An On-LineAlgorithm for Improving Performancen
Navigation

Avrim Blum* PrasadChalasani

Schoolof ComputerScience Schoolof ComputerScience
Carngjie Mellon University Carngjie Mellon University
Pittskurgh, PA 15213 Pittshurgh, PA 15213
avri ma heory. cs. cnu. edu chal @s. cnmu. edu

Abstract

We considerthefollowing scenario A pointrobotis placedat somestartlocations in a 2-
dimensionakcenecontainingorientedrectangulaobstaclesThe robotmustrepeatedlyravel
backandforth betweers anda secondocationt in thescene Therobotknowsthecoordinates
of s andt but initially knows nothingaboutthe positionsor sizesof the obstaclesit canonly
determinghe obstacleslocationsby bumpinginto them.We wouldlike anintelligentstratgy
for the robotso thatits trips betweens and¢ both arerelatively fastinitially, andimprove as
moretrips aretakenandmoreinformationis gathered.

In this paperwe describean algorithmfor this problemwith the following guaranteein
thefirst & < n trips, the averagedistancepertrip is atmostO(~/n/k) timesthelengthof the
shortesk-t pathin the scenewheren is the Euclideandistancebetweers and¢. We alsoshowv
a matchinglower boundfor deterministicstratgies. Theseresultsgeneralizeknown bounds
on the one-trip problem. Our algorithmis basedon a novel methodfor makingan optimal
tradeof betweersearcheffort andthe goodnes®f the pathfound. We improve this algorithm
to a “smooth” varianthaving the propertythat for every i < n, therobot’s ith trip lengthis
O(+/n/i) timestheshortest-t pathlength.

A key ideaof this paperis amethodfor analyzingobstaclescenesisingatreestructurethat
canbedefinedbasedn the positionsof the obstacles.

1 Intr oduction

This paperaddresseanabstractiorof thefollowing type of scenariolmagineyou have just moved
to anew city. You areatyour homeandmusttravel to your office, but you do not have amap(let's
assumeyou know the coordinate®f your office; you just do not know the streetlayout). Several
papersn recentliteraturehave discussedtratgiesthatcanbe usedto planonesroutein thistype
of situationso that the distancetraveledis not too muchlongerthanthe shortestpath. But now,
supposeyou have reachedyour office, spentthe day there,andit is time to go home. You could
retraceyour path,but you now have someinformationaboutthe city (whatyou sav onyourway to
workin themorning)andwouldlike to do better Thenext morningyouhave evenmoreinformation
andsoon. Whatis a stratgy thatallows your pathtakeneachtimeto begood,andto improve with
experiencePerhapyoumightevendesignyour pathsexplicitly soasto gainmoreinformationfor
futuretrips.

Specificallywe considethe scenariqexaminedin [17, 7, 11, 10]) wherethereis a startpoint s
andtargett in a2-dimensionaplanefilled with non-overlappingaxis-paralletectangulabbstacles,

*This materialis basediponwork supportedinderNSFNationalYounglnvestigatograntCCR-935779&nda Sloan
FoundatiorResearchrellowship.

having cornersatintegral coordinatesA pointrobotbeginsat s, andknowsits currentpositionand
thatof thetarget,but it doesnotknow the positionsandextentsof the obstaclesit only findsout of
their existenceasit bumpsinto them.In the problemconsideredn previouspaperstherobot'sgoal
is to travel from s to ¢ asquickly aspossible.We call this the one-trip problem. For this problem,
if n is the Euclideans-t distance[7] presentsan algorithmthat guaranteesn O (/) ratio of
the distancetraveledto the shortestpath length, which is known to be optimal for deterministic
algorithms[17]. Here,we considerthe situationwherethe robot may be askedto makemultiple
trips betweens and¢. We would like anintelligent stratgy for the robotso thatits trips between
s andt bothareasfastascanbe hopedfor initially, andimprove asmoretrips aremadeandmore
informationis gathered.For instance after makingonetrip thatachievesthe above O(/n) ratio
therobothassomepartialinformationaboutthe scene.Canit exploit this informationto improve
its ratio on the secondtrip? Canit continueto exploit new informationgainedon future trips? It
is importantto notethatpartialinformationmay not helpif it is somehav not sufficiently relevant.
Thusthe challengeis to performaswell aspossibleon eachtrip giventhe informationgainedso
far, andat the sametime acquireinformationthatwill be usefulfor improving on latertrips. This
makeghe multi-trip problemmoredifficult thanthe singletrip problem.

Themulti-trip problemhasaspect®f botha machindearningandanon-linealgorithmsprob-
lem. As in machindearningsettingswe would like our algorithmto improve its performancevith
experience.As in standardn-line algorithmssettings(e.g.,[16]), decisionghe robot makesnow
mayaffectthecostst experiencedn thefuture. However, our scenarialsoexhibits key differences.
In particular unlike typical on-line algorithmsproblems herethe algorithm may have partial in-
formationaboutthe future — namely the positionsof obstacleghat lie aheadthatit hasalready
encounteredT hereis alsoa valueassociatedvith informationgatheringn our settingin the sense
thatsuchinformationmay (or maynot) prove to beusefulonthefuturetrips made.Onecontribution
of ourwork is a methodfor analyzingproblemsof this sortandquantifyingtheinformationthatis
mostrelevantin this setting.

We studythe caseof orientedrectangulaobstaclegor two mainreasonsFirst, scenegontain-
ing suchobstaclesare complex enoughto embodymary of the stratgic issuesthatarisein path
planning.For example thequestionof whenoneshould‘give up” onadifficult regionin thescene
andmove to anew region thatmight be more promising;alsothe questionof which informationis
worth gathering. Secondjf one allows arbitrarily shapedbstaclesit is known [7] thatonecan-
not performmuchbetterin the worst casethana simplemindeddepth-first-searcktratgy. Thus,
suchscenedlo not allow oneto demonstrateheoreticallythe value of a usefulapproachby the
performanceyuaranteeachie/ed.

An extendedabstracbf this paperappearss[6].

1.1 Resultsand goodnessneasues

Giventhebasicscenarialescribe@bove, thefirst questiorto beaddressei themeasuref success
to use. Clearly we do not want to give high marksto a solutionin which the robot makesan
artificially long first trip andthensubsequentlyimproves” on futuretrips. Insteadwe would like
an algorithmthat performsaswell aspossibleat all times. For this reasonwe will analyzeour
algorithmsusingatypeof “competitive analysis”. Theideaof competitive analysigs to comparehe
performancef onesalgorithmto thebestonecouldhopeto doif therewerenomissinginformation
(in our casejf amapof thescenavasknown). For instancefor theone-tripproblem,Papadimitriou
and Yannakakig17] shavedthat for ary deterministicalgorithmandinteger» > 0, thereexist
scenedaving Euclideans-t distance: (thewidth of thethinnestobstaclds takenas1 unit), forcing
thealgorithmto travel 2(,/n) timesthelengthof the shortespath. SubsequentlyBlum, Raghaan
and Schieber(BRS) [7] shonved an algorithm having a performanceguaranteghat matcheshis
lower bound.

For themulti-trip problemwe considertwo similar measuresf performanceln thecumulative

measurewe comparethe total distancetraveled on the first £ trips to the length of the optimal
path. Our first main resultis a deterministicstrat@y having the propertythatgiven & < n, it
guaranteeshatthe total distancetraveledin thefirst & trips is at mostO(L+v/nk), whereL is the
lengthof the shortests-¢ path. (If & > n the distancebecomesD(Lk).) We alsoshow thatup to
constanffactorsthis is the bestguaranteechiezableby a deterministicstrateyy. In particular for
ary deterministicstratgy andary n andk < n, thereexist scenesvhichforcethestratey to travel
distance(L+v/nk) onthefirst k trips. Oneproblemwith the cumulative measures thatit doesnot
forcethe algorithmto performaswell aspossibleon ead trip. For this reasonwe alsoconsider
a per-trip measuren which we separatelfpoundthe costof eachtrip. Our secondmainresultis
animprovementon the cumulative algorithmhaving the propertythatfor all ¢ < n, the:th trip of
therobothaslengthat mostO(L+/n/i). Thisis optimalin the sensehat(up to constanfactors)it
meetshe cumulative lower boundsimultaneouslyor all ¢.

1.2 Main ideasand the basicstrategy

Thecoreof ourresults(andthebulk of the paper)is amethodfor achiering asmoothseach-quality
tradeof: smoothlytrading off in a singletrip the exploration costwith the goodnes®f the path
found. Specifically we designan algorithmthatgivenary k < n, searches distanceO (Lv/nk)
andfindsan s-t pathof lengthat mostO(L+/n/k). In otherwords,at a costof only ¢ timesthe
costof the BRS algorithm(t = /% in our case)we find a paththatis a factorof ¢ betterthanthe
BRS guaranteeln addition,our methodfor achieving this tradeof hasthe propertythatit canbe
performedin a “piecemeal’fashion(somevhat like the piecemealearningof [5]). In particular
thesearchinganbe performedalittle bit atatime oneachtrip. This latterpropertyis whatallows
usto turn our cumulatve algorithminto onethatis morelike alearningalgorithm,with optimal
pertrip performanceAs moretrips aremade bettersearchesreperformed andcheapepathsare
foundfor thefuturetrips. An exampleof anexploratorytrip achieving thedesiredradeof is given
in Fig. 1.

Our mainideafor achieving this search-qualityradeof is a methodfor analyzingan obstacle
sceneanddeterminingwhich piecesof informationarethe mostimportant.In particular we show
thata treestructurecanbe definedin the scenewherethe nodesare portionsof certainobstacles
andthe edgesareshortpathsfrom a nodeto its children. This tree canbe tailoredto the search
costandpathquality desired. Our searchalgorithmis essentiallyan online stratgy to traversea
sequencef treesoptimally, andthe pathfoundis aconcatenationf specificroot-to-leafpathsfrom
eachtree. Besidedts usefor achieving a search-qualityradeof on a singletrip, thetreestructure
enablesisto spreadhe searchover severaltrips: sincethereis a “short” pathfrom therootto each
node,we cansuspendur tree-traersalon onetrip andresumethe explorationon a later trip by
maving quickly to the pointwherewe stoppedThetreestructures definedformally in Section5.

1.3 RelatedWork

Versionsof the multi-trip problemhave beenaddressedh the frameavork of reinforcementearn-
ing. Thrun[18] describesheuristicsfor pathimprovementin scenesontaining(possiblyconcae)
obstaclesandpresentempiricalresults.KoenigandSimmong12] considera similar problemon
graphs.In othermachindearningliterature,Chen[9] considersiow thecomputatiortimefor path-
planningin a knownscenecanbe improved by makinguseof (portionsof) solutionsto previous
pathplanningproblemsin the samescene.

Betke,RivestandSingh[5] considemrelatedproblemof completelyexploringanervironment,
but with therestrictionthattherobotmustreturnto the startto refuelevery d stepgor somedistance
d. They call this piecemealearningandprovide algorithmsfor the caseof a boundedegion with
axis-parallerectangulaobstacles.

Lumelsky and Stepanwe [13, 14, 15 describesomevery simple algorithmsthat canbe used

oM

Bz

sad | Lode | aNvy |
| ATET+ET5T

Red

L57 +x04

!

g

B
Bz

|towaq | adads | TILE ” TI4Y H T10d | o)

Figurel: An exampleof aninitial searchtrip, ¥ = 3. Thethick line shavsthe s-t pathfound(s is at center
top, 1 is atthe bottom),andthethin andthick linesarethe searctpath. Therobotoccasionallywill backup,
which accountdor the deadends.Obstaclesit areshadedIn each“fence group” (seeSection5.1) fences
1 and3 arelightly shadedandfence? is darkly shaded.This figure is a screendump of a demonstration
programthatallows a userto createa “simple scene’(seeSection4) andthenrun variousalgorithmsonit.

to solve the one-trip problemfor arbitrary (non-cotvex) obstacleshaving the propertythat the
distanceraveledis at mostthe Euclideans-t distanceplus 1.5 timesthe sumof the perimetersof
all theobstacles.

2 The model

Let S(n) denotethe classof scenesn which the Euclideandistancebetweens and¢ is n. We
defines to be at the origin (0, 0). As mentionedabore, we assumehat the width and height of
eachobstaclds atleastl (this in essenceefinestheunitsof ») andfor simplicity assumehatthe
z-coordinate®f the cornersof obstaclesreintegral. Thusno morethann obstaclesanbe placed
side by side betweens andt. We assumehat when obstaclegouch, the point robot canmove
betweerthem.

To simplify the exposition,for mostof this paperwe will taket to betheinfinite verticalline (a
“wall”) = = n andrequiretherobotonly to getto ary pointonthisline; thisis the Wall Problemof
[7]. Our algorithmsare easilyextendedto the casewheret is a point, usingthe “Room Problem”
algorithmsof [7] or [3], andwe describahis modificationin Section8.

We modeltherobotashaving only tactile sensorsthatis, it discoversanobstacleonly whenit
“bumps”intoit. It will becornvenientto assumehowever, thatwhentherobothits anobstacleijt is
told which cornerof theobstaclés nearesto it, andhow far thatcorneris from its currentposition.
As in [7], our algorithmscan be modifiedto work without this assumptiorwith only a constant
factorpenalty We describehesemodificationgowardthe endof the paper

Considera robot stratgly 12 for making k trips betweens and¢. Let R;(.S) be the distance
traveledby therobotin theith trip, in sceneS. Let L(.S) bethelengthof the shortesbbstacle-free
pathin the scenebetweens and¢. We definethe cumulativek-trip competitveratio as

R(k)(S)
p(&mk)—slén‘%) FL(S)

where R¥)(S) = Y% | R;(S) is the total distancetraveled by the robotin k trips. Thatis,
p(R,n, k) is theratio betweertherobot’'s averagedistanceraveledin £ trips,and .. We definethe
per-trip competitive ratio for theith trip as

Ri(55)
pi(R, n) o TlS)

Giventhis notation,our mainresultscanbe describechsfollows. First, we show for ary £, n,

anddeterministicalgorithmR, thatp(R, n, k) = Q(\/n/k). Secondwe describea deterministic
algorithmthatgivent < n achieresp(R, n, k) = O(\/n/k). Finally, we shov animprovementto
thatalgorithmthatachievesp; (R, n) = O(y/n/7) for all i < n. Noticethatthelatteralgorithmis
optimalin thatit matcheshelowerboundsimultaneouslyor all k. Le.,+ % \/n/i = O(\/n/E).
Thesimplestof theseresultsis thelowerbound,whichwe describdirst.
Conventions. Wewill usethewordsup,down, left, andrightto meanthedirectionsty, —y, —z, +=«
respectiely. Whenwe saypoint A is above, below, behind,or aheadof a point B we will mean
thatA isin the+y, —y, —z, +2 directionrespectiely from B. Finally, vertical(horizontal)motion
is parallelto the y (respectiely,) axis. At ary pointin time, the currentcoordinate®f the robot
(which areknown to therobot)aredenotedby (z,).

3 A Lower Boundfor k Trips

Theorem 1 (k-trip Cumulative Lower Bound) For k < n,theratiop(R, n, k) isatleastQ(\/n/k),
for anydeterministicalgorithm R.

Figure2: A 4-coloringof the brick patternfor thelowerbound.

Proof: SinceR is deterministicanadwersarycansimulateit andplaceobstaclesn S asfollows.
Recallthats is thepoint (0, 0).

The adwersaryfirst placesobstaclesf fixed height2h > /n andwidth 1, in a full “brick
pattern”on theentireplane,asshovn in Fig. 2, with s at the centerof theleft-sideof anobstacle.
(Recallthatthepointrobotcan“squeeze’betweerbricks). Theadwersarysimulatesi? onthisscene,
noteswhich obstaclest hastouchedat theendof & trips, thenremoresall otherobstaclegrom the
scene.This is the final scenethat the adwersarycreatedor the algorithm,andsayit containsi/
obstacles.The brick patternensureghat £ musthave hit at leastone brick at every integer z-
coordinateso M > n. Further this arrangementorcesthe robotto hit a brick at every integer
z-coordinateon every trip. Wheneerit hits a brick, it mustmove vertically up or down a distance
h, soits total k-trip distanceR*) is atleastnkh.

We now shaw thatthereis a pathfrom s to thewall of lengthat mostO (v (%)). Imaginethe
full brick patternto bebuilt out of four kinds of bricks (red, blue, yellow andgreen,say)arranged
in a periodicpatternasshavn in thefigure. This arrangementasthefollowing property:for each
color, to go from a point on an obstacleof that color to a point on ary otherobstacleof the same
color, the robotmustmaove a distanceat leasth. Out of the M obstacledit by therobot, at least
M /4 musthave thesamecolor, sayblue. Soregardlesf how therobotmoved, sinceit hasvisited
M /4 blueobstacleswe have R¥) > M h/4, whichimplies M < 4R /p,

We claimthereis anon-negativeinteger; < /M suchthatatmosty/M obstaclesiave centers
atthe y-coordinatejh. Thisis because given obstaclantersectsat mostoney-coordinateof the
form jh, andthereare M obstaclesThus,thereis apathto ¢ thatgoesverticallyto they-coordinate
jh, thenhorizontallyalongthis y-coordinategoingaroundat mosty/Af obstaclesThetotallength
of this pathis atmost2h/M + 2hv/M + n, whichis atmost6h+/M sincen < M and/n < 2h.
SinceM < 4R /h, thispathis in factof lengthatmost6v/4h R(*). Thusthek-trip ratiois atleast
R® /(6kV4hRP). Recallingthat R*) > nkh, thisis atleast /n/k = Q(y/n/k). n

It is not hardto seethatthis lower boundalsoholdsfor thecasewheret is a pointratherthana
wall.

4 The k-trip Cumulative Algorithm: Preliminaries

We now give somepreliminaryobsenationsneededor our algorithm.

We beagin by assumingfor simplicity that the algorithm knows the length /. of the shortest
obstacle-frepathfrom s to ¢. In Section5.1we shawv thatthisassumptiortanberemaovedby using
a standardguessinganddoubling” trick. Onesimpleobsenationis thatthe shortesbbstacle-free
s-t pathmustlie entirelywithin awindowof height2/, centeredat s, sinceary s-t paththatleaves
thewindow mustbelongerthan . In theremainderof the paperwewill referto therectangular
region of height2/. centeed vertically at s, and extendinghorizontally betweens and ¢ as “the
window”. This obsenationimmediatelyleadsto aneasyalgorithmto achiese a cumulative k-trip
ratioof O(1) for k > n:

First trip: Usinga depth-first-searchexplore the entirewindow. This canbe doneby walking
atotal distanceof O(Ln). Computetheshortesbbstacle-free-t path(of lengthZ).

Remainingtrips: Usetheshortespath.

Clearlythe averagetrip lengthis O (L), sothe cumulative n-trip ratiois O(1).

Thus,thecases: = 1 (the BRSalgorithm)andk > »n canbe donewith known methods.In
fact, at the high level, our optimal cumulative stratgy for 1 < & < n tripsis similar to the n-trip
algorithmjustdescribed:

First trip: Somehw performan “exploratory” walk of lengthO(L+/nk), in suchaway that
ans—t path P of lengthO(L+/n/k) is discorered.
Remaining k — 1 trips: UsethepathP.

Theaveragetrip lengthof this algorithmis O (+(Lv/nk + (k — 1) L\/n/k)) = O(L\/n/k), sothe
cumulative k-trip ratio is O(y/n/k). Thus,asmentionedn the introduction,the key questionis
how to find a paththatis a factorQ(v/k) betterthanthe BRS guaranteavhile traveling a distance
thatis only O(v/k) longer

In orderto makethe mainideasclear we first describeour algorithmfor a classof scenewe
call simplesceneshatcapturemostof thedifficultiesin designingonline navigationalgorithms(for
boththeone-tripandk-trip problems).In Section6 we shon how to extendthis algorithmto handle
the generalcase. A sceneis simpleif (a) all obstacleshave the sameheight2~ andwidth 1, and
(b) the obstaclecornershave coordinateof theform (¢,) for integer: and;. For instancethe
obstaclesn thelower boundof Section3 form a simplescene.Obsene thatin a simplesceneone
canmove unimpededrertically alongary integerz-coordinatenithoutencounteringry obstacles.

Noticethatif » < L/v/nk thena brute-forcestratgy thatmovesforwardwhen possibleand
otherwisearbitrarilygoesaroundary obstacleencounteredill hit atmostr obstaclesandtherefore
travel a distanceat mostO (n L /v/nk) = O(L+/n/k), which is our desiredbound. Thus,we may
assumen whatfollowsthath > L/v/nk.

Conventions. For cornveniencejn a simplescenewe definethe positionof anobstacleA to bethe
coordinate®f the midpointof the left edgeof the obstacle.A horizontalpathwhosey coordinate
is a multiple of & is saidto hit an obstacleif it hits the obstacles center(asopposedo grazing
thetop or bottomedge),i.e., if it reacheghe obstacles position. We reiteratethatwe will usethe
phrase‘the window” to refer to the rectangularegion of height2/. centeredvertically at s, and
extendinghorizontallybetweens and¢. As mentionedabore, we will assumen whatfollows that

h > L/Vnk.

Figure3: A fencein a simplescene.Theobstacleg1, 2, 3, 4, 5) with thick boundariegorm a fence. The
dashedine connectingpoints A and B crosseghe fence. The shadedegions are the bandsof the fence.
Note: sincel > n, thewindow in this figure shouldreally be taller thanits width. However for the sakeof
clarity, in thisandall figuresin this paperthe vertical dimensiorhasbeencompressedonsiderably

5 The Algorithm for Simple Scenes

5.1 Fencesandthe One-trip BRS Algorithm

Onekey notionusedin boththe one-tripBRSalgorithmandour k-trip algorithmis thatof afence!
An upfencef’is asequencef M obstaclestpoints(X (1), Y (1)), (X(2),Y(2)),..., (X (M), Y (M))
suchthatY (1) < —L,Y (M) > L,andform =1,2,..., M — 1:

X(m) < X(m+1))
Y(im+4+1) = Y(m)+h (2)

SeeFig. 3. A downfencehasthe samedefinitionexceptY (1) > L, Y (M) < —L, andEquation2
is replacedoy Y (m + 1) = Y (m) — h. Themth obstacleg(countingfrom the left) of fence F'; is
denotedby F;(m) andits coordinatesare (X;(m), Y;(m)). For eachm, therectangularegion of
heighth whoseoppositecornersare (X (m), Y (m)) and(X (m + 1), Y (m + 1)) is calleda band.
A fencecanthusbeviewedasa contiguousequencef bandsextendingacrosghewindow.

A point P is saidto be left (resp. right) of afence F' if animaginaryhorizontalline from P
to the left (resp. right) doesnot intersectary obstacleof F. A pathis saidto crossthe fenceif it
connectsomepointleft of thefenceto somepointright of thefence,and staysinsidethewindow.
Any paththatcrossesfencehasverticallengthatleasth sinceit mustcompletelycrosssomeband
(seeFig. 3).

It is easyto seehow a robot canfind a fencewith vertical motionat most2/7.. Specifically
startingfrom the bottomof thewindow, anup fencecanbefoundasfollows:

Repeatuntil attop of thewindow (i.e. y = +L): walk to theright until anobstaclés hit, then
move up to thetop of the obstacle.

Theone-tripBRS algorithmrestrictedto simplescenegandassuming/. is known) reducedo
thefollowing:

Initially, walk from s down to the bottomof thewindow. Until the wall is reachedwalk to the
right, alternatelybuilding up anddown fencesacrossawindow of height2 . centeredat s.

'Thisis calleda sweegn [7].

Figure4: ThefencesF; = (1,2,3,4,5)andF, = (6,7,8,9, 10) aredisjoint. F; andF5 = (6,7,8',9,10)
arenot disjoint sincethe bandof F3 between’’ and9 overlapsthe bandof F; between3 and4. In fact,
onecancrosshoth F; and F5 at a total costof only h by traveling between8’ and4. A greedystratgy
for constructinga fencesuchas F; disjoint from the previously foundfenceF; might beto go up andover
obstacle’’ until obstaclet is hit, andthendown around4 to reachobstacle8. However, thistype of strategy
might be expensve, asshavn in thenext figure.

The robot never walks backwardin the BRS algorithm, soits total horizontalcostis n, and
sincel, > n, this costis only asmallorderterm. Notethatevery obstaclehit by therobotis partof
somefence.Thuseverytimetherobotspend /. (vertically) to build a fence,it is alsoforcing the
optimaloffline pathto spendatleasth to crossthefence.Soif » > L/\/n, thecompetitveratiois
O(y/n). Thecaseh < L/+/n is eveneasietto handle:therobothits atmostn obstaclegsincethey
have width 1 andtherobotnever walksbackwards)soits total verticalcostis atmostnh < Ly/n.

We saythattwo fencesaredisjointif their bandsdo notintersecteachother(seeFig. 4). Be-
causethe bandsof disjoint fencesdo not overlap,ary paththatcrosseg disjoint fencesmustpay
(vertically) at leastth. For the k-trip probleman intuitively reasonabl@pproachs to extendthe
BRSideaasfollows: On eachtrip, makenew fencesthataredisjoint from previousfences.If on
eachtrip onecouldfind new disjointfences‘cheaply” (O (L) cost),and onecouldcrossold fences
cheaply(O(h) cost),thenthis would resultin anoptimalalgorithm. However, we know of no way
to find new disjoint fencesthis cheaply The naie stratgy of extendingeachnew fencegreedily
andusingpreviously foundpathsto bypassbstacleshatenterexisting fencescanbetoo expensve
in certainscenesExampleof suchscenearegivenin [8].

Our approachashintedin Section4, is to give up on trying to createnew disjoint fenceson
eachtrip, andinsteaduo try to find agroupof disjointfencesall atonceononetrip. Specifically we
dothefollowing. Supposéhath = oL /v/nk for somea > 1 (recallthat2h is the obstacleneight,
anda < 1 isaneasycaseto handle).Thenour strat@y is:

path

_—

fences: work

Figure5: High-level view of the optimal k-trip stratgy. Firsttrip: creategroupsof fenceswith short
group-crossingaths.Remainingrips: follow theseshortpaths.

First trip: Build asequencef fencegroupsin which eachgroupconsistof [%] disjoint
fences(alternatebetweengroupsof up-fencesand groupsof down-fencesuntil the
wall is reachedEnsurethat

(@) thecostof building eachgroupis O(k L),

(b) anO(L) lengthpathcrossingeachgroup(i.e. goingfrom thez-coordinateof
theleftmostobstacleof theleftmostfenceto thex-coordinateof therightmost
obstacleof therightmostfence)is found,and

(c) theright endof eachgroup-crossingathis the left end of the next group-
crossingpath.

Remainingk — 1 trips: Follow the group-crossingathsto thewall .

The first trip is shavn schematicallyin Fig. 5. To seewhy the above stratgy achiezesan
O(y/n/k) ratio, assumingve cansomehwv satisfy(a), (b) and(c), noticethatthe aveiageonline
costpertrip to getpasteachfencegroupis O (L) (amortizingthe O (kL) building cost). Crossing
eachgroup coststhe optimal offline pathat least(k/a)h = L/\/n/k, sothe averageonline trip
lengthis within anO (\/n/k) factorof optimal,asdesired.

A Search-Quality Tradeoff. Since eachfence group coststhe offline optimum path at least
L/\/n/k to cross,the robotwill find at most./n/k groupsbeforereachingthe wall. Thusthe

total lengthof its first trip is O (kL\/n/k) = O(L+/nk), andthetotal lengthof the group-crossing
pathsis O(L/n/k). Thereforethis achievesthe search-qualityradeof mentioneckarlier

The Doubling Strategywhen I, isunknown. Notethatif 7. is notknown, we canjustbegin with
aguesf L = n, andif thewall hasnot beenreachedafterbuilding y/n/k fencegroups,we can
doubleour guessandrepeatthe entireprocedure.Thusthereis only a constanfactor penaltyfor
notknowing .

Theadwantageof building anentirecollectionof fenceson onetrip is thatthis allows therobot
to makemore effective useof its movements. In [8] a detailedexampleis given wherebuilding
fencesone-by-onen consecutie trips canbetoo expensve. In fact a crucial propertyof the fence
collectionswe will defineis thatthe ith obstacleof a fenceis alwayseasilyreachablesitherfrom
the precedingbstacleon the samefenceor the correspondingbstacleof thefenceabove.

10

12

=
T ©

]

@]

11

LTI o

]
>
E

Figure6: A sceneshaving a3 x 4 fence-treewheretheroot F; (1) is obstaclel. The shadedbstacles
arethe nodesof thetree,andthe darklines arethe edges.Differently-shadedbstaclexonstitutedifferent
fences;otherobstaclesarenot partof ary fence. For instance pbstacle4 is node F (4), obstacle? is node
F»(3), andobstacle8 is node F,(4). Notethatthe treedefines3 disjoint fenceswith 4 obstaclesach. If
we hadfailed to follow the Fence-Tee RulesandinsteadhadmadeF;(4) be up-rightfrom F»(3) (thatis,
obstacleB) thenfencesl and2 would not be disjoint.

5.2 Fence-trees

We would like to build a collectionof ¢ = [£] up-fencesacrossthe window, andfind anO(L)
lengthpathcrossingthe collection,while payinga costof only O (kL). Our key ideais to definea
treestructurewhosenodesare obstaclesn the sceneandwhoseedgesare“short” pathsbetween
the nodes.Thesenodeswill constitutethe desiredcollectionof fencesandthe pathfrom theroot
nodeto therightmostnodeis thedesired) (L) lengthpaththatcrosseshecollection.Furthermore,
traversingall edgesof thistreewith acostof O (kL) is equivalentto building thedesiredcollection
of fences.

In orderto definethe treestructurewe introducesomenotationandterminology The nodesof
thistreewill bedenoteddy F;(m),fori = 1,2,...,Gandm = 1,2,..., M (M isroughly2L/h
andwill befully specifiedater). Thereasorfor this notationis that /() will turn outto bethe
mth obstacleof theith fence. The coordinateof obstaclel’;(m) aredenoteddy (.X;(m), Yi(m)).
We say an obstacle() is down-right (up-right) from an obstacleP if () is the first obstaclehit
whenmoving to the right from the bottom(top) of P. Thefollowing rulesthendefinethe G x M
fence-treawith root /' (1) (anexampleis givenin Fig. 6).

Fence-TeeRules.

1. Fori=2,3,...,G, F(1) isdown-rightfrom F;_;(1).

2. Form=23,..., M, Fi(m) is up-rightfrom Fy (m — 1).

3. For:i=23, ... G:

Form=23,..., M:
If Xl(m — 1) Z Xi_l(m),
thenF; (m) is up-rightfrom F;(m — 1)
elseF;(m) is down-rightfrom F;_; (m).
(E.g.,in Fig. 6, obstacle7 is up-rightfrom obstacles, andobstacleB is down-right
from obstacles.)

Thus eachnode F;(m) (exceptthe root node £ (1)) is definedto be either up-right from

11

F;(m — 1) or down-right from £;_; (m). We will call that“defining obstacle”of F;(m) its par-
ent and call the up-right or down-right path from the parentto F;(m) (consistingof a vertical
portion of heighth followedby a horizontalportion) anedgein thetree. Thatis, if rule 2 is used
orif F;(m — 1) isto theright of F;_;(m) then F;(m — 1) is the parentof F;(m) andotherwise
F;_1(m) is theparentof F;(m).

Thefencetreerulesdefinea naturalbinary rootedtreestructure.The treestructureis visually
apparentn Fig. 6. The x M fence-trean factdefinesexactly the groupof fencesthatwe want
to build:

Theorem 2 (Fence-Tee) Let P be an obstaclewith y coodinate— I in a simplesceneand let
M > [2£] 4+ 7£7. Thentheobstaclesn a G x M fencetreewith root P form G disjointup-fences
with M obstaclesad, with P asthefirst obstacleof theleftmostfence

Proof: It iseasyto seethattheobstacled™; (m) definedby Rule2 constituteafencel’ . In addition,
forall i > 1, theobstacled’;(m), m = 1,2,..., M constitutea fencel’; sinceeachis to theright
of andexactly 4 higherthanthe previous obstacle.By Rule 1, theinitial obstacleof eachfenceis
down-rightfrom theinitial obstacleof thefenceF;_; aboreit. Thereforethefencesaredisjointif
andonly if for eachm = 2,3, ..., M, F;(m) is to theright of F;_; (m), andthis is guaranteedby
Rule3.

It is easyto verify thatthevalue M = [2£] + [£] is sufficientto ensurethateven the fence
Fg thatstartsGh = h[f} belov the bottomof the window extendsatleast2L above the obstacle
P, andthusall fencescrossthe window.]

Recallthatwe wantedto definethe fencegroupsothatthereis acheap(O (1) length)paththat
crosseshegroup.Onesuchpathis the pathfrom theroot of thetreeto therightmostobstacleonthe
rightmostfence(strictly speakingthis pathdoesnot crosstherightmostfence but it canbecheaply
extendedo onethatdoes).In fact, theuniquepathin thetreefrom theroot /7 (1) to eachnodehas
lengthatmostO (L), aswe show below.

Lemma3 InaG x M fence-teein asimplescenewhee G = [£] and M = [£] + [21],
(a) theuniquepathin thetreefromtherootto eat nodehaslengthO (L), and
(b) thetotal lengthof all edgeds O(kL).

Proof: Recallfirstthatk < n andl > n. Sincethe uniquetreepathfrom therootto ary given
nodealwaysproceedsgo theright, the total horizontalcostof this pathis at mostn. On this path,
eachdown-edgdeadsto alowerfence(andthereareonly G = [f} fences)andeachup-edgdeads

to an obstacleon the samefence(andthereareonly M = [£] + [2E] obstaclegerfence). So,
thetotal verticalcostof this pathis atmosti (G + M). Thusthetotallengthof ary suchpathis at
mostn + h(G + M) = n+ h(2[£] + [2£]), whichis O(L) sinceh = aL/v/nk < aL/k.

To boundthetotal lengthof all edgesnotethateachedgecanbeassociatewvith auniquenode,
namelythe oneonits right (thechild). Thus,the sumof thevertical portionsof all edgeds at most
hGM — 1) = O(kL). By fencerules2 and3, the lengthof the horizontalportion of the edge
associateavith F';(m) is no morethanthe horizontaldistancebetween/;(m) andits predecessor
F;(m — 1) onthe samefence. Thusthe sumof the horizontalportionsof the edgess a mostG'n:
n for eachfence.Thisis alsoO(kL). [}

Thusif therobottraversesall edgeof this treeit will have found not only a groupof disjoint
fencesbhut alsoa cheappaththatcrossesll of them.

As notedin the proof abore, thereare G M obstaclesn the fence-treeandGMh < kMh =
O(kL). Thuswe would like therobotto traversethe fence-treavith a costproportionatto / times
thenumberof obstaclesn thefencespr a costproportionako thetotallengthof thetreeedgesWe
remarkherethat the fence-treemustbe traversedonline; a simple approactbasedon depth-first-
traversalmay not be efficient sincethe algorithmdoesnot know whereexactly the nodesare: the
robotcanlocatel’;(m) only afterit haslocatedbothits potentialparents’;_; (m) andF;(m — 1) or

12

atleastafterit hasdeterminedvhetheror not X;(m — 1) > X;_;(m). So,intuitively thedifficulty
is that beforevisiting a nodesuchas F;(m) we needto visit both potentialparentnodes,which
maybein very differentpartsof the tree.(Actually, onecouldimagineanalgorithmthatattempted
to visit nodesbeforefinding both parentsandonly later verified whetheror not thosenodeswere
actuallylegally partof thetree;our algorithmdoesnot dothis.)

Conventions. In the subsequergectionswe will find it convenientto associatanedgein thetree
with the obstacleatits right end,andwe definethe coordinate®f anedgeto be the coordinateof
its associatedbstacle.We sayanedgebelongsto a fenceF; if its associatedbstaclebelongsto
F;. Whenwe sayanobjectA, suchasanedgeor obstaclejs left (right) of anotherbject B we will
meanthatthe z-coordinateof A is strictly smaller(greaterthanthatof B. We will oftenidentify a
fencewith its rightmostobstaclethuswhenwe say“fence F; is to theleft of obstacleP” we mean
thatthe lastobstacleof F; is left of P. We use(X}, Y;) to denotethe coordinateof the rightmost
obstacleof F;, and| F;| will denotehenumberof obstaclesurrentlyin F;. To simplify thewording
of our algorithmswe will assumehat X, = oo, and|Fy| = M + 1.

5.3 Finding the Fence-tree

Our algorithm builds a tree using a conservativestratgy in the following sense. It addsa new

edgeto the currentpartial tree only whensuchan edgeis certainto be partof thefinal treebeing
built. In addition,the algorithmvisits a node F;(m), ¢« > 1, m > 1, only after bothits possible
parents;_; (m) andF;(m — 1) have beenvisited. At ary stageouralgorithmwill belocatedatthe

rightmostnodefoundso far for somepartialfence,andtheneitheraddsa (down-right or up-right)

edgefrom the currentfence,or “jumps” to anotheifence.

It is reasonabléo wondemwhetheranefficientfence-tree-trneersalstratey existsthatonly walks
alongthetreeedgesvhenjumpingfrom onefenceto another We do notknow of ary suchstratey;
our algorithm may often shortcutto anotherfencewithout necessarilywalking alongtree edges.
Evenwith this freedomto walk outsidethe tree, it is importantto notethata badorderof visiting
thenodesof thefence-treenay makethe jumpsprohibitively expensie.

Thekey problemsin designingatraversalstratgy thereforeare(a) decidingthe orderin which
the nodeswill be discosered,and(b) designingthe jump proceduresProcedurd=indFenceTree
in Figure7 findsthe desiredfence-treeusingarecursve procedureRaise describedn Fig. 8. In
theseproceduresit shouldbe understoodhatif the“wall” = = n is reachedat ary time, therobot
haltsandthe procedureserminate. The procedureJumpDownLeft (i) andJumpDownRight ()
takethe robotfrom the last obstacleof the currentfence F; to the last obstacleof the next lower
fencef;;,. Theseproceduresiredescribedn Figs9 and10. In all the proceduresthe “retraceto
F;(j)" statementareexecutedby simply retracingthe pathusedto reachthe currentpositionfrom
Fi(j).

We startwith anintuitive descriptionof the algorithm. The algorithmbegins (FindFenceTree)
by finding thefirst obstaclén eachfenceandplacingitself at thefirst obstacleof the top-mostone.
It thencalls the recursve procedureRaise(1, 0). In generalfor ¢ < ¢, the job of Raise (i, ¢) is
to raiseall fencesi andlower thatarecurrentlybehindF},, asfar aspossiblegiventhe constraints
imposedby thelocationof F,. (For: = 1, ¢ = 0, this meando raiseall thefencesuntil they each
have M obstacles).

TheRaise proceduras abit complicatedsois perhapdestdescribedhroughthe exampleof
Fig. 6. In thisexample Raise (1, 0) is first calledatobstaclel, andthealgorithmknows only about
obstacled, 5,and9. Raise baginsby addingnew obstacleso its currentfence(in line 4) solongas
thesearelegal with respecto constraintSmposedrom above, until it hasovershothefencebelow
it. In theexample,theseareobstacle®, 3, and4. Onceit reache®bstacled, Raise realizest is to
theright of thefenceF;, belaw it (formally, theconditionsof theinnerwhile loop becomesatisfied),
andwill try to makesufiicientprogreson F, (andary othersthatarebehindandbelow £, in this
casels). Unfortunately becausehe currentobstaclgnumber4) of fenceF is too highrelative to

13

1 procedure FindFenceTree
2 Moveto theright until atanobstacle this defines’? (1)
3 for::=2toGdo

4 Add a down-right edgeto defind;(1);

5 end

6 Retraceo Fi(1);

7 Raise (1,0);

8 end

Figure7: Themainprocedurdor finding thefence-tree.

obstacleb on fence F;, the algorithmcannotsimply adda down-right edge(formally, Down(j) is

not satisfied)from obstacle4 to discover the next obstacleof fence ;. So,the algorithmrunsthe

JumpDownLeft(1) procedurdo reachthe last obstacle(lnumber5) of fence I, andcalls Raise

(2, 1) recursvely to raisethatfence. This call to Raise beginsby finding obstacles. At this point
therobotis to theright of thefencebelow it (theconditionof theinnerwhile loop is satisfiedandit

is justhigh enoughabove thelastobstacleof 5 (i.e. Down(j) is satisfied)soit addsthedown-right
edgeto obstaclelO (line 8). At this point it goesbackto obstaclet (sinceUp(:) is still satisfied)
andmakesthe up-rightedgeto obstacle7. Now, Up(7) is no longersatisfiedbecausehe current
fencehas”bumpedinto” the constrainimposedby thefenceaboreit. So,Raise(1, 0) dropsdown

to line 17, whereit callsJumpDownRight (2) to getbackto obstaclel0 (usingthe pathindicated
by "p” in the figure) andthenrecursvely calls itself to work on raising that fence. Finally, that
recursve call endswith obstaclel 1, we popout of bothlevelsof recursionandattheverytoplevel

we retraceour pathall theway to obstacled, finally addingdown-rightedgedo obstacles and12

in theinnerwhile loop.

We now give a formal analysisof the formal algorithm given in Figures7-10. In orderto
establisithe correctnesandboundthe costof theseproceduresye needto show thatcertainpre-
andpost-conditionfioldwheneerthey areinvoked.For easeof referencave usemnemonimames
for thevariousconditions:

Up(:): ¢« > 1 andanup-rightedgeis legal from fence 7, i.e., eitherX; < X;_; and
|Fi| < [Fiei| = 1,0r X; > Xy and|Fy| < [Fi_q].

Down(:): ¢ < G andadown-rightedgeis legalfrom £}, i.e., X;1y < X; and|F;y | =
Jz"

ord(@, 5):if « < j,thenX; < ... < X,
At(7): meanghattherobotis atthelastknown obstacleof fenceF:;.
Eq(7, j) means'if ¢ < jthen|F;| = ... = |F};|".

Unch(z, j) standsfor “if ¢ < j thenthevaluesof |F;| through|F;| have not changed
sincethe startof the procedureor while loop underconsideratiori.

AtNewest:meanghattherobotis atthe nevestobstaclefoundsofar.

AlmostOrd: No fencehasmorethanoneobstaclego theright of alowerfence.Thatis,
fore=1,2,...,G,if |F;| = m,thenX;(m — 1) < X, forall j > i.

We prependa conditionby NOT to signifiy that the logical negation of the conditionholds.
For easyreferenceijn Fig. 13 we defineseveral collectionsof conditionsthatwill be usefulin the
correctnesproof of thealgorithm.

We usethe next severallemmasto establisithe correctnessf the procedure=indFenceTree
(Theorem9).

14

1 procedure Raise (7, q)

2 while (Up(z)) do

3 Retracdo F;; j := 1

4 Add anup-right edgeto F;;

5 while (j < G andX; > X;;)do
6 Retraceto F;

7 if (Down(y))

8 Add adown-right edge j :=j+ 1;
9 else

10 JumpDownlLeft (j);

11 Raise (7 + 1,7);

12 fi

13 od

14 od

15 Let Fy bethecurrentfence
16 if (d < GandXg4 < X))
17 JumpDownRight (d);

18 Raise (d + 1, q);

19 fi

20 end

Figure8: Recursie procedureRaise usedby FindFenceTree’

procedure JumpDownLeft (j)
Move left alongtreeedgesuntil z-coordinate= X ;;
Move vertically down to lastobstacleof £ ;

end

A W N P

Figure9: ProcedureJumpDownLeft to jump from currentfence F; to the next lower fence F; 1 when
Xj+1 < X

1 procedure JumpDownRight (d)

2 Move verticallydown until on a previously foundtreeedge
3 Follow treeedgedo theright until atlastobstacleof F;1;
4 end

Figure 10: ProcedureJumpDownLeft to jump from currentfence F; to the next lower fence F;, ; when
Xat1 2 Xy

15

Fly

Figure1l: Shaving a useof procedureJumpDownLeft to jump from F} (m) to Fj44(p). Solid-boundary
rectanglesreobstaclesoundsofarin thetree. Theset N of rectanglesvith dottedboundariesreobstacles
thatwill befoundonfencef’;;; immediatelyafterthis procedureompletesThick solid linesaretreeedges.
Thethin solid line is the pathfollowedwhenexecutingthe procedure Theprocedurestartsfrom A (obstacle
F;(m)), retracedree edgesto the left to point B, thengoesvertically down to C', at the top of the final
obstacleof F;.,. ThesetF is thesetof edgegetracedn AB. Thelengthof BC' is no morethanthetotal
lengthof theedgesn E plustheheightsof theobstaclesn V.

Fq (m+1)

Fy (m)

Figure 12: Shawing a useof procedureJumpDownRight to jump from Fy(m) to to Fuy1(p). Solid-
boundaryrectanglesireobstaclesoundsofarin thetree. ThesetN of dottedrectanglesepresentsbstacles
thatwill befoundonfencefF,; immediatelyfollowing this procedureThick solid linesaretreeedgesThe
thin solidline shavs the pathfollowedwhenexecutingthe procedureTheprocedurestartsfrom A (obstacle
F4(m)), goesvertically down to atreeedge(point B), thenfollows theedgego theright to thefinal obstacle
of Fu11 (point C). Theset £ is the setof edgesfollowedin BC'. Thelengthof AB is no morethanthe
lengthsof theedgedn F plustheheightsof theobstaclesn N.

16

PreRaiséd, ¢):

1.
2.
3.

~N o o b

1.

2
3.
4

Eq(q ‘|‘ 17 - 1)1
At(i),

> q,

C X< Xy,

. Ord(g + 1, G),

. If ¢+ 1 < 4,thenNOT Up(q + 1),
. Up(7).

OuterWhile (k) (F. isthecurrentfence):

Unch(1,7 — 1),

. Eq(i, ¢) andc > 4,

Ord(z, G),

. AtNewest holds after the first (if

ary) iterationof theloop.

PreJDL(j):

1.
2.
3.

AL(7),
Xj-l-l < X,

Up(j +1).

PostRaisd 1, ¢) (I'. isthecurrentfence):

1.

6.

2
3
4.
5

unch(1,7 — 1),

. Eq(g+ 1,¢),
. Ord(¢ + 1, G),

If e < G,y Xeyr > X,
. NOT Up(q + 1),

AtNewest.

InnerWhile (k) (F. is thecurrentfence):

1.

2
3
4,
5

uUnch(1,7 — 1),
. Eq(s,),

. ord(j + 1, G),
AtNewest.

. If ¢ > j, thenall PostRaisgj +
1, 7) conditionshold.

PreJDR(d):

1.

2
3
4
5

At(d),
C Xy < Xapr < X,
. Eq(g + 1,),

. NOT Up(q + 1),

. Up(d+1).

Figure13: Variousconditionsrequiredfor the formal proof.

17

Lemma4 Wheneer Raise (i, q) is called,the PreRais¢i, ¢) conditionshold. Moreoverthe pro-
cedue terminatesandthePostRais¢i, ¢) conditionshold at thattime.

Proof: It iseasyto verify thatwhenFindFenceTree makeghefirstcall Raise (1, 0), thePreRaisél, 0)
conditionshold. We claimthatif thePreRaisg, ¢) conditionsholdwhenRaise (¢, ¢) is called,then
Raise (i, ¢) terminatesandthe PostRaisg, ¢) conditionshold. We prove this by induction. The
basecaseis i = G, i.e., aninvocationof theform Raise (G, ¢): in this casethereareno recursve
callsto Raise, theinnerwhile loop is not enteredandJumpDownLeft andJumpDownRight are
not called. The only effect of Raise (7, ¢) is thatup-rightedgesareadded(line 4) to fence F;
until Up(G) is nottrue. It is easyto checkthatRaise (&, ¢) terminateswith all thePostRaisg7,)
conditionsholding.

Next, let usinductively assumehatthe claim holdsfor all callsto Raise (j,.), for j = i +
1,...,G. Consideraninvocationof Raise (i, ¢) at somepointwhenthe PreRaisg;, ¢) conditions
hold. Beforetheouterwhile loop is enteredthe currentfenceis F. wherec = :. It is easilyverified
thatthe PreRaisé, ¢) conditionsimply thatall the OuterWhileconditionshold at this point. By
Lemmab, whenthe outerwhile loop is exited, all the OuterWhile conditionscontinueto hold,
and NOT Up(:) holds. At this point, if the“If ” conditionon line 16 fails, thenwe claim that all
the PostRaisg, ¢) conditionshold. Most of theseconditionsare easyto check,so we will only
arguethe lesstrivial ones. To aguethat condition(2) Eq(q + 1, ¢) holds, notethat NOT Up(¢),
combinedwith Ord(¢ + 1,) and: > ¢ (from PreRais€, ¢)) imply Eq(: — 1, 7). This,combined
with Eq(¢+1,7—1) (in PreRaisé, ¢)) andEq(z, c) (in OuterWhile)impliesEq(¢+ 1, ¢). Condition
(5) NOT Up(q + 1) followsfrom Eq(q + 1, ¢) (whichimpliesEq(q + 1, 7)) andNOT Up(¢).

Thusif the conditionon line 16 fails, then Raise (¢, ¢) terminateswith the PostRaisg, ¢)
conditionsholding, andthe lemmais proved. But if the conditionon line 16 is true uponexit of
the outerwhile loop, thenwe claim thatthe conditionsPreJDRd) hold. Againwe will only shov
theargumentdor the non-trivial onesamongthese:Condition(2) X; < X4, < X, followsfrom
Ord(:,) ande > ¢ (in OuterWhile),whichimply Xy < X;.1 (Whered = ¢) andfrom thetruth
of thelf condition. Thereasoningo show that(5) Up(d + 1) holdsis asfollows. SinceAtNewest
holds (from OuterWhile),this meansthatthe robot hasjust found the new obstacleon F.. Since
obstaclenumber| F;| on F;;, canonly befoundafterthecorrespondingbstacleon F;, thismeans
that| Fy41| < |Fy|. FromtheconditionX,; < X4, thatwejustargued thisimpliesthatUp(d + 1)
musthold.

Now whenJumpDownRight (d) is invokedon line 17, by Lemmas, therobotendsup at (the
most-recentlyliscoveredobstacleof) /1. At thispointwe claimthattheconditionsPreRaisé! +
1, ¢) hold. In particular condition(3) d + 1 > ¢ holdssinced > ¢ (from OuterWhile)and: > ¢
(from PreRais€, ¢)). (This actuallyimpliesthatd > ¢, afactwe will usebelon). Condition(4)
Ord(q + 1, () is oneof the PreRaisg, ¢) conditions,which we assumedo hold. The fact that
d > ¢qimpliesq+ 1 < d+ 1, andNOT Up(q + 1) wasalreadyarguedabove, so (5) holds. The
remainingPreRaisél + 1, ¢) conditionsareeasyto check.

By inductionassumptiontherefore procedureRaise (d + 1, ¢) terminatesvith the conditions
PostRaisél + 1, ¢) holding. Of theseconditions,all but condition (1) dependonly on ¢ andthe
numberc of the currentfenceat the end of the procedure.So the conditionsPostRaisg, ¢) (2)
through(6) hold. Finally, condition(1) Unch(1, : — 1) holdsbecausét is anOuterWhilecondition,
andthis completeghe proof. [

Lemma5 TheconditionsOuterWhileare invariantsfor the outerwhile loop.

Proof: Supposall the OuterWhileconditionshold just beforeentry of the outerwhile loop. If the
outerwhile loop is enteredan obstaclds addedto the currentfenceF,. = F; via anup-rightedge
atline 4, andat this point j = 7. At this stageit is trivial to verify thatthe InnerWhileconditions
hold. By Lemma6, uponexit of theinnerwhile loop, all theinvariantsinnerWhilecontinueto hold,
andeither; = ¢, or j < G andOrd(j, j + 1) holds. At this point we claim thatthe OuterWhile

18

conditionshold: Condition (1) Unch(1,: — 1) is an InnerWhile condition. We argue condition
(2) Eq(7,) asfollows. If ¢ = 7, thenEq(s, 7) (from InnerWhile)implies Eq(7, ¢). Otherwise,
¢ > j, in which casefrom the InnerwWhileconditions,all the PostRaisgj + 1, j) conditionshold.
In particular Eq(j + 1, ¢) holdsandUp(;j + 1) is false. Sincec > j we mustalsohave j < G

andOrd(j, j + 1) (thefailure of the conditionsof the innerwhile loop), i.e., X; < X,4;. Since
Up(j + 1) is false, this mustmeanthat | F;| = |F;4+1|. Thuswe have Eq(j, ¢). This, combined
with Eq(z, j) from the InnerWhileconditions,implies Eq(¢, ¢). Condition(3) Ord(7, &) is agued
asfollows. ThelnnerWhileconditionsOrd(j + 1, &) andEq(¢, j), andtheconditionOrd(j, j + 1)

that holds becausehe inner while loop wasjust exited, imply Ord(7,). Finally, condition (4)

AtNewestfollows from the fact thatjust beforereturningto the startof the outerwhile loop, either
anup-rightedgewasaddedatline 4, or theinnerwhile loop wasexecuted and AtNewestis oneof
its invariants.]

Lemma6 TheconditionsinnerWhileare invariantsfor theinner while loop.

Proof: Supposall theconditiondnnerWhilehold atthestartof aniterationof theinnerwhile loop.
If theloopis enteredthenclearly X; > X,.,. If atthis point Down(;) holds,thena down-right
edgeis addedandj isincrementedo ; + 1. At this pointit is easyto checkthatall thelnnerWhile
conditionscontinueto hold. On the otherhand,if Down(;) doesnot hold, thenwe claim thatthe
conditionsPreJDL(;) hold: (1) At(j) is clearlytrue. (2) X;;; < X, holdsaswe obseredabove.
(3)Up(y + 1) holdssinceX;;; < X; andNOT Down(;) holds.

By Lemma?7, afterJumpDownLeft is executedtherobotis at #; ;. At this pointwe claimthat
all theconditionsPreRaisgj + 1, j) hold. For instancecondition(5) Ord(; + 1,) holdssinceby
assumptiorit heldwhentheinnerwhile loop wasenteredbeingoneof the InnerWhileconditions),
andbeforethis invocationof Raise (j + 1, j), no new obstaclesverediscoveredonary fence.The
remainingRaise (j + 1, j) conditionsaretrivially checked.

By Lemmad, after Raise is executed all the conditionsPostRaiséj + 1, j) will hold. At this
pointwe claimthatall theconditionsinnerWhilecontinueto hold: (1) Unch(1, : — 1) is maintained
sincefencest; andabove are unafectedby Rais€; + 1, j) (thisis the Unch(1, j) conditionin
PostRaisg/ + 1,7)), andj > i. (2) Eq(7, j) is maintainedfor the samereason. Conditions(3)
Ord(j + 1, G) and(4) AtNewestarealsoPostRaisg + 1, j) conditions. Finally, we just argued
above thatthe PostRaisgj + 1, j) conditionshold, andthis is condition(5) of InnerWhile. [}

We establistbelow thatthe proceduregumpDownLeft andJumpDownRight work correctly
if they areinvokedunderappropriateconditions.

Lemma7 Wheneer JumpDownLeft (5) is invoked the conditionsPreJDL(;) hold, andthe pro-
cedue terminateswith therobotat the lastknownobstacleof £ ;.

Proof: ThattheconditionsPreJDL(;) hold when&rer JumpDownLeft (j) is invokedcaneasilybe
seenfrom the proofsof Lemmas4 and6. The PreJDL(j) conditionX;;; < X; impliesthatthe
motionin line 2 (following treeedgedo the left) leadsto a point wherethe z-coordinates X,
(seeFig. 11). Sinceedgedollowedto theleft only leadto the samefenceor a higherone, this
impliesthatthe point at the endof themotionin line 2 is vertically abose (andnot below) thelast
known obstacleP of F;; ;. Thusmoving vertically down in line 3 leadsto obstacleP. [}

Lemma8 Wheneer the procedue JumpDownRight (d) is invoked,the conditionsPreJDRd)
hold, andthe procedue terminateswith therobotat thelast knownobstacleof Fi; ;.

Proof: ThattheconditionsPreJDRd) hold whenerer JumpDownRight (d) is invokedcaneasily
be seenfrom the proof of Lemma4. SinceX; < X411, moving vertically down from F; will lead
to atreeedgethatis to theleft of F;,;. Sofollowing the tree edgesto the right will leadto the
most-recentlydiscoveredobstacleof F;4 .]

Fromtheabore Lemmast is easyto prove thatthe procedurd=indFenceTree findsthedesired
fence-tree:

19

Theorem 9 Whenexecutingprocedue FindFenceTree, theroboteitherfindsa completes x M
fence-tee,or readhesthewall (theline 2z = n) after havingfounda collectionof ¢ partial fences
Fy, Fy, ..., F; thatsatisfythefence-teerules.

Proof: Recallthatwe have set|Fy| to be M + 1, and X, to beinfinite. After thefirst obstacleon
fencel, I, . .., I's isfoundin line 4 of FindFenceTree, therobotreturnsto £ (1). At this point
it is easyto checkthatthe PreRaisél, 0 conditionsare satisfied. WhenRaise (1, 0) is invoked
in line 7, by Lemmad4, the robot completeshe procedurg(if it hasnt reachedhe wall) with the
PostRaisél, 0) conditionsholding. In particular condition(4) impliesthatthe currentfenceupon
completionof the proceduremustbe F. = F(; (sinceotherwiseX.; > Xy, whichis impossible
since Xy = o0). Also, conditions(2) Eq(1, ¢) and(5) NOT Up(1) imply that|Fy| = |F2| = ... =
|Fa| = |Fol— 1= M.]
Finally we establisraninvariantthatwill be usefullater.

Lemma 10 TheAlmostOd invariantholdsthroughoutanyexecutionof Raise (¢, q).

Proof: Theonly two statement®f the procedurevhich could possiblyresultin a violation of the
AlmostOrdinvariantare 4 (wherean up-right edgeis added)and 8 (wherea down-right edgeis
added).But wheneer line 4 is reachedOrd(¢, ¢) holds: this follows from Ord(¢ + 1, &), which
is one of the OuterWhileconditions(which we prove below to be invariantsfor the outerwhile
loop),and: > ¢, whichis aPreRais&, ¢) condition. Thusevenif thenew obstacleaddedto F; in
line 4 is to theright of (thelastobstacleof) alower fence,this would be the only suchobstacleof
F;. Similarly, whenerer a down-right edgeis addedfrom fenceF; (therebyaddingan obstacleto
F;41), Ord(j + 1,) holds: this is oneof the InnerWhileconditionswhich we showv belaw to be
invariantsfor theinnerwhile loop. Thusevenif thenew obstacleaddedto £, in line 8 is to the
right of somelowerfence, it would betheonly suchobstacleof £ ;.]

5.4 CostAnalysis

Recallfrom Subsectiorb.2 thatwe would like our fence-tree-findinglgorithmto travel adistance
of nomorethanO (kL). Thenext Theoremestablishethis.

Theorem11 For G = [£] and M = [£] + [2L], the algorithm FindFenceTree for findinga
G x M fence-teein a simplescenehastotal costO (kL).

Proof: From Lemmaa3, it sufficesto show that the total distancetraveled by the robot while
executing FindFenceTree is boundedby someconstantimesthe total length of all edgesplus
the heightsof all obstacledn the fence-tree. Thereare four kinds of motionsperformedby the
algorithm:

e Addinganup-rightedge(line 4 of Raise),

e Addingadown-rightedge(line 8 of Raise),

e Retracinganold path(lines3, 6 of Raise),

e Jumpingfrom afenceto the next lower one, using proceduresumpDownLeft andJump-
DownRight.

Considera specificiterationof the outerwhile loop of Raise. If therobotis not at F; at the start
of thisiteration,it executes'Retraceto F;” atline 3. This motion consistssimply of retracingthe
pathsit walkedwhile executingtheremaininglinesof this loop, duringthe previousiterationof the
loop. Sotheretracingmotionatline 3 in a giveniterationof the outerwhile loop canbe chaged
off to the non-line-3motionsexecutedduring the previousiteration of the outerloop. Similarly,
theretracingmotionat line 6 in a giveniterationof theinnerwhile loop canbe chagedoff to the

20

non-line-6motionsexecutedduring during the previous iterationof this loop. Thusit sufficesto
boundthe costof theremainingthreekindsof motions.Clearly, themotionrequiredto addup-right
anddown-rightedgescanbe chagedoff to the edgesreatedsowe only needto boundthe costof
theprocedureSumpDownLeft andJumpDownRight. Lemmasl2 and13below establisithatthe
total costof theseproceduress O (k L), whichimpliesour theorem. [|

Lemma 12 Thetotal distancetraveledduring all invocationsof JumpDownLeft is O(kL).

Proof: Considera call to JumpDownLeft (;) atline 10 of Raise (i, ¢), andsupposehe robot
is at obstacleF’; () whenthis procedurds invoked. The edge-follaving motionin line 2 of this
procedurecanbe chagedto the set &/ of edgesfollowed. The right endsof all theseedgesare
at obstaclenumberm of differentfences. Note that just before JumpDownLeft () is invoked,
Up(j + 1) is true (this is a PreJDL(j) condition),andwhenRaise (j + 1, j) is completedafter
JumpDownLeft (j), Up(j + 1) isnottrue (thisis aPostRaisg + 1, j) condition). Thismeanghat
the procedureRaise (j + 1, j) hasdiscosereda collection N of new obstacleson fenceF;14, so
that|F’;+1| would be atleastrn — 1. The costof the vertical motionin line 3 of JumpDownLeft
(7) is clearly no morethanthe total length of the edgesE' plus the heightsof the new obstacles
N discoveredby the subsequentall to Raise. We canthuschage the total costof this specific
invocationof JumpDownLeft (;) to theset £ of edgesandthe set N of new obstacles Now we
needto arguethatthesetsF and NV of future callsto JumpDownLeft will notoverlapwith thoseof
the presentall. Sincethe obstaclesV arenew obstaclesliscoveredon F}; justafterthe present
call to JumpDownLeft (j), the only future calls to JumpDownLeft whose N-setscan possibly
overlapwith the NV setof the presenbnearecallsto JumpDownLeft from the samefencel;, i.e.,
callsto JumpDownLeft (). However, asweobseredabore, theRaise (j+1, j) executedustafter
thepresentilumpDownLeft (j) findsthe obstacle®n N beforeary future call to JumpDownLeft
(7) is made. Moreover, it is easyto seethatthe executionof Raise (j + 1, j) doesnot involve
ary callsto JumpDownLeft (7). Thereforethe N-setsof differentcallsto JumpDownLeft do not
overlap.

Now we shaw thatthe F-setsof differentcallsto JumpDownLeft do not overlap. Again con-
sideraspecificinvocationof JumpDownLeft (;) from obstaclel’; (). As we notedabove, all the
edgesn F have attheir endsthe m’th obstacleof differentfences.Thereforethe only futureinvo-
cationsof JumpDownLeft whoseF setscanpossiblyoverlapwith thecurrentE setarethosefrom
obstaclen of somefenceF, belov F;. We establishedeforethatan invocationof JumpDown-
Left (u) is only madewhenthe conditionsPreJDL(«) hold, andin particular(a) X,+1 < X, and
(b) Up(u + 1) musthold. However, just afterthe presenexecutionof JumpDownLeft (;), Raise
(7+1,7) isexecutedandatthatpointthe PostRaisgj + 1, j) conditionshold. In particular for ary
fencest’, below F; suchthat X, < X;, Up(u) doesnot hold. Thereforewhen(if atall) afuture
callto JumpDownLeft (u) is madefrom obstaclen of afencef’, below £, X, 41 > X;(m) must
hold at thattime. In sucha futureinvocationof, in line 2, edgesarefollowedto the left until the
z-coordinateequalsX 41, sotheseedgesvouldbeto theright of X ;(m), andsowouldnotoverlap
with theedgest of thepresenset(all of whichareto theleft of X ;). Thusthe“chamgesets”E and
N for differentcallsto JumpDownLeft (5) will notoverlap. [}

Lemma 13 Thetotal distancetraveledduring all invocationsof JumpDownRight is O (kL).

Proof: Consideraninvocationof JumpDownRight (d) atline 17 of Raise (¢, ¢). We will present
achaging schemevheredifferentinvocationsof JumpDownRight (d) will be chagedto distinct
portionsof the fence-tree. When JumpDownRight (d) is invoked, Up(d + 1) is true (this is a
PreJDRd) condition). Subsequentb this invocationof JumpDownRight (d), Raise (d + 1, ¢) is

invoked,andwhenthatprocedureeompletesthePostRaiséi+ 1, ¢) conditionamply thatUp(d+1)

is nolongertrue. This meanghatRaise (d + 1, ¢) hasfounda collection N of new obstaclen
fencel;;+1, andthen|F;; 1| would equal| F;| = m (thisis a PostRaisél + 1, ¢) condition). The

21

edge-follaving motionin line 3 of JumpDownRight (d) canbe chagedto theset £ of edgeghat
arefollowed. The vertical motionin line 2 of JumpDownRight (d) is clearly no morethanthe
lengthsof the edgesF plus the heightsof the obstaclesV, so this motion canbe chagedto the
edge-se¥’ andtheobstacle-selV (seeFig. 12).

Note thatsinceUp(d + 1) is not true after the Raise procedurecompletegust after this in-
vocationJumpDownRight (d), the next invocationof JumpDownRight (d) canonly occurfrom
obstaclen + 1 or laterof F;. SincepresentlyX; < X,, andNOT Up(¢+ 1) andEq(¢+ 1, d) hold,
theobstaclen + 1 of F; will beto theright of X,. Sotheedge-set’ followedby ary futureinvo-
cationof JumpDownRight (d) will bedistinctfrom theset£' of thepresentnvocation.Also, since
N is the setof new obstaclesliscoseredjust afterthe preseninvocationof JumpDownRight (d),
theset NV of ary futurecall to JumpDownRight (d) will notoverlapwith thesetN of the present
one. In fact, sincewe arethe chaging the motion of JumpDownRight (d) only to obstaclesand
edgesassociatewvith fencef ., thesetsN andE of ary futurecall to JumpDownRight (') will
alsonotoverlapwith thesetsN and F of the presentall. [

6 Extensionto Arbitrary Axis-Parallel Rectangular Obstacles

We now showv how to extendthe searchalgorithmto sceneswith arbitraryaxis-parallerectangular
obstaclegfor brevity we call suchscenegienernl scenes)Thatis, we will shav how to explorea
distanceof O (L+/nk) andfind a pathof lengthO(L+/n/k). Fortunatelyit turnsout thatalgorithm
FindFenceTree, interpretedappropriatelycanbe usedunchangedor thesescenes However the
proceduregumpDownRight andJumpDownLeft mustbe modifiedsincefor generalscenever
tical motionis not alwaysunobstructedin factif all obstacledave width 1 (but arbitraryheights
andpositions)theneventheseproceduresemainunchangedin thenext two subsectionsye define
the notionsof 7-postanda r-fence which arethe analogue®f “obstacle”and“fence” for general
scenesAs statedearlier we will assumehroughouthatall obstacledhave their cornersatinteger
coordinates.

6.1 r-Posts

Throughouthis sectionwe will denotethevalueL /v/nk by 7. Weassume: < n sor > 1. Recall
thatin a simplescendf the obstacleave heightlessthan2r = 2L/v/nk thenthey canbe con-
sidered'small” —in thesensdhatthe simplestratgy of just moving horizontallyforward(walking
aroundary obstacle®n the way by the shortesroute)achievesthe optimalratio of O(y/n/k) on
ead trip. This motivatesthe following definitionin a generalkcene.A point P ontheleft sideof
an obstacleis calleda 7-postif the obstacleextendsvertically at leastr above andbelov P. We
will usethetermr-postto refereitherto the entiresegmentof height2r or justto the centerof that
segment. Roughlyspeakingvhenthe robotencounters r-post P while maving horizontally the
obstacleencountereds “big”, otherwisdit is “small”.

6.2 r-Fences

We definea r-fenceasthe generalizatiorof the fencedefinedin Section5.1. The definitions(and
notations¥or up r-fence downr-fence band aswell asthedefinitionof a pointbeingleft or right
of a fence,andof a pathcrossing a fence,remainthe sameasin simple scenesgxceptthat we
replacethe word “obstacle”with “r-post” throughoutandreplaceh by 7 in therelations(1) and
(2) of Section5.1. Notethatconsecuiie T-postsof afencemaylie onthe sameobstaclesincethe
inequality (1) is not strict. The bandbetweentwo suchpostsis empty We saytwo r-fencesare
disjointif their non-emptypandsaredisjoint. Thusa collectionof & disjoint r-fencescostsat least
k7 to cross. In Fig. 14, the sequencef r-posts(F}, FZ, F7, F}') form a r-fence F';. Note that
F}, F} areonthesameobstacleandthatthethreefencesn thefigurearedisjoint.

22

P2

Figurel14: A collectionof 3 disjoint fenceswith 4 postseach. The solid rectanglesarethe obstaclesThe
bandsof differentfencesareshadedlifferently For corveniencepostF;(m) is denotedpP!™.

For futurereferencave definea (right) 7-pathasthe pathof therobotwhenit movesto theright
alongafixedhorizontalline y = yo until it hits a 7-postor the wall, moving aroundary non-post
obstacleonits way. For instancein Fig. 15, the pathfrom A to 7-postF; (2) is a r-path. Obsere
thata r-pathhasverticalmotionat most2r atevery (integer) z-coordinateon the path,so:

Fact1l A r-pathbetweeriwo points(z,y) and(z + dz, y) haslengthat mostéz + 27 dz.

6.3 The Initial Search Trip

Roughly speaking,a generalsceneis treatedasif it is a simple scenewith obstaclesof height
2h = 21 = 2L/v/nk. Recallthatfor simplescenestheinitial trip consistsf building groupsof ¢
fencesof M obstaclegach(whereG = [£L] andM = [£L] + [2E]), whereeachgroupmustbe
built “cheaply” (i.e. with costO (kL)) andmusthave a known “short” (costO (1)) pathcrossingt.
Analogouslyfor generalscenesve have h = 7 andwe would like to build groupsk r-fenceswith
M =k+ [%} T-postseach. We will now pay moreattentionto our progressn the z direction
andwill build eachgroupwith costatmostO (kL + kT Az), andgive eachgroupagroup-crossing
pathof lengthO(L + 7 Az). Here Az is the z-distancebetweerthe leftmostr-post #; (1) and
right-mostr-postF; (M) in thegroup.

Theseboundsare sufficient for our purposedor the following reason. Sincea fence costs
T = L/v/nk to cross,therecanbe at most+/zk disjoint 7-fencesin the window betweens and
t, sothe algorithmwill find at most./n/k groupsof k£ fenceseach. Sincethe z-motionsdo not
overlapbetweerthe groupsof fencesthe Az termsaddto at mostn, sothetotal distanceraveled
isO(kL\/n/k+nkr) = O(Lv/nk). In addition theconcatenationf thegroup-crossingathshas

total costO (L/n/k + nt) = O(L+\/n/k).

6.4 Extending FindFenceTree to General Scenes

Oncewefix ther-post/ (1) in ascenethethreefence-trealefinitionrulesgivenfor simplescenes
canbeusedin ageneralscengo defineagroupof ¢ = k r-fenceswith M 7-postseach with the
following interpretation.Firstly, “ r-post” replaceghe word “obstacle” everywhere.Secondlyan
up-rightedgefrom a r-postF;(m) is simply a paththatgoesup to the top of the r-post,thenright
alonga r-pathuntil a 7-postis reachedthis r-postis F;(m + 1). A down-right edgeis a similar
path that leadsto the 7-post ;11 (m). With this interpretation.the algorithm FindFenceTree
canbe usedunchangedor generalscenespnly the jump proceduresnustbe changedo handle
arbitrary obstaclewidths, sincethe vertical motions(in line 3 of JumpDownLeft andline 2 of

23

Figurel5: A 3 x 4 r-fence-treeThe shadedectanglesrethe obstaclesandsolid linesaretreeedgesThe
fencescorrespondingdo thistreeareshavn in Fig. 14. For corveniencepostF; (m) is denotedpP™.

JumpDownRight) may no longerbe possible.The modifiedjump algorithmsaredescribedn the
next two subsectionsandwe will shav thatthey work correctly i.e.,thattheanaloguesf Lemmas
7 and 8 hold. We will alsoshow thattheseproceduresrenot expensve, i.e., thatthe analogues
of Lemmasl2 and13 hold. Giventhe correctnessf the jump proceduresit is easyto verify that
the Raise proceduraevorkscorrectly i.e., satisfied emma4, andconsequentlyhatthe procedure
FindFenceTree doesindeedfind a k x M t-fence-tree|f it exists, with the given post F; (1)
asroot. Furthermorethe invariantAlmostOrdalsoholds (Lemmal0throughouthe executionof
FindFenceTree.

We mustshaw thatthis algorithmis still “cheap”in a generalscene. Note thatif the robot
doesnot encounteary “small” obstaclesvhenaddingthe variousedgesthen(assuminghe jump
proceduresre cheap)our previous agumentssuffice. We begin with the fairly straightforward
argumentthatin generakhe costof goingaround‘small” obstacless nottoo large. To do this, we
shav theanalogueof Lemma3, namely thatthetotal costof the treeedgesandthe costof the path
from therootto therightmostnodearebothwithin our requiredbounds.

Lemma 14 Supposehere is a £ x M rt-fence-tee consistingof fencesF'y, Fy, ..., F, with
M =k + [2], whee r = L/v/nk. Let Az bethez-distancefrom £ (1) to Fj,(M). Then:

(a) Theuniquepathin thetreefrom /(1) to I, (M) haslengthat most4 L + 3rAx;

(b) Thetotal lengthof all theedgesn thefence-teeis atmostk (3L + 37Ax)

Proof: Sincek < n it followsthatkr = kL/v/nk < L. ThisimpliesMr = 2L + kr < 3L.

Part(a). Thereareexactly (M + k — 2) edgesn thetreepathfrom F(1) to Fj(M). Since
the vertical portion of eachedgehaslengthr, andthe r-pathportionsof the edgesdo not overlap
in the z-direction,thetotal lengthof theseedgeds atmost(M + & — 2)7 + 27 Az + Az, whichis
atmost(4L + 37Az) from theinequalitiesabove.

Part(b). Notethatwe canassociateachedgewith auniquepost,namelythe oneattheright-
endof theedge.For ary givenpostF;(m) otherthan /' (1), the z-distanceto its parentis at most
the z-distancejz to its predecessof; (m — 1) onthesamefence.Sothe edgeassociatedvith this
posthaslengthat most(r + 276z 4 dz). Thesumof the = termsover all postsof the fenceF;
is the z-distancebetweerthefirst andlastpostsof F';, whichis atmostAz. Sothetotal lengthof
the edgesassociatedvith the M postsof a fenceis at most(M 7 + 27Axz + Az), which sumsto
k(Mt+ 21 Az + Az) for k fences.Thislastexpressioris atmostk (3L + 37 Az) from theprevious
inequalities. [

24

Procedure JumpDownRight (d)
1. Letm = |Fy| andp = | Fyq1].
2. Move greedydown-left until down-left of top of Fiyy1(p).
3. Move greedyright-down until:

e atr-postFyyq(p), or
¢ onatreeedge.In thiscasefollow tree-edgeso theright until at Fy11 (p).

Figure16: Generaproceduréor jumpingdown from F; to Fyy1 whenX; < Xgy 1.

H Fq (m+1)

Figurel7: A useof thegeneralizeghrocedurelumpDownRight to jumpfrom F,;(m) to F441 (p), for clarity
shavn in a scenewvherethefencepostscorresponaxactly to obstacle®f height2r. Shadedectanglesvith
no boundariesare obstacleghat are not part of ary fence. Solid-boundaryectanglesare nodesfound so
farin thetree. Dotted-boundaryectanglesarepostson #;,1 thatwill befoundimmediatelyfollowing this
procedureThick solid linesaretreeedges.Thethin arrow line shavs the pathfollowedwhenexecutingthe
procedure.

Thus,just asin simplescenesye only needto arguethatthetotal costof eachjump procedure
is at mosta constantimesthe total lengthof the tree edgesplus the heightsof all 7-postsin the
tree.In thenext two subsectionsve shon how theseproceduresanbe modifiedto handlearbitrary
obstaclewidths,andprove thatthey arenottoo expensve. As before,our approactwill beto amgue
thatfor eachjump procedureno portion of thetreeis chagedtoo oftenfor differentexecutionsof
thatprocedure.

6.5 Modifying JumpDownRight

To describehe modificationsjt will beusefulto introducethe notionof agreedydown-leftpath: it
is a paththatrepeatedlygoes*downtill it hits an obstaclethento theleft cornerof the obstacle”.
Othergreedypathsaredefinedsimilarly. Also, apoint(z, y) will besaidto bedown-leftof another
point (zg, yo) iIf < 2o andy < yo. As in the caseof simplesceneswe will find it convenientto
associatanedgein thefence-treawith the postat its right end. Our modifiedprocedurds shavn
in Fig. 16, andatypical pathwalkedwhile executingthis procedures shovn in Fig. 17.

25

We first establishthe correctnessf this modifiedprocedurei.e., theanaloguef Lemmas.

Lemma 15 If the genenl procedue JumpDownRight (d) is called whenthe PreJDR d) condi-
tionshold, thenafter theprocedue is completedtherobotwill beat thelastknownr-postof F; .

Proof: It will beusefulto consultFig. 17 whichshavsatypical pathfollowedwhile executingthis
procedureFromthe PreJDRd) conditions therobotis intially at (thelastknown r-postof) F;, so
theinitial y-coordinatés Y;(m). ThePreJDRd) conditionsX,; < X ;41 andUp(d + 1) alsoimply
that| ;41| < |Fy4l, or p < m, whichmeanghatthe bottomof the r-postF;(m) is no lower than
thetop of the r-postF;41 (p). Thereforethegreedydown-left pathin step2 will notencountegary
tree-edgessinceevenadown-rightleadingto the destinationr-post ;1 (p) canonly originateat
T-postnumberp or lower of F;, which mustbe lower than F;(m). Note thatthe pathin step2 is
boundedntheleft by the r-postsof F;. Also, attheendof thisstep,therobot’s y-coordinatés the
sameasthetop of the-postf;;1 (p) to whichtherobotis jumping. Evenif thegreedyright-dowvn
pathof step3 goesonly to theright, it will hit this 7-post.In theworstcasethemotionin step3 is
justvertically down until atreeedge(down-rightor up-right)is reachedFromthe definitionof the
fence-treeit is easyto seethatfollowing thetreeedgedo theright mustleadto /41 (p). [

In thelemmabelow, we shaw thatthe costof all callsto JumpDownRight canbe chaged off
to thelengthsof all edgesn thefence-tree.

Lemma 16 Thetotal costof all calls to JumpDownRight is at mosta constanttimesthe total
lengthof all edgesn thefence-tee,plustheheightsof all 7-postsin thetree

Proof: As in the caseof simplescenegLemmal3) we will presenta chaging schemewhere
the costof differentinvocationsof JumpDownRight is chagedto distinct portionsof the fence-
tree. Considera particularcall to JumpDownRight (d) from Raise (i, ¢), to jump from F;(m)
to Fy41(p) (thatis, whenthis procedurds called, |F;| = m and|Fyy1| = p). SeeFig. 17. By
areasoningsimilar to the onein the proof of Lemmal3, we canseethatthereis aset N of new
obstacleghatwill be addedto F';;, by the Raise (d + 1, ¢) procedurethatis invokedjust after
this invocationof JumpDownRight (d). After thesenew obstaclesare addedto Fiy 1, |Fyy1]
would equal| F;| = m. Let F bethe setof edgesof F;, (if ary) thatarefollowedin step3 of
JumpDownRight.

Clearlythetotal horizontalandvertical motion of this procedurgin steps2 and3) is no more
thantwice thetotal lengthof theedgesn F plusthe heightsof the obstaclesn N. (This boundis
actuallyquiteloosebut will suffice for our purposes)As beforeit is easyto aguethatthe setsNV
and F of ary future call of JumpDownRight (d) will not overlapwith the correspondingetsof
thepresentall. [

6.6 Modifying JumpDownLeft

The generalprocedureJumpDownLeft is shovn in Fig. 18, anda samplepath executedby that
procedurds shovnin Fig. 19.
Wefirst establistthe correctnessf this generaprocedurej.e., theanaloguef Lemmayr.

Lemma 17 If thegenerl procedueJumpDownLeft (5) is calledunderthe conditionsPreJDL(j),
thenthe procedue terminateswith therobotat thelastknownr-postof £ ;.

Proof: Letm andp bethe quantitiesdefinedin the procedure.SeeFig. 19 for a typical pathof
this procedureThePreJDL(j) condition.X;; < X; impliesthatfollowing treeedgego theleft in
step2 will leadto apointwherez = X ;41 = X,41(p). ThePreJDL(;) conditionsX;;; < X; and
Up(j+ 1) imply thatp = |F;+1| < m — 1, sothe (m — 1)stpostsof fencesF; andabove arehigher
thanthetop of thedestinatiorpost £ (p). Supposé’, is the highestfencereachedn step2, i.e.,

26

Procedure JumpDownLeft ()
1. Letm = |Fj|,p = |Fj+1|.
2. Follow treeedgedo theleft until z = X;1(p).
3. Gogreedydown-left until robotis either
o down-leftof top of F;41(p), or
o down-leftof top of F,(m — 1) for someu < j. In thiscase:
(a) While v < j dothefollowing:
i. Gogreedyright-downuntil at 7;,(m — 1) or onatreeedge.
ii. If atatreeedgefollow edgedo right until at 7, (m — 1).
. v:=u+1.
(b) Gogreedydown-left until down-left of top of £} (p).

4. Go greedyright-down until at ¥4, (p) or onatreeedge.If atatreeedge,follow
edgedoright until at £ 41 (p).

Figure18: Generaprocedurdor jumpingdown from F; to F; 1 whenX; > X, 4.

Figurel9: A useof procedureJumpDownLeft to jumpfrom F;(m) to F; 1 (p), for clarity shavnin ascene
wherethefencepostscorresponaxactly to obstacle®f height2r. Shadedectanglesvith noboundariesire
obstacleshatarenot partof ary fence.Solid-boundaryectanglearepostsfoundsofar in thetree. Dotted-
boundaryrectanglesarepostsof ;4 thatwill befoundimmediatelyfollowing this procedure.Thick solid
linesaretreeedges.Thethin arraw line is the pathfollowed whenexecutingthe procedure Curved arrons

represenmmotionsexecutedduringsteps3(a)(i) and4 of theprocedure.

27

thelastedgeretracedhasits right endon a r-postof F,.. By the AlmostOrdinvariant,no fencecan
have morethanone postto the right of alower one,so only the last edgeretracedn step2 can
be an up-rightedge;the othersmustbe down-rightedges.The sameinvariantimplies thatthe z-
coordinateof therobotat theendof step2 (i.e. X;11(p)) liesin theinterval [X, (m — 1), X, (m)],
for eachu = r,r 4+ 1,..., . This meansthatin step3 whenthe robot goesgreedily down-left,
the robot must eitherreacha point down-left of the top of somepost I, (m — 1), or elsereach
a pointdown-left of £, (p), the destinationpost. In the former case the robot entersthe while
loop of step3(a). We claim that in eachiteration of this while loop, the robot jumps down to
post(m — 1) of the next lower fenceuntil it reaches; (m — 1). This motionis similar to that
of procedureJumpDownRight, so we canreasonasin the proof of Lemmal5 (correctnes®f
JumpDownRight), to shaw this claim. Oncetherobotis at F; (m — 1), step3(b) will taketherobot
to a pointdown-left of thetop of F; (p). Finally step4 is similarto step3 in the generalversion
of JumpDownRight, soby reasoningasin the proof of Lemmal5, we canshaw thattherobotwill

eventuallybeat F; 1 (p). [|

Lemma 18 Thetotal costof all callsto JumpDownLeft is at mosta constantimesthetotal length
of all thetreeedgesplusthe heightsof all the r-postsin thefence-tee

Proof: Considera call to JumpDownLeft (j). As in the caseof simple sceneswe canusea
chaging schemewheredifferentcalls to JumpDownLeft will be chagedto distinct portionsof
the fence-tree.As in the proof of Lemmal2, let I’ bethe setof edgesfollowedin step2 of the
procedureandlet V bethesetof m —1—p “new” obstacleshatwill beaddedo F}; by theRaise
procedurdnvokedjust after this procedurecompletes.By the samereasoningasin thatLemma,
the £ and N setsof this call to JumpDownLeft will notoverlapwith thecorrespondingetsof arny
future call. The edge-follaving motion of the robotduring step2 of the procedurecanbe chaged
to the edge-setr’, and so we only needto accountfor the motionsin the remainingstepsof the
procedure.

If step3 takesthe robot vertically down to the 7-post F;11 (p), thenasin the caseof simple
sceneghisverticalmotioncanbechagedto theedge-sef’ andthesetN. In thiscasewe aredone
with the proof. However, in generalscenegherearetwo possibilitiesfor the motion of the robot
duringthis step:

e (A) Therobot may reachsomepoint down-left of the top of £, (p). Let (zy,y;) bethe
coordinate®f the robotat this point. In this case step3 is done,andwe chage the vertical
motionto thetotal heightsof the r-postsin N plusthelengthsof theedgesn £. Alsoin this
casewhile goinggreedydown-left, therobotcannotgoto theleft of post/; (p+ 1), sincethe
bottomof this posthasthe samey-coordinateasthetop of £ (p). (If therobotwasforced
to gototheleft of F; (p+1), casgB) below would occur). Thereforehehorizontalmotionin
thiscasds nomorethanX ;14 (p) — X;(p+1), whichin turnis nomorethanthelengthsof the
portionsof theedgesof) thatlie betweernr = X;(p+1) andz = X ;14 (p); wecanchage
the horizontalmotionto this edge-set”;. We now claim thatthe edge-set; of this call to
JumpDownLeft (j) will notoverlapwith the F; setof ary future call to JumpDownLeft
(7). As we aguedin theproof of Lemmal2, by thetime ary future call to JumpDownLeft
(j) is made,F;;; would have atleastmn — 1 obstaclesSinceX;(m) > X;1;(p), the E; set
of sucha call would lie entirelyto theright of = = X;(m + 1) > X;(m), whichis to the
rightof 2 = X, (p) (theright-boundaryof the present; set). Thereforethe edge-setd’;
of differentcallsto JumpDownLeft () cannotoverlap.

e (B) Therobotmayreachsomepointdown-left of thetop of post(m — 1) of somefencert;
or above. In this casetherobotenterghewhile loop of step3(a),andrepeatedlynovesdowvn
to the (m — 1)stpostof thenext lower fenceuntil it reached”; (m — 1). Themotionin each
iterationof this while loop is similar to the motionin the JumpDownRight procedureThe

28

only differences thatinsteadf goingfrom postnumbern of onefenceto alowernumbered
obstacleof thenext lower fence,in this casetherobotgoesto the samenumberegostof the
next lowerfence.Consideisomeiterationof thiswhile loop, wheretherobotis jumpingdown
from F,(m — 1) to F,41(m — 1). Let F; bethesetof edgef /7,1 containedn theregion
betweerthelinesz = X, (m — 1) andz = X1 (m — 1). Theverticalmotionin step3(a)(i)
is no morethantheheightof thedestinatiorpost,plustheheightsof thepostsassociateavith
theedgesF,. Thehorizontalmotionin steps3(a)(i) and3(a)(ii) is no morethanthe lengths
of theedgesn F,. In ary future call to JumpDownLeft the F; setcorrespondingo fence
F,+1 mustlie entirelyto theright of °,(m), whichin turnis to theright of ;11 (m — 1) (the
right-boundaryof the presentt’; set). Thusin ary futurecall to JumpDownLeft, the 5 set
associatewvith F,; will notoverlapwith the F/; setof the presentall. Similarly, asargued
in the caseof simplescenesin ary future call to JumpDownLeft from postm of a fence
belov F; theedge-set followedin step2 will lie entirelyto theright of X;(m), sononeof
the F5 setsof thethatcall will overlapwith thoseof the presentall. After exiting thewhile
loop of step3(a),therobotexecutesstep3(b): go greedydown-left until down-left of top of
F;+1(p). Thechaging for this stepis similar to case(A) above, exceptthatwe do not need
to chagethevertical motionto theedge-set sincethis stepstartsat /; (m — 1). Thesame
agumentasin case(A) establisheshatthe chage-setdor this stepwill not overlapwith the
correspondinghage-setof ary futurecall to JumpDownLeft.

Finally in step4, the robot performsa motion similar to the onein the (generalizedprocedure
JumpDownRight, andwe canusea chaging-schemeimilar to the oneusedthere. The agument
to show thatthe portionsof the tree chagedfor step4 of this call to JumpDownLeft () do not
overlapwith the correspondinghage-setsof ary future call is similar to the one usedabove for
case(B) of step3. [

7 An incrementalalgorithm

We describehereanimprovementof our cumulatve algorithm,sothatthe pertrip ratioonthe:’th
trip, for all i < n,isO(\/n/i). Letusfor simplicity saythatwe know L. Fromtheearlierresultsin
this paper we know thatby searchinga distanceat mosteL+/nk we canfind an s-t pathof length
atmostc’L\/n/k, for someconstants, ¢’ andary k& < n.

Let us supposehatat the endof 7 trips we know an s-t-path= of lengthat mostc'L+/n /i (for
the basecase simply usethe BRS algorithm). Whatwe now wantto do is to searchwith costat
mostcL+/n2i andfind a pathof lengthat mostc’L+/n/2i. Let usdenoteby II the pathwe would
have traveledif we did this entire searchin onetrip usingthe algorithmof the previous sections.
In orderto maintaina pertrip ratio of O(v/n /i), we spreacthe work of IT over the next i trips as
follows. Eachtrip consistof two phasesThefirst is a seach phasewherewe walk anadditional
portionof I of Iength%cL\/ﬁ = cL\/2n /1, startingfrom wherewe left off ontheprevioustrip.
We canalwaysdo this becauséhe fencesarein atreestructure sothatthelastpointin II during
the previous searchcanalwaysbereachedrom the startpoint by a known shortpathwhoselength
addsonly a small constanfactorto thetotal trip length. Oncethe searchphaseis completedwe
“give up” andenterthefollow phasewherewe completethetrip by joining (by a greedypath)the
known pathr of length¢'L+/n /i, andfollowing it to ¢. Thusour trip lengthis still O(L+/n /7).
Sincein eachsuchsearch-follav trip we traversea portionof 11 of lengthcL/2n /i, andthelength
of I1 is at mosteL+/2n1, afteri trips we will have completelywalkedthe pathIl. Soafterthefirst
2: tripswe have apathof lengthatmostc’ L /n /2i. Thisreestablishesurinvariant. Thus,we have
thefollowing theorem:

Theorem 19 Thee s a deterministicalgorithm R thatfor every: < n achievesa per-trip ratio on
thes'thtrip, p; (R, n), of O(y/n/1).

29

8 Moadification for Point-to-Point Navigation

Our algorithmscan be extendedto the casewheret is a point ratherthana wall, with the same
boundsupto constanfactors,asfollows. Let usassumedor simplicity thatthe shortespathlength
L is known. As before,if we do not know I, we canusethe standard‘guessingand doubling”
approachandsuffer only a constanfactor penaltyin performance On thefirst trip, the robotcan
getto ¢ usingthe optimalpoint-to-pointalgorithmsof [7] or [3], with asingle-tripratio of O(/n).

Onceat ¢, the robot createsa greedyup-left path and a greedydown-left path from ¢, within a
window of height4 L centereditt. Notethatthehighestpostin ak x M r-fence-treas M+ < 3L

above theroot (whichis alwaysdistancel. below t) andthe lowestpostis k+ < I, below theroot.

Sotherobotis guaranteedo staywithin a window of height4 ., centeredat¢. Thusafterthe first

trip, thesegreedypathsplay therole of awall; oncetherobothits oneof thesepaths,t canreacht

with anadditionalcostthatis only alow-ordertermin thetotal cost.

9 Moadification for a Purely Tactile Robot

We assumedofar thatwheneaer our robothits anobstacleijt is told how far the nearestornerof
theobstaclés. Thisinformationis usedonly to tell therobotwhetheror notthereis a r-postatthe
point of encounterWith only a constanfactorpenalty(seethe analysign [1]) therobotcanobtain
thisinformationonits own, usingthe standardloublingstratey: Move up a distancel, thendown
2,thenup 4, andsoon, eachtime maoving doublethe previousdistance.

10 Conclusionand Open Problems

The coreresultof this paperis an algorithmthat performsa smoothtradeof betweensearchef-

fort andthe goodnesof the pathfound. This algorithmmay be of interestindependenthof the
performance-impnementproblem.For instancevhenarobothasmoretime or fuel available,one
would like it to spendmoreeffort andfind a betterroute. Thefence-treestructureis centralto this

searchalgorithm. Intuitively, onecanthink of thefence-treaasrepresentinghe collectionof those
obstacledn the scenewhich areresponsibldor makingthe scenedifficult to crossfrom s to ¢.

Thusthefence-trean asensecaptureghe “essence’df asceneasfar asthedifficulty (i.e., cost)of

crossingthe scends concernedlt would be interestingto explore whetheran analogoustructure
canbedefinedin moregeneralscenes.This might leadto a generalizatiorof our resultsto such
scenes.

At ahigherlevel, our approactin designinga“learning” navigationalgorithmwasto startwith
an algorithmthat achieves the abose-mentionedcost/performancéradeof, and corvert thatto a
moreincrementahlgorithmby spreadinghework over severaltrips. This high-level ideamaywell
beusefulin designingperformance-impnementalgorithmsfor othertasks.

Thereare several otherinterestingresearchdirectionsthat canbe explored. For instancecan
randomizatiomprovide abetteror simpleralgorithm?For theonetrip problem thebestiowerbound
knownis Q(log log n) by Karloff, RabaniandRavid [11], andthebestupperboundis O (n*/? log 1)
by Berman Blum, Fiat, Karloff andRoserandSakg2]. Whataboutextendingour multi-trip results
to moregenerakcenesRecentlyBermanandKarpinski[4] have designedarandomized?(n3/4)-
competitive single-trip algorithmfor 2-dimensionakcenesontainingarbitrary corvex obstacles
within which a unit circle can be inscribed. Achieving an O(/n) ratio for suchsceneseems
considerablyharder A goodfirst stepmight be to considersceneswith rectangulamobstaclesn
arbitraryorientationgi.e. notnecessarilyaxis-parallel).

A relatedproblemis the questionof how the robot can efficiently visit several destinations
in a scene,improving performancenvherevrer possible. One difficulty hereis devising a useful

30

performanceneasurédependingnthelocationof thedestinationspnemaybeableto useprevious
informationto varyingdegrees)hatappropriatelycapturegheessencef the problem.

References

[1] R.Baeza-¥tes,J.CulbersonandG. Rawlins. Searchingn the plane.Informationand Computation
106(2):234—2521993.

[2] P. BermanA. Blum, A. Fiat, H. Karloff, A. RosenandM. Saks.Randomizedobotnavigationalgo-
rithms. UnpublishedManuscript.

[3] E. BarEli, P Berman,A. Fiat, andP. Yan. On-line navigationin a room. In Proc. 3rd ACM-SIAM
SODA, 1992.

[4] P.BermanandM. Karpinski.Wall problemwith corvex obstaclesUnpublishedvlanuscriptJuly 1994.

[5] M. Betke,R. Rivest,andM. Singh.Piecemealearningof anunknown environment.In Proc. 6th ACM
Conf on Computational.earningTheory page277-286,1993.

[6] A. BlumandP. ChalasaniAn onlinealgorithmfor improving performancen navigation. In Proceed-
ings of the 34th AnnualSymposiunon Foundationsof ComputerSciencepages?—11,1993.

[7] A.Blum,P. Raghaan,andB. SchieberNavigatingin unfamiliargeometriderrain.In Proc.23rd ACM
STOC, 1991.

[8] P. Chalasani.Online Performance-immvementlgorithms PhD thesis,Carngie Mellon University,
1994.

[9] P. Chen. Improving pathplanningwith learning. In Prof. 9th Int’l Workshopon Machine Learning
1992.

[10] E.G.CoffmanandE.N. Gilbert. Pathsthrougha mazeof rectanglesNetworksvol. 22,no.4, pp.349—
367,July 1992.

[11] H. Karloff, Y. Rabani,andY. Ravid. Lower boundsfor randomizedk-sener and motion-planning
algorithms.In Proceeding®f the 23rd AnnualACM Symposiunon Theoryof Computing pages278—
288,1991.

[12] S.KoenigandR.G.SimmonsCompleity analysisof real-timereinforcementearning.In Proc. AAA]
page99-105,1993.

[13] V. Lumelsky. Algorithmic issuesof sensobasedobotmotionplanning.In 26thIEEE Confeenceon
Decision pagesl 796-18011987.

[14] V. Lumelsk. Algorithmic andcompleity issuesf robotmotionin anuncertairervironment.Journal
of Compleity, 3:146-1821987.

[15] V.Lumelsk andA. Stepana. Dynamicpathplanningfor amobileautomatorwith limited information
ontheervironment.|IEEE Trans.on AutomaticControl, 31:1058-10631986.

[16] M.S.Manassel..A. McGeochandD.D. Sleator Competitve algorithmsfor on-lineproblems.Journal
of Algorithmsg 11:208-2301990.

[17] C.PapadimitriouandM. YannakakisShortespathswithoutamap.In Proc. 16thICALP, 1989.

[18] S.Thrun.Efficientexplorationin reinforcementearning.TechnicaReportCMU-CS-92-102Carngie
Mellon University, 1992.

31

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

