;v)�;

b(�;v) = (r�;v)
 � (�n;v)�:

Upon sufficient smoothness we arrive at the strong form optimality conditions. Equation
(8.1) is the strong form of the constraints. The strong form of the adjoint equations is given
by

� �r � (r�+r�T ) + (ru)T�� (r�)u+r� = �r � (ru+ruT ) in 
;

r � � = 0 in 
;

� = 0 on �u;(8.6)

� = 0 on �d;

� �n+ �(r�+r�T )n+ (u � n)� = ��(ru+ruT )n on �N ;

and (equation for� )

�(r�+r�T )n+ �(ru+ruT )n� � = 0 on �d:(8.7)

We may also determine that the strong form of the decision equation is given by

� = �d on �d:(8.8)

In [12] estimates are given on the convergence rates of the finite element approximations
to the exact solutions for the optimal control of steady viscous flow. For the case of bound-
ary velocity control, the basic result is that, if the exact solutions are smooth enough, then,
provided the Taylor-Hood element is used (for both adjoints and states), the solution error
satisfies the following estimates:

ku� uhk0 � O(h3);

kp� phk0 � O(h2);
(8.9)

k�� �hk0 � O(h3);

k�� �hk0 � O(h2):

Hereh is the maximum element size, andk � k0 is theL2(
) norm.

9. Discrete and discretized optimality conditions.. In our implementation we have
not discretized the continuous forms of the optimality conditions. Instead we have discretized
the objective function and the Navier-Stokes equations and then we used this discretization
to form the optimality conditions. In general discretization and differentiation (to obtain
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optimality conditions) do not commute. That is, ifA is the continuous (linearized) forward
operator andA� is its adjoint then in general

(A�)h 6= (Ah)
T :

We will show that for Galerkin approximation of the steady incompressible Navier-Stokes
optimal control problem, discretization and differentiation do commute.

For the discretized equations we use the following notation:

a(uh;vh) + c(uh;uh;vh) 9 9 KU(u)u;

a(uh;vh) + c(ph;uh;vh) + c(uh;ph;vh) 9 9 KV(u)p;

a(uh;vh) 9 9 KQu;

b(qh;uh) 9 9 KPu;

(th;uh)�d 9 9 KTu;

(dh; rh)�d 9 9 KMd:

then, the discrete form for the Navier-Stokes equations is given by

U(u)u+PTp+TT� = f1;

Pu = f2;(9.1)

Tu = Td:

The discrete Lagrangian function is given by

1

2
uTQu+

�

2
dTMd+ �T

�
U(u)u+PTp+TT� � f1

	
(9.2)

+�T fPu� f2g+ � T fTu+Tdg = 0:

By taking derivatives with respect to the discrete Lagrange multiplier vectors�;�; � , we
recover the state equations (9.1). By taking derivatives with respect to the discrete state
variablesu;p;�, we obtain the discrete adjoint equations:

VT (u)�+PT�+TT � = �Qu;

P� = 0;(9.3)

T� = 0:

These equations correspond to the discretization of equations (8.4) provided thatVT� is
the discretization ofa(�;u)+ c(v;u;�)+ c(u;v;�). The bilinear forma(�; �) is symmetric
so we omit it from our discussion. If� denotes the basis function foru,  v for v, and � for
� then the (3� 3)-block elements for the linearized state and the adjoint are:

Z



I (r� � u) v + (ru)� v d
 state element matrix;
Z



I (r v � u) � + (ru)T � v d
 adjoint element matrix:

Therefore, for a Galerkin formulation, the transpose of the discretized (linearized) state equa-
tions coincides with the discretization of the adjoint equations, i.e.

(A�)h = (Ah)
T :
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One needs to be careful to use the weak form given by equation (8.4). If (8.6) were used
without employing the reverse integration by parts on the termc(u;v;�), this would result
in a discretization which is incompatible with the discrete optimization problem (which is
what the optimizer sees). It would result in an unsymmetric KKT-matrix and possibly would
prevent the optimizer from converging to a KKT point. A Petrov-Galerkin formulation would
also be incompatible. Another important consequence of the compatibility between the dis-
crete and the discretized optimality conditions is that one does not need to implement a sepa-
rate adjoint solver.

In our formulation we do not solve explicitly for� and� . Upon sufficient smoothness of
the tractions at the boundary, we can eliminate them. The resulting equations are equivalent
to the formulations described in this section and the proofs for existence and uniqueness of
a solution can be applied to the condensed system. We use a standard Galerkin approxima-
tion scheme (no upwinding) with Taylor-Hood elements to approximate the velocities and
pressures and their adjoints.

We conclude this section with a note on continuation. To solve a Navier-Stokes control
problem with large Reynolds number, some kind of continuation scheme is usually needed.
We first solve a pure Stokes-flow optimal control problem (Re0 = 0) and then we pro-
gressively increase the Reynolds number byRe(+) = Re + �Re. Along the lines of a
predictor-corrector algorithm, one could setu(+) = u + (@Re)u�Re , where@Reu can be
easily computed through a linearized forward solve. Since we consider only steady flows,
we follow [8] and use fixed�Re, and simply setu(+) = u, i.e. the initial guess at the new
Reynolds number is the solution from the previous optimization step. Additionally, quasi-
Newton information is carried forward to the next Reynolds number.

10. Finite element approximation error. In this section we use a model problem to
verify the convergence rate estimates given in the previous section. We have constructed a
solution to the Navier-Stokes equations4 given by

u�(x; y; z) =
�
1� (x2 + y2)2; x;�y

	T
; p�(x; y; z) = x2 + y2 � z2:

We restricted this solution to a cylindrical domain and we set part of its boundary to be the
control domain�d. The optimal control problem is of matching velocity type and the target
velocity isu�. We defined the velocity boundary conditions on the circumferential walls to
be the decision variables. On�=�d we setu = u�. The objective function is given by

J (u;ud; p) =
1

2

Z



(u� � u)2 d
:

Since the boundary conditions foru; p on�=�d are compatible with(u�; p�) the values for
the objective function and the Lagrange multipliers at the minimum are zero.

Table 10.1 depicts the rates of convergence for the state variables and the Lagrange mul-
tipliers. The results are in good agreement with the theoretical predictions. The convergence
rate for the velocities and their adjoints is approximately 2.92 (comparing errors between the
first and second rows) and 2.96 (comparing errors between the second and third rows). For
the pressures and their adjoints the convergence rate is 1.96 and 1.97, respectively.

4This is done as follows: First choose a vector-valued functionw(x) in R3 and setu(x) = r�w(x). Then
choose any scalar-valued function as the pressure field. The body force is then computed by the left-hand side of
(8.1). Then the restriction of these functions to any (smooth enough) domain
 � R3 is a solution to the Navier-
Stokes equations.
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TABLE 10.1
In this table the convergence rate of the finite element approximation towards an (a priori) known solution for

a matching velocity problem is given. Hereen is the number of elements;h is the cube root of the volume of the
maximum inscribed sphere inside a tetrahedron of the finite element mesh. Near optimal convergent rates can be
observed for the state and adjoint variables.

en h ku� � uhk0 kp� � phk0 k�� � �hk0 k�� � �hk0
124,639 0.80 1:34� 10�4 2:01� 10�5 3:88� 10�4 1:76� 10�5

298,305 0.53 0:41� 10�4 0:90� 10�5 1:19� 10�4 0:79� 10�5

586,133 0.40 0:17� 10�4 0:52� 10�5 0:50� 10�4 0:45� 10�5

11. Poiseuille flow. The Poiseuille flow is a solution of the Navier-Stokes equations5,
for a range of Reynolds numbers—as long we are in subcritical conditions. We have used the
Poiseuille problem to study the efficiency of BFGS as a preconditioner.

A notable difference with the Stokes case is that a BFGS quasi-Newton update is used to
precondition the reduced Hessian matrix. Since the problem is nonlinear, LNKS takes several
iterations and quasi-Newton curvature information is built up. Quasi-Newton theory predicts
thatBz approachesWz as the iterates get closer to the solution. Therefore, one expects the
effectiveness of the preconditioner to improve as the optimization algorithm progresses.

In the numerical experiments in this section, we do not make use of continuation to
initiate the state and control variables. The reason is that our initial guess is always inside
the basin of attraction of the solution. However, BFGS information is carried forward to the
next Reynolds number, in both QN-RSQP and LNKS methods. To approximate the reduced
Hessian (for preconditioning the KKT system in the Newton method and for driving the
iterations in the quasi-Newton method), we invoke the limited-memory BFGS formula we
described in Section 7.

TABLE 11.1
Algorithmic efficiency of the proposed preconditioners for a Poiseuille matching control problem. Recall that

LNKS-I requires two linearized forward solves per iteration, whereas LINKS-II involves just application of the
Schwarz approximation. The number of iterations for the KKT system is averaged across the optimization iterations.
The problem has 21,000 state equations and 3,900 control variables; results are for 4 processors of the T3E-900.
Time is in hours.

Re method N/QN iter KKT iter k gz k time
100 QN-RSQP 262 — 1� 10�4 5.9

LNK 3 186,000 9� 10�6 7.1
LNKS-I 3 48 9� 10�6 3.2
LNKS-II 3 4,200 9� 10�6 1.3

300 QN-RSQP 278 — 1� 10�4 6.4
LNK 3 198,000 9� 10�6 7.6

LNKS-I 3 40 9� 10�6 3.1
LNKS-II 3 4,300 9� 10�6 1.4

500 QN-RSQP 289 — 1� 10�4 7.3
LNK 3 213,000 9� 10�6 9.0

LNKS-I 3 38 9� 10�6 3.0
LNKS-II 3 4,410 9� 10�6 1.4

In the results presented in Table 11.1, the maximum number of BFGS vectors is 30. The

5Why was it not used as an exact solution for convergence rate estimates? The velocities are quadratic and since
we are using quadratic elements the convergence is very fast (the solution is not exact due to integration errors).
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forward problem preconditioner is given by Equation 4.5 (Part I). The Navier-Stokes discrete
operator differs from the Stokes case: it is unsymmetric, so general QMR is used for the
linearized Navier-Stokes solves. We found block-Jacobi to be very slow and instead opted
for an overlapping additive Schwarz preconditioner with ILU(1) on each subdomain6. Results
for a problem with 21,000 state and 3,900 design variables on 4 processors and for a sequence
of three Reynolds numbers are presented in Table 11.1. Overall, one can observe that LNKS
reduces significantly the execution time relative to QN-RSQP, just as in the Stokes problem.

The Navier-Stokes test problem provides an opportunity to improve the reduced Hessian
preconditioner by building up quasi-Newton curvature information, something not possible
for the Stokes flow problem, since a single KKT system is solved in that case. Although the
test problems were not sufficiently nonlinear to require a large number of iterations, even with
three Newton iterations we can already observe increasing effectiveness of the quasi-Newton
approximation. This can be seen with LNKS-I as the number of KKT iterations drops with
increasing Reynolds number.

As in the Stokes control problem, LNKS-II is faster than LNKS-I, since it avoids exact
forward solves. The number of KKT iterations slightly increases with increasing Reynolds
number, since the forward problem condition number deteriorates (recall that because of the
inexact solves, the characteristics of the forward problem now affect the KKT system solu-
tion).

The outer solver performed very well requiring only 3 iterations to converge. In these
problems we did not use inexact Newton’s method with the KKT solves were fully converged
at each iteration. No line search was used in the LNKS variants; we used thel1-merit function
for the QN-RSQP.

12. Flow around a cylinder. Unlike a quasi-Newton method that can insure a descent
direction by a sufficiently accurate line search, there is no guarantee of descent and hence
global convergence for the present Newton method. The problems studied so far were use-
ful in verifying certain aspects of the theoretical results but they are only mildly nonlinear.
In order to test LNKS further we study a highly nonlinear problem: that of flow around a
cylinder.

The cylinder is anchored inside a rectangular duct, much like a wind tunnel. A quadratic
velocity profile is used as an inflow Dirichlet condition and we prescribe a traction-free out-
flow. The decision variables are defined to be the velocities on the downstream portion of the
cylinder surface.

Figures 12.1, 12.2 illustrate the optimization results for different Reynolds numbers.
LNKS manages to completely eliminate the recirculation region in the downstream region
of the cylinder. In order to avoid the suction controls we observed in the Stokes case, we
imposed Dirichlet boundary conditions on the outflow of the domain. The incompressibility
condition prevents the optimizer from driving the flow inside the cylinder7.

Our experiments on the Stokes optimal control established the relation between the per-
formance of the Krylov-Schur iteration and the forward problem preconditioner. Thus before
we discuss results on the LNKS algorithm we give some representative results for the Navier-
Stokes forward solver. We use an inexact Newton’s method combined with the preconditioner
we presented in Part I. A block-Jacobi ILU(0) preconditioner is used for the velocity block
and as well as for the pressure mass matrix (scaled by1=Re); the latter is used to precondition

6For definitions of ILU(0) and ILU(1) see [19].
7In this case, our model—although mathematically correct—does not follow the physics very well. When

Dirichlet conditions are specified everywhere on�, then
R
�
u � n d� should add to 0. The constraint needs to be

imposed explicitly, or with a proper function space. We do neither, but we increased the penalty parameter in the
objective function.
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(a) (b)

(c) (d)

FIG. 12.1. The top row depicts streamtubes of the flow for Reynolds number 20 and the bottom row for
Reynolds number40. The left column depicts the uncontrolled flow. The right column depicts the controlled flow.

TABLE 12.1
Forward solver efficiency in relation to problem size and the Reynolds number for a 3D flow around a cylinder.

(PEs) is processor number; (n) is the problem size; (Re) is the Reynolds number; (qmr ) is the number of aggre-
gate Krylov iterations required to satisfykrk=kr0k � 1 � 10�7; (nw) is the number of Newton steps to satisfy
kck=kc0k � 1� 10�6; and (t) is time in seconds. The runs were performed on a T3E-900.

Re = 20 Re = 30 Re = 60

PEs n qmr nw t qmr nw t qmr nw t
32 117.048 2,905 5 612 3,467 7 732 2,850 6 621
64 389,440 4,845 5 1,938 5,423 7 2,101 5,501 7 2,310
128 615,981 6,284 5 2,612 8,036 8 3,214 7,847 7 3,136

the pressure Schur complement block. We would very much like to use an ILU(1), as we did
for the Poiseuille flow case, but memory limitations8 prevented us from doing so.

Table 12.1 gives statistics for three different Reynolds numbers and for three different
problem sizes. We report the (aggregate) number or Krylov iterations required to converge

8In our Navier-Stokes implementation, we store the state operator, the Hessian of the constraints and the Hessian
of the objective. PSC’s T3E-900 (where the majority of our runs took place), has only 128MB of memory per
processor.
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(a) (b)

(c) (d)

FIG. 12.2. The top row depicts streamtubes of the flow for Reynolds number 20 and the bottom row for
Reynolds number40. The left column depicts the uncontrolled flow. The right column depicts the controlled flow.

the Newton solver, the number of Newton iterations, and the total execution time. In these
runs we used an inexact Newton’s method but we did not use continuation. Comparing with
Table 4.1 (Part I) we observe that the time for a forward solve has increased almost sixfold.
However the timeper iteration has remained on the same order compared to the Stokes case.
For example, in the 128 processor problem and for Reynolds number 30, the average (Krylov)
iteration count is 1005, whereas in the linear case it is 882. Similarly, the average time per
Newton step is 401 seconds. The time for the Stokes solver is little higher, 421 seconds9. We
can conclude that the forward solver performs reasonably well.

Let us return our discussion to the optimizer. Table 12.2 shows results for 32, 64, and 128
processors of a T3E-900 for a roughly doubling of problem size. Results for two different
preconditioning variants of LNKS are presented: the exact (LNKS-I) and inexact (LNKS-
II) version of the Schur preconditioner. The globalized LNKS algorithm is compared with
QN-RSQP. In LNKS-II-TR we activate the inexact Newton method. Continuation was used
for the initial guess at Reynolds number 60 by using the solution from Reynolds number 30
as the initial guess. The reduced Hessian preconditioner is a combination of the BFGS and

9The reason is somewhat esoteric; it has to do with the scaling between the velocity and pressure block of
the forward problem. Increasing the Reynolds number improves this scaling and thus improves the eigenvalue
distribution. Of course this is true up to certain Reynolds number. For higher values the Jacobian becomes highly
unsymmetric and ill-conditioned.
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TABLE 12.2
The table shows results for 32, 64, and 128 processors of a Cray T3E for a roughly doubling of problem size.

Results for the QN-RSQP and LNKS algorithms are presented. (QN-RSQP) is quasi-Newton reduced-space SQP;
(LNKS-I ) requires two exact solves per Krylov step combined with 2-step-stationary-BFGS preconditioner for the
reduced Hessian; in (LNKS-II ) the exact solves have been replaced by approximate solves; (LNKS-II-TR ) uses
a truncated Newton method and avoids fully converging the KKT system for iterates that are far from a solution.
(time) is wall-clock time in hours on a T3E-900. Continuation was used only forRe = 60.

Re = 30

states
controls method N or QN iter KKT iter time

117,048 QN-RSQP 161 — 32.1
2,925 LNKS-I 5 18 22,8

(32 procs) LNKS-II 6 1,367 5,7
LNKS-II-TR 11 163 1.4

389,440 QN-RSQP 189 — 46.3
6,549 LNKS-I 6 19 27.4

(64 procs) LNKS-II 6 2,153 15.7
LNKS-II-TR 13 238 3.8

615,981 QN-RSQP 204 — 53.1
8,901 LNKS-I 7 20 33.8

(128 procs) LNKS-II 6 3,583 16.8
LNKS-II-TR 12 379 4.1

Re = 60

states
controls

preconditioning Newton iter average KKT iter time (hours)

117,048 QN-RSQP 168 — 33.4
2,925 LNKS-I 6 20 31,7

(32 procs) LNKS-II 7 1,391 6,8
LNKS-II-TR 11 169 1.5

389,440 QN-RSQP 194 — 49.1
6,549 LNKS-I 8 21 44.2

(64 procs) LNKS-II 7 2,228 18.9
LNKS-II-TR 15 256 4.8

615,981 QN-RSQP 211 — 57.3
8,901 LNKS-I 8 22 45.8

(128 procs) LNKS-II 8 3,610 13.5
LNKS-II-TR 16 383 5.1

2-step preconditioners (as we described in Section 7). For the line search algorithm we use
the augmented Lagrangian merit function.

In this problem, QN-RSQP managed to converge, but only after 48 hours. LNKS-I,
although faster, does not reduce the required time significantly. LNKS-II does better—4 to 5
times faster than QN-RSQP.

The most notable finding in Table 12.2 is the dramatic acceleration of the LNKS algo-
rithm which is achieved by using LNKS-II-TR—the inexact version of the Newton method.
The inexactness did not interfere at any point with the merit function and in all cases we ob-
served quadratic convergence. For both Reynolds number 30 and 60 LNKS-II-TR runs more
than 10 times faster than QN-RSQP. This is in agreement with the performance improvements
we observed with the Stokes equations.

Undoubtedly the external cylinder flow problem is highly nonlinear. The augmented
Lagrangian globalization performed robustly and we did not have problems converging the
equations. Not once did the QN-RSQP safeguard get activated—triggered from a negative
curvature direction. Finally, it is worth noting that an optimum is found at a cost of 5 to 6
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flow simulations—remarkable considering that there are thousands of control variables.

13. Flow around a Boeing 707 wing.To further test LNKS we studied the optimal
control of a flow around a Boeing 707 wing. In this problem the control variables are the
velocities (Dirichlet conditions) on the downstream half of the wing. The Reynolds number
(based on the length of the root of the wing) was varied from 100 to 500 and the angle of
attack was fixed at 12.5 degrees. The problem size in this example is 710,023 state variables
and 4,984 control variables.

Table 13.1 summarize the results from this set of experiments. The main purpose of
this analysis is to compare the continuation idea with the other globalization heuristics. In
addition we employ the double inexactness trick, that is, we solve inexactly in both the contin-
uation loop and the Lagrange-Newton loop. Several observations are in place. It is apparent

TABLE 13.1
In this table we present results for the wing flow test case. The size of this problem is 710,023 state and

4,984 decision variables. The runs were performed on 128 processors on a T3E-900. Here (Re) is the Reynolds
number; (iter ) is the aggregate number of Lagrange-Newton iterations—the number in parenthesis is the number of
iteration in the last step; (time) is the overall time in hours; (qn) is the number of QN-RSQP steps—the number in
parenthesis gives how many times a negative curvature was detected; (minc) is the number of non-monotone line
search iterations—in parenthesis is the number of times this heuristic failed. The globalized LNKS-II-TR algorithm
is used. The Lagrange-Newton solver was stopped after 50 iterations. In the last column (Re � �f ) gives the
reduction of the objective function (with the respect the uncontrolled flow). “no cont” means that continuation was
not activated.

Re iter time qn minc kg+AT
�k kck Re ��f

100 no cont 19 4.06 2 4 9� 10�6 9� 10�6 4.065
cont

200 no cont 39 7.8 6(1) 2 9� 10�6 9� 10�6 5.804
cont 20(10) 4.6 0 3 9� 10�6 9� 10�6 5.805

300 no cont 48 11.8 16(3) 0 9� 10�6 9� 10�6 6.012
cont 29(11) 6.4 0 2 9� 10�6 9� 10�6 6.016

400 no cont 50 13.6 40(3) 0 2� 10�4 3� 10�3 3.023
cont 33(11) 7.36 0 6(1) 9� 10�6 9� 10�6 8.345

500 no cont 50 16.7 42(5) 0 4� 10�2 9� 10�2 1.235
cont 39(14) 9.09 1 5(1) 9� 10�6 9� 10�6 10.234

that in this problem continuation is crucial. For Reynolds numbers larger than 300, LNKS
was forced to early termination (we set the Lagrange-Newton iteration bound to 50). In the
last row (Re = 500) and when we did not use continuation, LNKS ends up switching to a
QN-RSQP step 42 times out of a total of 50 iterations; 5 times a negative curvature direction
was detected. As a result LNKS was terminated without having reached the convergence
criteria. Furthermore, the small reduction in the objective function and the residuals (last
three columns) indicate there was little progress at each optimization step. Note that in these
examples we did not activate backtracking in the continuation parameter.

It could be argued that a reason the algorithm stagnated was the early termination of
the Krylov-Schur solver—because of the inexactness. We did not conduct exhaustive ex-
periments to confirm or reject this claim. However, our experience on numerous problems
suggests that it is the ill-conditioning and nonlinearity of these problems that leads to stagna-
tion and not the inexactness. In our tests (systematic or during debugging and development) it
was never the case that a run with exact solves converged in reasonable time, and the inexact
version did not. On the contrary, inexactness significantly reduced execution times.

On the other hand, when we used continuation (fairly large steps on the Reynolds num-
ber), the algorithm successfully converged after 39 Lagrange-Newton iterations. It required
switching to QN-RSQP just once. In the fifth column we monitor the non-monotone line
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(a) (b)

(c) (d)

FIG. 13.1.The left column depicts streamlines of the uncontrolled flow. The right column depicts streamlines
of the controlled flow. Top row gives a side snapshot of the flow; bottom row gives a front view. The Reynolds number
(based on the length the root of the wing) is 500.

search criterion. Recall that if the merit function line search on the LNKS step fails, we
perform a line search with a different merit—the KKT residual (i.e. the first order optimal-
ity conditions). If the step gets accepted, via backtracking, we use it as an update direction.
Eventually, we insist that the (augmented Lagrangian) merit gets reduced. This strategy was
very successful 20 times and it failed only twice10.

10In general, using the residual of the KKT conditions to test a step can compromise robustness since the opti-
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(a) (b)

(c) (d)

FIG. 13.2.The left column depicts streamlines of the uncontrolled flow. The right column depicts streamlines
of the controlled flow. Top row gives a snapshot of the flow from below; bottom row gives a back view. Reynolds
number is 500.

Finally we conclude with some comments on the physics of this problem. Figure 13.1,
13.2 depicts snapshots of the uncontrolled and controlled flow for Reynolds number 500.
The wing-tip vortices are eliminated by the optimizer. But at what cost? Figure 13.3 shows a
snapshot of the (scaled up control variables—the velocity boundary conditions. It is obvious
that the optimizer designed a perforated wing, which means a significant reduction in lift.

mizer could get trapped to a saddle point or a local maximum.
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FIG. 13.3.Snapshot of the (Dirichlet control) velocity field on the wing.

This plane may never leave the ground!

14. Conclusions.In the second part of the paper we studied the application of the LNKS
method to a set of different optimal flow control problems. Our tests confirm that LNKS is a
robust and scalable algorithm for PDE-constrained optimization. The Krylov-Schur precon-
ditioner maintained and even increased (due to BFGS) its effectiveness, and the Lagrange-
Newton method exhibited the well known mesh-independence convergence properties. In-
exact Newton steps dramatically accelerated the algorithm and continuation ensured global
convergence.

The results reveal at least an order of magnitude improvement in time over popular quasi-
Newton methods, rendering tractable some problems that were out of reach previously. In-
deed, the optimum is often found in asmallmultiple of the cost of a single simulation.

We believe that the LNKS method is a very powerful tool. For this reason we decided
to direct effort at developing a code that will be usable by the scientific community. In
a forthcoming paper we will discussVeltisto, a package for large-scale, PDE-constrained
optimization on parallel computers.
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