A Combinatorial, Strongly Polynomial-Time Algorithm for
Minimizing Submodular Functions

Satoru Iwata *
Grad. School of Eng. Science
Osaka University
Toyonaka, Osaka 560-8531, Japan

iwata@sys.es.osaka-u.ac. jp

Abstract

This paper presents the first combinatorial polynomial-
time algorithm for minimizing submodular functions,
answering an open question posed in 1981 by Grotschel,
Lovész, and Schrijver. The algorithm employs a scaling
scheme that uses a flow in the complete directed graph
on the underlying set with each arc capacity equal to the
scaled parameter. The resulting algorithm runs in time
bounded by a polynomial in the size of the underlying
set and the largest length of the function value. The
paper also presents a strongly polynomial-time version
that runs in time bounded by a polynomial in the size of
the underlying set independent of the function value.

1. Introduction

A function f defined on all the subsets of a finite set V'
is called submodular if it satisfies

fX)+7¥) 2 f(XUY) + f(XNY),

*A part of this work is done while on leave at the Fields In-
stitute, Toronto, Canada. Partly supported by Grants-in-Aid for
Scientific Research from Ministry of Education, Science, Sports,
and Culture of Japan.

TThis work done while on leave at Center for Operations Re-
search and Econometrics, Université catholique de Louvain, Bel-
gium, and at the Fields Institute, Toronto, Canada. Partially
supported by NSF grants INT-9902663 and EIA-9973858.

iPartly supported by Grants-in-Aid for Scientific Research
from Ministry of Education, Science, Sports, and Culture of
Japan.

VX,Y C V.

Lisa Fleischer f
Dept. of Ind. Eng. & Oper. Res.
Columbia University
New York, NY 10027, USA

lisa@ieor.columbia.edu

Satoru Fujishige
Grad. School of Eng. Science
Osaka University
Toyonaka, Osaka 560-8531, Japan
fujishig@sys.es.osaka-u.ac.jp

This paper presents the first combinatorial polynomial-
time algorithm for minimizing general submodular func-
tions, provided that an oracle for evaluating the func-
tion value is available. Without loss of generality, we
assume f(@) = 0 throughout this paper. Because of
close connections to convexity [8, 14, 25], submodular
function minimization has been regarded as a funda-
mental problem in discrete optimization. Readers are
referred to [10, 15, 25] for general background on sub-
modular functions.

Submodular functions arise in various branches of
mathematical engineering such as combinatorial opti-
mization, game theory and information theory. Exam-
ples include the matroid rank function, the cut capacity
function, and the entropy function. In each of these and
other applications, the submodular polyhedron and the
base polyhedron defined by

P(f) = {z|zeR", VX CV:z(X)< f(X)},
{z |z eP(f), (V)= f(V)} (L.1)

often play an important role. Linear optimization prob-
lems over these polyhedra are efficiently solvable by the
greedy algorithm of Edmonds [4].

Grotschel, Lovész, and Schrijver [17] revealed the
polynomial-time equivalence between the optimization
and separation problems in combinatorial optimization
via the ellipsoid method. Since the separation prob-
lem for P(f) is equivalent to the submodular function
minimization, they asserted that the minimizer of a sub-
modular function can be found in polynomial time using
the ellipsoid method. Later, they also devised a strongly
polynomial-time algorithm for this problem also using
the ellipsoid method [18], based on the connection to
convexity [25]. However, the ellipsoid method is far
from being efficient in practice, and is not combina-
torial. Hence an efficient combinatorial algorithm for
submodular function minimization has been desired for
a long time.

A first step towards a combinatorial polynomial-
time algorithm was taken by Cunningham [2, 3], who

=2
=
I

devised a strongly polynomial-time algorithm for the
separation problem for matroid polyhedra as well as
a pseudopolynomial-time algorithm for integer-valued
submodular function minimization. Narayanan [27] im-
proved the running time bound of the former algorithm
and extended the applicability of the latter by introduc-
ing a rounding technique. Based on the minimum-norm
base characterization of minimizers [12, 13], Sohoni [30]
gave another combinatorial pseudopolynomial-time al-
gorithm for submodular function minimization.

For the problem of minimizing a symmetric submod-
ular function over proper nonempty subsets, Queyranne
[28] presented a combinatorial strongly polynomial-time
algorithm, extending the undirected minimum cut algo-
rithm of Nagamochi and Ibaraki [26].

In this paper, we present a combinatorial polynomial-
time algorithm for submodular function minimization.
Our algorithm uses an augmenting path approach with
reference to a convex combination of extreme points of
the associated base polyhedron. Such an approach was
first introduced by Cunningham for minimizing sub-
modular functions that arise from the separation prob-
lem for matroid polyhedra [2]. This was adapted for
general submodular function minimization by Bixby,
Cunningham, and Topkis [1] and improved by Cunning-
ham [3] to obtain the first combinatorial, pseudopoly-
nomial time algorithm.

A fundamental tool in these algorithms is to move
from one extreme point of the base polyhedron to an
adjacent extreme point via an exchange operation that
increases one coordinate and decreases another coordi-
nate by the same quantity. This quantity is called the
exchange capacity. These previous methods maintain
a directed graph on the underlying set that represents
the possible exchange operations. They are inefficient
since the lower bound on the amount of each augmenta-
tion is too small. In traditional network flow problems,
it is possible to surmount this difficulty by augmenting
only on paths of sufficiently large capacity [6]. However,
it has been difficult to adapt this scaling approach to
work in the setting of submodular function minimiza-
tion, mainly because the amount of augmentation is
determined by exchange capacities multiplied by the
convex combination coefficients. These coefficients can
be as small as the reciprocal of the maximum absolute
value of the submodular function.

To overcome this difficulty, we employ a scaling
framework that uses the complete directed graph on the
underlying set, letting the capacity of this arc set de-
pend directly on our scaling parameter §. The complete
directed graph serves as a relaxation of the submodular
function f to another submodular function fs defined
by f5(X) = f(X) +6|X]- [VAX].

This additional network was introduced by Iwata [22]
in the design of the first capacity scaling algorithm for

the submodular flow problem of Edmonds and Giles [5].
It is also used in the cut canceling algorithm of Iwata,
McCormick, and Shigeno [23]. However, a direct appli-
cation of the scaling framework in [22] to the submod-
ular function minimization does not resolve the above
difficulty.

Incorporating ideas from [23], Fleischer, Iwata, and
McCormick [7] improved the capacity scaling algorithm
by introducing a method to augment on paths that con-
sist only of flow arcs and do not contain arcs correspond-
ing to possible exchange operations. Instead, exchange
operations are performed during the search for a short-
est augmenting path of sufficient capacity. Our work
in the present paper employs this technique in [7] to
develop a capacity scaling, augmenting path algorithm
for submodular function minimization.

The running time of the resulting algorithm is weakly
polynomial, i.e., bounded by a polynomial in the size of
the underlying set and the largest length of the function
value. Even under the assumption that the largest ab-
solute value of the function is bounded by a constant,
our scaling algorithm is faster than the best previous
combinatorial, pseudopolynomial-time algorithm due to
Cunningham [3].

We then modify our scaling algorithm to run in
strongly polynomial time, i.e., in time bounded by
a polynomial in the size of the underlying set, inde-
pendently of the largest length of the function value.
To make a weakly polynomial-time algorithm run in
strongly polynomial time, Frank and Tardos [9] devel-
oped a generic preprocessing technique that is applica-
ble to a fairly wide class of combinatorial optimization
problems including the submodular flow problem and
testing membership in matroid polyhedra. However,
this framework does not readily apply to submodular
function minimization. Instead, we establish a prox-
imity lemma, and use it to devise a combinatorial al-
gorithm that repeatedly detects either a new element
contained in every minimizer, or a new ordered pair
(u,v) € V with the property that any minimizer con-
taining u also contains v. Our approach is based on
the general technique originated by Tardos [32] in the
design of the first strongly polynomial-time minimum
cost flow algorithm.

There are some practical problems, in dynamic flows
[20], facility location [31], and multi-terminal source
coding [11, 19], where the polynomial-time solvability
relies on a submodular function minimization routine.
Goemans and Ramakrishnan [16] discussed a class of
submodular function minimization problems over re-
stricted families of subsets. Their solution is combina-
torial modulo an oracle for submodular function min-
imization on distributive lattices. Our algorithm can
be used to provide combinatorial, strongly polynomial-
time algorithms for these problems.

This paper is organized as follows. Section 2 pro-
vides preliminaries on submodular functions. Section 3
presents a scaling algorithm for submodular function
minimization, which runs in weakly polynomial time.
Section 4 is devoted to the strongly polynomial-time
algorithm. Finally, we discuss extensions in Section 5.

2. Preliminaries

We denote by Z and R the set of integers and the set
of reals, respectively. Let V be a finite nonempty set of
cardinality |V| = n. For each u € V, we denote by x,
the unit vector in RY such that x,(v) = 1 if v = u and
0 otherwise.

Given a submodular function f with f(@) = 0 and
its associated base polyhedron B(f) as defined in (1.1),
we call a vector z € B(f) a base. An extreme point
of B(f) is called an extreme base. A fundamental step
in submodular function minimization algorithms is to
move from one base = to another base ' via an exchange
operation that increases one coordinate while decreasing
another coordinate by the same amount, e.g., z' := z +
a(Xu— Xv).- The maximum value of « that ensures z’ €
B(f) is called the exchange capacity. More precisely,
for any base ¢ € B(f) and any distinct u,v € V the
exchange capacity is

¢(z,u,v) =max{a | a € R, z+ alx, — xv) € B(f)}.

(2.1)
The exchange capacity ¢(z, u,v) can also be expressed
as

&(@,u,v) = min{ f(X) = 2(X) | u € X CV\{u}}.

(2.2)
In general, computing ¢(x,u,v) is as hard as submod-
ular function minimization, even when z is an extreme
base. However, if z is an extreme base, then for spe-
cial pairs of vertices u and v, the exchange capacity
¢(x,u,v) can be computed with one function evaluation
as follows.

Let L = (vq,---,v,) be a linear ordering of V. For
any j € {1,---,n}, we define L(v;) = {v1,---,v;}.
Given such a linear ordering, the greedy algorithm of
Edmonds [4] computes an extreme base y € B(f) asso-
ciated with L as

y(v;) == f(L(vj)) — f(L(vj-1)) Vji=1,---,n,
(2.3)
where L(vg) = 0. Any extreme base can be gener-

ated by applying the greedy algorithm to an appropri-
ate linear ordering. Note that a linear ordering L =
(v1,---,v,) generates an extreme base y if and only
it y(L(v;)) = f(L(v;)) for j = 1,---,n. The follow-
ing lemma describes when we can efficiently compute
c(z,u,v).

Lemma 2.1: Let y € B(f) be an extreme base gener-
ated by a linear ordering L of V in which u immediately
succeeds v. Let L' be the linear ordering obtained from
L by interchanging u and v. Then the extreme base y’
generated by L' satisfies

Y =y +B(Xu — Xv) (2.4)

with
B =f(Lw\{v}) — f(L(w) +y(v). (2.5)

Moreover, we have ¢(y,u,v) = 3.

Proof. Equations (2.4) and (2.5) follow from the greedy
algorithm (see (2.3)). By the definition (2.1) of the ex-
change capacity, we have 8 < ¢(y, u,v). Since y(L(u)) =
f(L(u)), it follows from equations (2.2) and (2.5) that
B > ¢(y,u,v). Thus we obtain § = ¢(y,u,v). |

We will use Lemma 2.1 to transform one extreme
base into another and to update the corresponding lin-
ear ordering.

For any vector € RY, we denote by 2~ the vector
in RY defined by z~(v) = min{0,z(v)} for v € V.
The following fundamental lemma easily follows from
a theorem of Edmonds [4] on the vector reduction of
polymatroids.

Lemma 2.2: For a submodular function f : 2¥ — R
we have

max{z~(V) | = € B(f)} = min{f(X) | X C V'}.

If f is integer-valued, then the mazimizer x can be cho-
sen from among integral bases. |

In fact, we do not rely on this min-max relation, which
can be viewed as a strong duality theorem, but on the
weak duality: For any base z € B(f) and any X C V
we have z7 (V) < z(X) < f(X). In particular, the fol-
lowing immediate corollary of this statement is crucial
in our scaling algorithm.

Corollary 2.3: If f is integer-valued and f(X)—z— (V)
is less than one for some © € B(f) and X CV, then X
minimizes f.

3. A Scaling Algorithm

In this section, we describe a combinatorial algorithm
for minimizing an integer-valued submodular function
f:2Y = Z with f(0) = 0. We assume an evaluation
oracle for the function value of f. Our algorithm is
an augmenting path algorithm, embedded in a scaling
framework.

The previous augmenting path algorithms for sub-
modular function minimization [1, 2, 3] maintain a base
x € B(f) as a convex combination of extreme bases

yi € B(f), so that z = 37, _; Asy;. This is because in
general, the base z € B(f) that attains the maximum in
the left hand side of the min-max relation in Lemma 2.2
may not be an extreme point of B(f). However, in order
to use Lemma 2.1 to compute exchange capacities, it is
necessary to deal with extreme bases. Roughly speak-
ing, these previous algorithms use a directed graph with
the arc set defined by the pairs of vertices consecutive in
some linear ordering that generates some y;. They seek
to increase z~ (V) by performing exchange operations
along a path of arcs from vertices s with z(s) < 0 to
vertices ¢ with z(t) > 0. The algorithms stop with an
optimal x when there are no more augmenting paths.
The corresponding minimizer X is determined by the
set of vertices reachable from vertices s with z(s) < 0.
Our algorithm builds on ideas developed in these pre-
vious algorithms.

3.1. The Scaling Framework

The algorithm consists of scaling phases with a positive
parameter 6. The algorithm starts with § = M/n?,
where M is an upper bound on |f(X)|, X C V, specified
below. It then cuts ¢ in half at the beginning of each
scaling phase, and ends with § < 1/n?.

To adapt the augmenting path approach to this scal-
ing framework, we use a complete directed graph on V
with arc capacities that depend directly on our scaling
parameter §. Let ¢ : V x V — R be skew-symmetric,
ie., p(u,v) + p(v,u) = 0 for u,v € V. The function
¢ can be regarded as a flow in the complete directed
graph G = (V, E) with the vertex set V and the arc set
E =V x V. The boundary ¢ : V — R is defined by

dp(v) = Z o(u,v), YveV. (3.1)

uevV

That is, Op(v) is the net flow entering v. A flow ¢ is
called 6-feasible if it satisfies capacity constraints —§ <
p(u,v) <9 for every u,v € V.

Instead of trying to maximize z~ (V') directly, the
algorithm uses z = x—0¢ and seeks to maximize z~ (V),
thereby increasing x~ (V) via the d-feasibility of ¢. As
mentioned in the introduction, this z can be viewed as
a base in the base polyhedron of a relaxed submodular
function f5(X) = f(X)+4d|X| |V - X|.

The algorithm adopts the idea of maintaining a base
x € B(f) as a convex combination extreme bases y; €
B(f). For each index i € I, the algorithm also maintains
a linear ordering L; that generates y;.

The algorithm starts with an arbitrary linear order-
ing L on V and the extreme base z € B(f) generated
by L. For any X C V, we have 27 (V) < z(X) <
F(X) < Xy max{0, f({v})}. Hence we adopt M =
max{|z~(V)|,>_, max{0, f({v})}} as an upper bound
on |f(X)|. In addition, the algorithm starts with the
zero flow ¢ = 0. Thus, initially 2= (V) =2~ (V) > —M.

3.2. A Scaling Phase

Each §-scaling phase maintains a é-feasible flow ¢, and
uses the residual graph G(p) = (V, E(p)) with the arc
set

E(g) = {(,0) | 4,0 € V, u#v, p(u,0) <0} (3.2)

Intuitively, E(p) consists of the arcs through which we
can augment the flow ¢ by § without violating the
capacity constraints, i.e., the relaxed constraints for
z € B(fs).

A ¢-scaling phase starts by preprocessing ¢ to make
it d-feasible. At the beginning of the §-scaling phase,
after ¢ is cut in half, the current flow ¢ is 2-feasible.
The algorithm modifies each ¢(u,v) to be d-feasible by
setting ¢(u, v) to the closest value in the interval [—d, d].
This may decrease 2z~ (V) for z = x — d¢ by at most

7)é.

(2) The rest of the d-scaling phase aims at increasing
2z~ (V) by sending flow along paths in G(p) from S =
{v|veV,zw) < =6}toT ={v|vevV,zw) > d}
Such a directed path is called a §-augmenting path.

A key feature of the algorithm is what it does when
there are no §-augmenting paths. In this case, let W
denote the set of vertices currently reachable from S
in G(p). If there is a pair (u,v) of vertices u € W,
v ¢ W such that v immediately succeeds u in some L;,
then the algorithm performs an appropriate exchange
operation, and modifies ¢ so that z = x — dy is invari-
ant. This has the affect of reducing exchange capacity
€(yi,u,v) while creating residual flow capacity on (u,v).
We refer to this procedure as Double-Exchange(i, u, v).
It is an extension of a subroutine introduced in [7]. The
details of Double-Exchange are described below and in
Figure 1. Note that Double-Exchange(i, u, v) may add v
to W. Otherwise, W remains invariant. The algorithm
performs Double-Exchange as long as it is applicable, un-
til a d-augmenting path is found. Once a §-augmenting
path is found, the algorithm augments the flow ¢ by
& through the path without changing z. As a conse-
quence, z~ (V) increases by . This is an extension of
a technique developed in [7] for finding J-augmenting
paths for submodular flows. We give details below. A
formal description of the algorithm appears in Figure 2.

We call a vertex v € V\W active in ordering L; if
v is the last vertex in L; among vertices in V\W that
satisfy W\L;(v) # 0. We call (4,v) an active pair, and
denote by Z the set of the current active pairs.

If WNT = (0, there is no d-augmenting path in
G(p). Then, as long as there is an active pair (i,v),
that is Z # (), the algorithm repeatedly picks an active
pair (i,v) € Z and applies Double-Exchange(i, u,v) to
(i,v) and the vertex u that immediately succeeds v in
L;. Since v is active in L;, we have that u € W.

The first step of the routine Double-Exchange(i, u, v)
is to determine the amount a of the exchange opera-

Double-Exchange(i, u, v):

a + min{d, A;¢(y;,u,v)}
If a < A\i¢(yi, u,v) then

k <+ a new index

I+ Tu{k}

Ak X — afC(yi, u,v)

Ai + afC(yi,u,v)

Yr < Yi
Yi < Yi + (Y, u,v) (Xu — Xov)
Update L; by interchanging v and v.
T Y i Aili [+ 24+ a(xu — Xv)]
p(u,v) < p(u,v) — a.
p(v,u) < p(v,u) + a.

Figure 1: Algorithmic description of the procedure
Double-Exchange(i, u, v).

tion. Since Double-Exchange(i,u,v) will modify both
z and ¢, this amount is set to be the minimum of §
and A\;C(y;,u,v), where § is an amount of feasible de-
crease of flow on (u,v), and A;¢(y;,u,v), is the max-
imum exchange possible to effect in o =), A\jy; by
performing an exchange operation on y; and keeping
all the other extreme bases in I fixed. The proce-
dure Double-Exchange(i,u,v) is called saturating if a =
Ai€(yi,u,v). Otherwise, it is called nonsaturating. A
nonsaturating Double-Exchange(i,u,v) adds to I a new
index k with yy, := y;, A := Ai—a/¢(y;,u,v), and Ly, :=
L;. Whether the Double-Exchange(i, u,v) is saturating
or nOt: it upda’tes Yi a8 Y; = Y +E(y17uav)(Xu - X’U)J
Ai := a/¢(yi,u,v), and L; by interchanging u and v,
moving v toward the end of L;. This fact is cru-
cial to get a polynomial-time bound of the algorithm,
which will be discussed in detail below. The effect
of Double-Exchange(i,u,v) is to move the current base
from z to z+a(xy —Xv)- Then, to maintain z = z—d¢p,
the boundary 9y is moved to d¢ + a(x, — Xv) by re-
ducing flow on (u,v) by a.

Each time the algorithm applies Double-Exchange,
it updates W and Z. If Double-Exchange(i, u, v) is non-
saturating, it makes v reachable from S in G(y), and
hence W is enlarged. Thus there are at most n nonsat-
urating calls of Double-Exchange before a d-augmenting
path is found or all the active pairs disappear.

If a §-augmenting path is found, the algorithm aug-
ments § units of flow along the path. This increases
2z~ (V) by & since z changes only at the initial and ter-
minal vertices of the path.

After each J-augmentation, the algorithm computes
an expression for z as a convex combination of at most
n affinely independent extreme bases y;, chosen from

the current y;’s. This computation is a standard linear
programming technique of transforming feasible solu-
tions into basic feasible solutions. If the set of extreme
points are not affinely independent, there is a set of co-
efficients p; for ¢ € I that is not identically zero and
satisfies > p;y; = 0 and > p; = 0. Using Gaussian
elimination, we can start computing such u; until a de-
pendency is detected. At this point, we eliminate the
dependency by computing 8 := min{\;/p; | p; > 0}
and updating A; := A\; — 0u; for i € I. At least one
i € I satisfies \; = 0. Delete such ¢ from I. We con-
tinue this procedure until we eventually obtain affine
independence.

A é-scaling phase ends when either S = 0, T = 0,
or Z = (. In the last case, the set W of vertices that
are reachable from S in G(yp) is disjoint with T'.

Lemma 3.1: If Z =0, then z(W) = f(W).

Proof. If Z =, for each i € I the first |W| vertices in
L; must belong to W. Then it follows from (2.3) that
yi(W) = f(W). Since x =), ., hiyi and Y, Ai =1,
this implies (W) = Y2, Aiys(W) = f(W). |

3.3. Correctness and Complexity

We now investigate the number of iterations in each 4-
scaling phase. To do this, we prove relaxed weak and
strong dualities. The next lemma shows a relaxed weak
duality.

Lemma 3.2: For any base € B(f) and any J-feasible
flow ¢, the vector z = x — Oy satisfies z— (V) < f(X)+
(5)8 for any X C V.

oL

Proof. For any X C V we have z(X) < f(X) an
dp(X) > —(3)d, and hence 2= (V) < 2(X) < f(X) +
(5)0. |

A relaxed strong duality is given as follows.

Lemma 3.3: At the end of each 6-scaling phase, the
following (1)—(iii) hold for x and z = x — Oyp.

Q) If S =0, then z— (V) > f(®) —n?§ and 2~ (V) >
f(@) —né.

(i) If T =0, then 2= (V) > f(V) —n25 and 2= (V) >
f(V) =né.

(iii) If z(W) = f(W), then 2~ (V) > f(W) — n%J and
2= (V) 2 f(W) —né.

Proof. When the é-scaling phase finishes with S = 0,
we have z(v) > Op(v) —d > —nd for every v € V,
which implies 2= (V) > f(0) — n%d as well as 2= (V) >
f(@) —nd. Similarly, when the §-scaling phase finishes
with T = (), we have z(v) < dp(v) + & < nd for every

SFM(J):

Initialization:
L + an linear ordering on V

¢ 0,
0 M
While 6§ > 1/n? do
0+ 4/2
For (u,v) € E do

S {v] z(v) < dp(v) — 0}
T «{v | z(v) =2 9p(v) + 6}

Update W and Z.
IfWNT # () then

Return X
End.

Z « an extreme base in B(f) generated by L
I« {i},yi<z, \i+1,L;«< L

If p(u,v) > 4 then p(u,v) + ¢
If p(u,v) < —d then p(u,v) + —4

W < the set of vertices reachable from S in G(y)
Z < the set of active pairs (i,v) of i€ T and v € V
While S #0, T # 0 and Z # 0 do,
While WNT =0 and Z # () do,
Find an active pair (i,v) € Z.
Let u be the vertex succeeding v in L;.
Apply Double-Exchange(i, u, v).

Let P be a directed path from S to T in G(y).
For (u,v) € P do ¢(u,v) + p(u,v) + 9, p(v,u) < o(v,u) =6
Update S, T, W, and Z.
Express z as £ =)_;.; Ajy; by possibly smaller affinely independent
subset I and positive coefficients A\; > 0 for ¢ € I.
IfS=0then X + Qelseif T =0 then X + V else X «+ W

Figure 2: A scaling algorithm for submodular function minimization.

v € V, which implies (V) > z(V)—n2§ = f(V)—n2§
as well as 27 (V) > z(V) — nd.

When the §-scaling phase ends with (W) = f(W),
then S C W C V\T and dp(W) < 0. By the defini-
tions of S and T', we also have z(v) > dp(v) —§ > —nd
for every v € V\W and z(v) < dp(v) +§ < nd for
every v € W. Therefore we have 2= (V) = 2= (W) +
= (V\W) > z(W)—nd|W|-nd|[V\W| = f(W)—-n?6 as
wellas 27 (V) = 2= (W) +2z= (V\W) > (W) —0p(W)—
[W1é = 8|V\W| > f(W) —nd. |

Theorem 3.4: The number of augmentations per scal-
ing phase is at most n> + n.

Proof. Lemma 3.3 implies that at the beginning of the
d-scaling phase, after § is cut in half, 2= (V) is at least
f(X) —2né for some X C V. Preprocessing the flow ¢
to make it d-feasible decreases 2~ (V) by at most (})d.

On the other hand, 2z~ (V) is at most f(X) + (3)4 at
the end of a §-scaling phase by Lemma 3.2. Since each
d-augmentation increases z~ (V') by §, the number of §-
augmentations per phase is at most n? +n for all phases
after the first.

Since 2= (V) = 2= (V) > —M at the start of the
algorithm, setting & = M /n? is sufficient to obtain a
similar bound on the number of augmentations in the
first scaling phase. |

As an immediate consequence of Lemmas 2.2 and
3.3, we also obtain the following.

Theorem 3.5: The algorithm obtains a minimizer of
f at the end of the §-scaling phase with § < 1/n?.

Proof. By Lemma 3.3, the output X of the algorithm
satisfies z= (V) > f(X) —n2§ > f(X) — 1. For any
Y C V, the weak duality in Lemma 2.2 asserts 2~ (V') <

f(Y). Thus we have f(X) —1 < f(Y), which implies
by the integrality of f that X minimizes f. |

Theorem 3.6: SFM runs in O(n®log M) time.

Proof. The algorithm starts with § = M/n? and ends
with § < 1/n?, so the algorithm consists of O(log M)
scaling phases. Each scaling phase finds O(n?) aug-
menting paths.

We now claim that the algorithm performs the pro-
cedure Double-Exchange O(n?) times for each i € I be-
tween J-augmentations. Each time the algorithm picks
an active pair (i,v) and applies Double-Exchange(i, u, v),
the vertex v shifts towards the end of L;. If v ¢ W,
then it only moves towards the end of L;. Once v €
W, it stays in W until the next J-augmentation or
the end of the phase. Hence the algorithm picks an
active pair (i,v) at most n times between augmenta-
tions. Therefore, for each ¢ € I, the algorithm applies
Double-Exchange to active vertices in L; at most O(n?)
times.

A new index k is added to I only as a result of a
nonsaturating Double-Exchange, and there are less than
n nonsaturating exchanges between d-augmentations.
Hence we have |I| < 2n, and the algorithm performs
O(n?) saturating exchanges per d-augmentation. A sat-
urating Double-Exchange requires O(1) time while a non-
saturating one O(n) time. Therefore, the time spent in
Double-Exchange per augmenting path is O(n?).

After each augmentation, we also update the expres-
sion z = » . Aiy;- The bottleneck in this procedure
is the time spent computing the coefficients ;. Since
|I| < 2n, this also takes O(n?) time.

Thus the overall complexity is O(n® log M). [|

The previous best known pseudopolynomial time
bound is O(n%M log(nM)) [3]. Theorem 3.6 shows that
our scaling algorithm is faster than this even if M is
fixed as a constant.

We note that we could relax the definition of an
active vertex to include any vertex v € V\W whose im-
mediate successor in L; belongs to W. The correctness
argument would apply without modifications. However,
care is needed to obtain an efficient implementation.

In this section, we have shown a weakly polynomial-
time algorithm for minimizing integer-valued submodu-
lar functions. The integrality of a submodular function
f guarantees that if we have a base z € B(f) and a
subset X of V such that f(X)—xz~(V) is less than one,
X is a minimizer of f. Except for this we have not used
the integrality of f. It follows that for any real-valued
submodular function f : 2V — R, if we are given a posi-
tive lower bound e for the difference between the second
minimum and the minimum value of f, the present al-
gorithm works for the submodular function (1/¢€)f and
runs in O(n®log(nM/e)) time, where M is an upper
bound on |f(X)| among X C V.

4. A Strongly Polynomial-Time
Algorithm

This section presents a strongly polynomial-time algo-
rithm for minimizing a submodular function f : 2V —
R using the scaling algorithm in Section 3. The main
idea behind the algorithm is to show via Lemma 4.1
that after O(logn) scaling phases, the algorithm de-
tects either a new vertex that that is contained in every
minimizer of f, or a new vertex pair (u,v) such that v
is in every minimizer of f containing u. Since there are
at most O(n?) such detections, after O(n?logn) scaling
phases, the algorithm finds a minimizer of f.

Lemma 4.1: Ifz(w) < —n2J at the end of the §-scaling
phase, then w is contained in every minimizer of f.

Proof. By Lemma 3.3, at the end of the §-scaling phase,
there exists a subset Y C V such that z— (V) > f(Y) —
n?§. For any minimizer X of f, we have f(V) > f(X) >
z(X) > z(X). Thus 2= (V) > 2z (X) — n%J; so if
z(w) < —n26, then w € X. |

The new algorithm maintains a subset X C V that
is included in every minimizer of f, a vertex set U cor-
responding to a partition of V\ X into pairwise disjoint
subsets, a directed acyclic graph D = (U, F'), and a sub-
modular function onn the subsets of U. Each arc in F’
is an ordered pair (u,w) of vertices in U such that w
is in every minimizer of f containing u. We call such
a pair compatible with f A component of V\X repre-
sented by a vertex of U corresponds to a set of mutually
compatible pairs for f. For any vertex subset Y C U,
we denote by I'(Y") the union of those components rep-
resented by the vertices in Y. Thus for any minimizer
W the set T'({u}) C V for any u € U is either com-
pletely contained in W, or completely excluded from
W. Throughout the algorithm, any minimizer of f is
represented as X U I'(W) for some minimizer W of f.
Tnitially, the algorithm assigns U :=V, F =, f := f,
and X := (), which clearly satisfy the above properties.

Let R(u) denote the set of the vertices reachable
from u € U in D. Then (u,w) is compatlble with f for
every w € R(u). We denote by fu the contraction of f
by R(u), i.e

FuY) = F(Y U R(w)) = F(R(w)),

When the algorithm detects a new vertex w that
is contained in every minimizer of f, then it deletes
R(w) from D, adds ['(R(w)) to X, and contracts f by
R(w). When the algorithm detects a new compatible
pair (u,w), then it adds (u,w) to F. If this creates
a cycle in D, the algorithm contracts the cycle to a
single vertex and modifies f by regarding the contracted
vertex set as a singleton.

VY CU\R(u).

The algorithm applies the proximity lemma at the
end of O(logn) scaling phases that start with an ap-
propriate scale parameter. This works as follows. Let
x € B(f) be an extreme base whose components are
bounded from above by 7 > 0. Let Y C U be a sub-
set such that f(Y) < —n/2. After applying the scaling
algorithm starting with § = n and the extreme base
z € B(f) for [log,(2n®)] scaling phases, the new § is
less than 7/2n?; and since z(Y) < fiv) < -n/2, at
least one element w € Y satisfies z(w) < —n25. By
Lemma 4.1, such an element w is contained in_every
minimizer of f. We denote this procedure by Fix(f, z,n).

‘The procedure Fix is applied either directly to f, or
to f, for some u € U. When applied to f, Fix identifies
a new element that is contained in every minimizer of
f- When applied to f,, Fix identifies a new compatible
arc leaving u. Below, we describe the framework in
which Fix is applied to yield a strongly polynomial-time
algorithm. First we require a few definitions. A formal
description of the algorithm is given in Figure 3.

A linear ordering (u1,---,ux) of U is called consis-
tent with D if ¢ < j implies (u;,u;) ¢ F. The extreme
base generated by a consistent linear ordering is also
called consistent.

~

Lemma 4.2: Any consistent extreme base x € B(f)

-~ -~

satisfies z(u) < f(R(u)) — f(R(u)\{u}) for eachu € U.

Proof. The consistent extreme base x satisfies z(u) =

~

f(Y) — f(Y\{u}) for some Y D R(u). The claim then

o~

follows from the submodularity of f. |

~

To start each iteration, whenever f(U) > 0, the al-
gorithm replaces the value f(U) by zero. The set of
minimizers remains the same unless the minimum value
is zero, in which case () minimizes f This modification
is done so that if f(R(u)) is sufficiently positive, then
J/‘;(U\R(u)) = f(U) - f(R(u)) is sufficiently negative,
providing a witness for the applicability of Fix to]/‘;

Before each application of Fix, the algorithm com-
putes

n = max{f(R(u)) — f(R(u)\{u}) |u € U}. (4.1)
If n < 0, then an extreme base z € B(f) consistent
with D satisfies z(u) < 0 for each u € U. In this case
z=(U)=z(U) = f(U), which implies that U minimizes
z by the weak duality in Lemma 2.2. If in addition
f(U) = 0, then the original function may have had a
positive value of f(U) Therefore, the algorithm returns
0 or U as a minimizer of f, according to whether f(U) =
0 or f(U) < 0. In the former case X minimizes f, while
in the latter case V' does.

If n > 0, then let v be an element that attains

the maximum in the right-hand side of (4.1). Then we

have F(R(w)) = f(R(u \{u}) + n, which implies either

-~

f(R(w)) >n/2>0o0r f(R(u)\{u}) < —n/2 < 0 holds.

Lemma 4.3: If f(R(u)) > n/2 > 0, then Fix(fu, z,n)
applies to any x € B(f,) consistent with D restricted to
U\R(u), and it finds a new pair (u,w) compatible with

f-

Proof. Tt f(R(u)) > 1/2, then fu(U\R(u)) = f(U) —
f(R(u)) <-n/2.Ifzx e B(ﬁ) is an extreme base gen-
erated by a linear ordering of U\R(u) consistent with
D, then g satisfies z(t) < f(R(t)) — F(R(#)\{t}) < n for
eacht € U\ R(u) by Lemma 4.2. Thus we may apply the
procedure Fix(f,,z,n) to find an element w € U\R(u)
that is contained in every minimizer of f,. This (u,w) is
a new pair compatible with f (new since we contracted
R(u)), and is added to D. |

~

Lemma 4.4: If f(R(uw)\{u}) < —n/2 < 0, then the
subroutine Fix(f,z,n) applies to any x consistent with
D.

Proof. 1f f(R(u)\{u}) < —n/2, then Fix(f,z,n) applies
to consistent with D obtained by the greedy algo-
rithm, by choice of n and Lemma 4.2. |

Once Fix finds a new element w in every minimizer
of f, then every minimizer of f includes R(w). Thus it

-~

suffices to minimize the submodular function f,,, which
is now defined on a smaller underlying set, and thus the
algorithm redefines f := f,.

Theorem 4.5: The algorithm in Figure 3 computes the
minimizer of a submodular function in O(n” logn) time,
which is strongly polynomial.

Proof. Each time we call the procedure Fix, the algo-
rithm adds a new arc to D or deletes a set of vertices.
This can happen at most O(n?) times. Each call to Fix
takes O(logn) phases. By Theorem 3.4, each phase has
O(n?) augmentations. Since the proof of Theorem 3.6
shows that the amount of work per augmentation is
O(n?), this yields an overall run time of O(n”logn),
which is strongly polynomial. |

5. Concluding Remarks

This paper presents a strongly polynomial-time algo-
rithm for minimizing submodular functions defined on
Boolean lattices. We now briefly discuss minimizing
submodular functions defined on more general lattices.

Consider a submodular function f : D — R defined
on a distributive lattice D represented by a poset P on
V. Then the associated base polyhedron is unbounded
in general.

Initialization:
X« 0
UV, fef
F«0

While U # () do

-~ -~

If f(U) >0 then f(U)+ 0

~

If n <0 then break

-~

If f(R(u)) > n/2 then

w Fix(ﬁ“m,n)
If w € R(w) then

Else F + F U {(u,w)}
Else

w Fix(f, z,n)

U « U\R(w)

F < fuw

X «+ X UT(R(w))
If f(U) <0then X « V
Return X
End.

n max{f(R(u)) - f(R(w)\{u}) | u € U}

Let w € U attain the maximum above.

Find a consistent extreme base = € B(ﬁ) by the greedy algorithm.
Contract {v | v € R(w), u € R(v)} to a single vertex.

Find a consistent extreme base z € B(f) by the greedy algorithm.

~

Figure 3: A strongly polynomial-time algorithm for submodular function minimization.

In order to minimize such a function f, we can
slightly extend the algorithms in Sections 3 and 4 by
keeping the base z € B(f) as a convex combination
of extreme bases y;’s plus a vector in the character-
istic cone of B(f). The latter can be represented as
a boundary of a nonnegative flow in the Hasse dia-
gram of P. This extension enables us to minimize f
in O(n® min{log M,n>logn}) time, where M is an up-
per bound on |f(X)| among X € D.

Submodular functions defined on modular lattices
naturally arise in linear algebra. Minimization of such
functions has a significant application to canonical forms
of partitioned matrices [21, 24]. It remains an interest-
ing open problem to develop an efficient algorithm for
minimizing submodular functions on modular lattices,
even for those specific functions that arise from parti-
tioned matrices.

Independently, Schrijver [29] has also developed a
combinatorial, strongly polynomial-time algorithm for
submodular function minimization. This algorithm is
also based on Cunningham’s approach, although the
two algorithms are quite different.

Acknowledgements

We are grateful to Bill Cunningham, Michel Goemans,
and Maiko Shigeno for their useful comments.

References

[1] R. E. Bixby, W. H. Cunningham, and D. M. Top-
kis: Partial order of a polymatroid extreme point,
Math. Oper. Res., 10 (1985), 367-378.

[2] W. H. Cunningham: Testing membership in ma-
troid polyhedra, J. Combinatorial Theory, B36
(1984), 161-188.

[3] W. H. Cunningham: On submodular function min-
imization, Combinatorica, 5 (1985), 185-192.

[4] J. Edmonds: Submodular functions, matroids, and
certain polyhedra, Combinatorial Structures and
Their Applications, R. Guy, H. Hanani, N. Sauer,
and J. Schonheim, eds., Gordon and Breach, 69—
87, 1970.

[5] J. Edmonds and R. Giles: A min-max relation
for submodular function on graphs, Ann. Discrete
Math., 1 (1977), 185-204.

[6] J. Edmonds and R. Karp: Theoretical improve-
ments in algorithmic efficiency for network flow
problems, J. ACM, 19 (1972), 248-264.

[7] L. Fleischer, S. Iwata, and S. T. McCormick: A
faster capacity scaling algorithm for submodular
flow, 1999.

[8] A. Frank: An algorithm for submodular functions
on graphs, Ann. Discrete Math., 16 (1982), 189
212.

[9] A.Frank and E. Tardos: An application of simulta-
neous Diophantine approximation in combinatorial
optimization, Combinatorica, 7 (1987), 49-65.

[10] A. Frank and E. Tardos: Generalized polymatroids
and submodular flows, Math. Programming, 42
(1988), 489-563.

[11] S. Fujishige: Polymatroidal dependence structure
of a set of random variables, Information and Con-
trol, 39 (1978), 55-72.

[12] S. Fujishige: Lexicographically optimal base of a
polymatroid with respect to a weight vector, Math.
Oper. Res., 5 (1980), 186-196.

[13] S. Fujishige: Submodular systems and related top-
ics, Math. Programming Study, 22 (1984), 113-131.

[14] S. Fujishige: Theory of submodular programs: A
Fenchel-type min-max theorem and subgradients
of submodular functions, Math. Programming, 29
(1984), 142-155.

[15] S. Fujishige: Submodular Functions and Optimiza-
tion, North-Holland, 1991.

[16] M. X. Goemans and V. S. Ramakrishnan: Mini-
mizing submodular functions over families of sub-
sets, Combinatorica, 15 (1995), 499-513.

[17] M. Grotschel, L. Lovdsz, and A. Schrijver: The
ellipsoid method and its consequences in combina-
torial optimization, Combinatorica, 1 (1981), 169—
197.

[18] M. Grotschel, L. Lovész, and A. Schrijver: Ge-
ometric Algorithms and Combinatorial Optimiza-
tion, Springer-Verlag, 1988.

[19] T.-S. Han: The capacity region of general multiple-
access channel with correlated sources, Informa-
tion and Control, 40 (1979), 37-60.

[20] B. Hoppe and E. Tardos: The quickest transship-
ment problem, Proceedings of Fifth ACM/SIAM
Symposium on Discrete Algorithms (1995), 512—
521.

[21] H. Tto, S. Iwata, and K. Murota: Block-
triangularization of partitioned matrices under
similarity /equivalence transformations, SIAM J.
Matriz Anal. Appl., 15 (1994), 1226-1255.

[22] S. Iwata: A capacity scaling algorithm for con-
vex cost submodular flows, Math. Programming,
76 (1997), 299-308.

[23] S. Iwata, S. T. McCormick, and M. Shigeno: A
strongly polynomial cut canceling algorithm for the
submodular flow problem, Proceedings of the Sev-
enth MPS Conference on Integer Programming and
Combinatorial Optimization (1999), 259-272.

[24] S. Iwata and K. Murota: A minimax theorem and
a Dulmage-Mendelsohn type decomposition for a
class of generic partitioned matrices, SIAM J. Ma-
triz Anal. Appl., 16 (1995), 719-734.

[25] L. Lovész: Submodular functions and convexity.
Mathematical Programming — The State of the
Art, A. Bachem, M. Grotschel and B. Korte, eds.,
Springer-Verlag, 1983, 235-257.

[26] H. Nagamochi and T. Ibaraki: Computing
edge-connectivity in multigraphs and capacitated
graphs, SIAM J. Discrete Math., 5 (1992), 54—64.

[27] H. Narayanan: A rounding technique for the
polymatroid membership problem, Linear Algebra
Appl., 221 (1995), 41-57.

[28] M. Queyranne: Minimizing symmetric submodular
functions, Math. Programming, 82 (1998), 3-12.

[29] A. Schrijver: A combinatorial algorithm minimiz-
ing submodular functions in strongly polynomial
time, J. Combinatorial Theory, Ser. B, submitted.

[30] M. A. Sohoni: Membership in submodular and
other polyhedra. Technical Report TR-102-92, De-
partment of Computer Science and Engineering,
Indian Institute of Technology, Bombay, India,
1992.

[31] A.Tamir: A unifying location model on tree graphs
based on submodularity properties, Discrete Appl.
Math., 47 (1993), 275-283.

[32] E. Tardos: A strongly polynomial minimum cost
circulation algorithm, Combinatorica, 5 (1985),
247-255.

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

