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Abstract. Large scale optimization of systems governed by partial differential equations (PDEs) is a fron-
tier problem in scientific computation. The state-of-the-art for such problems is reduced quasi-Newton sequential
quadratic programming (SQP) methods. These methods take full advantage of existing PDE solver technology and
parallelize well. However, their algorithmic scalability is questionable; for certain problem classes they can be very
slow to converge. In this two-part article we propose a new method for PDE-constrained optimization, based on
the idea of full space SQP with reduced space quasi-Newton SQP preconditioning. The basic components of the
method are: Newton solution of the first-order optimality conditions that characterize stationarity of the Lagrangian
function; Krylov solution of the Karush-Kuhn-Tucker (KKT) linear systems arising at each Newton iteration us-
ing a symmetric quasi-minimum residual method; and preconditioning of the KKT system using an approximate
state/decision variable decomposition that replaces the forward PDE Jacobians by their own preconditioners, and the
decision space Schur complement (the reduced Hessian) by a BFGS approximation or by a 2-step stationary method.
Accordingly, we term the new methodLagrange-Newton-Krylov Schur(LNKS). It is fully parallelizable, exploits
the structure of available parallel algorithms for the PDE forward problem, and is locally quadratically convergent.
In the first part of the paper we investigate the effectiveness of the KKT linear system solver. We test the method on
two steady optimal flow control problems in which the flow is described by the Stokes equations. The objective is to
minimize dissipation or the deviation from a given velocity field; control variables are boundary velocities. Numeri-
cal experiments on up to 256 processors Cray T3E (Pittsburgh Supercomputing Center) and on an SGI Origin 2000
(National Center for Supercomputing Applications) include scalability and performance assessment of the LNKS
algorithm and comparisons with the reduced sequential quadratic algorithms for up to 1,000,000 state and 50,000
decision variables. In the second part of the paper we present globalization and robustness algorithmic issues and we
apply LNKS to the optimal control of the steady incompressible Navier-Stokes equations.

1. Introduction. Optimization problems that are constrained by partial differential equa-
tions (PDEs) arise naturally in many areas of science and engineering. In the sciences, such
problems often appear asinverse problemsin which some of the parameters in a simulation
are unavailable, and must be estimated by comparison with physical data. These parame-
ters are typically boundary conditions, initial conditions, sources, or coefficients of a PDE.
Examples include empirically-determined parameters in a complex constitutive law, and ma-
terial properties of a medium that is not directly observable. In engineering, PDE-constrained
optimization problems often take the form ofoptimal designor optimal controlproblems.

The common denominator in inverse, optimal design, and optimal control problems is a
nonlinear optimization problem that is constrained by the PDEs that govern behavior of the
physical system. Thus, solving the PDEs is just a subproblem associated with optimization,
which can be orders of magnitude more challenging computationally.

We refer to the unknown PDE field quantities as thestate variables; the PDE constraints
as thestate equations; solution of the PDE constraints as theforward problem; the inverse,
design, or control variables as thedecision variables; and the problem of determining the
optimal values of the inverse, design, or control variables as theoptimization problem.

In contrast to the large body of work on parallel PDE solution, very little has been pub-
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lished on parallel algorithms for optimization of PDEs (but see [8], [19], [31], [33]). This
is expected: it makes little sense to address the inverse problem until one has successfully
tackled the forward problem. However, with the recent maturation of parallel PDE solvers
for a number of problem classes, the time is ripe to begin focusing on parallel algorithms for
large scale PDE-constrained optimization.

Using general-purpose optimization software at the level of “minimizef subject to
c = 0” is bound to fail when the simulation problem is large and complex enough to de-
mand parallel computers. To be successful, the optimizer must exploit the structure of the
PDE constraints. Additionally, completely decoupling the PDE solver from the optimizer
can be terribly inefficient, since the simulation problem has to be solved at each optimization
iteration.

Sequential quadratic programming (SQP) methods [11] appear to offer the best hope
for smooth optimization of large-scale systems governed by PDEs. SQP methods interleave
optimization with simulation, simultaneously improving the design (or control or inversion)
while converging the state equations. Thus, unlike popular reduced gradient methods, they
avoid complete solution of the state equations at each optimization iteration. Additionally,
SQP methods can be made to exploit the structure of the simulation problem, thus building
on the advances in parallel PDE solvers over the past 20 years.

The current state-of-the-art for solving PDE-constrained optimization problems is re-
duced SQP (RSQP) methods. Both mathematical analysis of these methods [7], [12], [22],
[26], [30], as well as applications to compressible flow airfoil design [31], [37], [38], heat
equation boundary control [27], inverse parameter estimation [15], [25], Navier-Stokes flow
control [18], and structural optimization [32], [34], [35], have appeared. In addition, parallel
implementations of RSQP methods exhibiting high parallel efficiency and good scalability
have been developed [19], [28].

Roughly speaking, RSQP methods project the optimization problem onto the space of
decision variables (thereby eliminating the state variables), and then solve the resulting re-
duced system typically using a quasi-Newton method. The advantage of such an approach
is that only two linearized forward problems1 need to be solved at each iteration (e.g [18]).
For moderate numbers of decision variables, the solution of the forward problem dominates
a quasi-Newton optimization iteration. Thus, when good parallel algorithms are available
for the forward problem, RSQP methods inherit the parallel efficiency and scalability (with
respect to state variables) of the PDE solvers.

However, the convergence of quasi-Newton methods often deteriorates as the number of
decision variables increases. As a result, quasi-Newton-based RSQP methods (QN-RSQP)
often exhibit pooralgorithmicscalability with respect to the decision variables, despite their
good parallel scalability. Furthermore, the requirement of two solutions of the forward prob-
lem per optimization iteration can be very onerous when many iterations are taken, even
though these solutions are just for thelinearizedforward operator.

So it is natural to return to the full space, and ask if it is possible to solve the entire
optimality system simultaneously, but retain the structure-inducing, condition-improving ad-
vantages of reduced space methods—while avoiding their disadvantages.

In this article we propose a full space Newton approach that uses a Krylov method to
converge the KKT system, but invokes a preconditioner motivated by reduced space ideas. We
refer to the (nonlinear) Newton iterations asouteriterations, and use the terminner to refer to
the (linear) Krylov iterations for the Karush-Kuhn-Tucker (KKT) system that arises at each
Newton iteration. Like QN-RSQP, this approach requires just two linearized forward solves
per iteration, but it exhibits the fast convergence associated with Newton methods. Moreover,

1Strictly speaking, one involves the adjoint of the forward operator



LAGRANGE-NEWTON-KRYLOV-SCHUR ALGORITHMS 3

the two forward solves can be approximate (since they are used within a preconditioner); for
example we replace them by an appropriate PDE preconditioner. In addition to building on
parallel PDE preconditioning technology, the new KKT preconditioner is based on an exact
factorization of the KKT matrix, deflating its spectrum very effectively. Finally, the method
parallelizes and scales as well as the forward solver itself.

The new method is termed Lagrange-Newton-Krylov-Schur. It is common in PDE-solver
circles to use the phraseNewton-Krylov-Xto refer to Newton methods for solving PDEs that
employ Krylov linear solvers, withX as the preconditioner for the Krylov method. Since
Lagrange-Newtonis sometimes used todescribe a Newton method for n solving the optimality
system (a.k.a. an SQP method), and since a reduced space method can be viewed as a Schur
complement method for the KKT system, we arrive at the concatenationLNKS.

LNKS method is inspired by domain-decomposed Schur complement PDE solvers. In
such techniques, reduction onto the interface space requires exact subdomain solves, so one
often prefers to iterate within the full space while using a preconditioner based on approxi-
mate subdomain solution [24]. In our case, the decomposition is into states and decisions, as
opposed to subdomain and interface spaces.

Battermann and Heinkenschloss have presented a related KKT-system preconditioner
that also exploits RSQP methods [6]. However, their preconditioner is based on congruence
transformations of the original system and not on an exact factorization of it. The resulting
preconditioned system has both positive and negative eigenvalues and its spectrum is less
favorably distributed. Another important difference is that we precondition in the reduced
space.

The article is organized as follows: in Section 2 we discuss sequential quadratic program-
ming methods and in particular reduced space variants; in Section 3, which is the core of this
paper, we introduce the LNKS method and we present several approaches for precondition-
ing the KKT matrix; in Section 4 we examine the formulation of a Stokes flow problem; and
in Section 5 we conclude with numerical results, and a parallel and algorithmic scalability
analysis of the method.

Let us add some comments on our notation conventions. We use boldface characters to
denote vector valued functions and vector valued function spaces. We use roman characters
to denote discretized quantities and italics for their continuous counterparts. For example
u will be the continuous velocity field andu will be its discretization. Greek letters are
overloaded and whether we refer to the discretization or the continuous fields should be clear
from context. We also use(+) as a subscript or superscript to denote variable updates within
an iterative algorithm.

2. Reduced Space Methods.We begin with constrained optimization problem formu-
lation of the form:

min
x2RN

f(x); subject to c(x) = 0;(2.1)

wherex 2 R
N are the optimization variables,f : RN ! R is the objective function, and

c : RN ! R
n are the constraints, which in our context are the discretized state equations. We

assume that the constraints consist of only state equations2. In order to exploit the structure
of the problem we partitionx into state variablesxs 2 Rn , and decision variablesxd 2 Rm ,

x =

�
xs
xd

�
;(2.2)

2However, the methodology can be extended to problems that include additional inequality constraints.
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so thatN = m + n. By introducing the LagrangianL one can derive first and higher order
optimality conditions. The Lagrangian is defined by

L(x;�) := f(x) + �
T c(x);(2.3)

where� are the Lagrange multipliers (or adjoint variables). The first order optimality condi-
tions state that at a local minimum the Lagrangian gradient must vanish:

�
@xL

@�L

�
(x;�) =

�
@xf(x) + (@xc(x))

T
�

c(x)

�
= 0:(2.4)

Points at which the gradient of the Lagrangian vanish are often calledKKT points3. Custom-
arily, these equations are called the Karush-Kuhn-Tucker or KKT optimality conditions. To
simplify the notation further, let us define:

A(x) := @xc(x) 2 Rn�N Jacobian matrix of the constraints;
W(x;�) := @xxf(x) +

P
i �i@xxci(x) 2 RN�N Hessian matrix of the Lagrangian;

g(x) := @xf(x) 2 RN gradient vector of the objective:

Consistent with the partitioning of the optimization variables into states and decisions, we
logically partitiong; A; W as follows4:

g =

�
xs
xd

�
; A =

�
As Ad

�
; and W =

�
Wss Wsd

Wds Wdd

�
:

At each iteration of the SQP algorithm a quadratic programming problem (QP) is solved to
generate a new search directionpx. When the SQP is derived from a Newton method for the
optimality conditions (2.4), the QP is of the form

min
px2R

1

2
pTxWpx + g

Tpx subject to Apx + c = 0:(2.5)

Reduced methods eliminate the linearized constraint by using a null/range space decompo-
sition of the search directionpx and solve first in the—often much smaller—space of the
decision variables, after which the state variables are updated. Formally this is done by writ-
ing:

px = Zpz +Ypy;(2.6)

where the columns ofZ 2 R
n�m form a basis for the null-space ofA (so thatAZ = 0).

Note thatY is not required to be orthogonal to the null space of the constraints, butAY

needs to have full rank to ensure solvability for the (not strictly) range-space componentpy.
Let us define the reduced gradient of the objective functiongz, the reduced HessianWz and
an auxiliary matrixWy:

gz := ZTg;

Wz := ZTWZ;

Wy := ZTWY:

(2.7)

Then the reduced space SQP algorithm (without line search) is given by Algorithm 1.

3Saddle points and local maxima are also KKT points.
4All vectors and matrices depend on the optimization variablesx, and in addition the HessianW depends also

on the Lagrange multipliers�. For clarity, we suppress identification of these dependencies.
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Algorithm 1 Reduced space Sequential Quadratic Programming (RSQP)
1: Choosex
2: loop
3: Evaluatec; g; A; W
4: gz = ZTg

5: Check convergence
6: (AY)py = �c Solve forpy
7: Wzpz = �(gz +Wypy) Solve forpz
8: px = Zpz +Ypy
9: x+ = x+ px

10: (AY)T�+ = �YT (g +Wpx) Solve for�+
11: end loop

Choices on how to approximateWz, and on how to construct a basisZ andY, determine
some of the different RSQP variants. An important step of this algorithm is “inverting”Wz.
The condition number of the reduced Hessian is affected by the choice ofZ, and ideallyZ
would come from an orthogonal factorization ofA. This approach is not possible for the size
of problems we are considering. There is, however, a convenient form ofZ that is easy to
compute and takes advantage of the structure of the constraints. It is given by

Z :=

�
�A�1

s Ad

I

�
(2.8)

and thenY can be defined by

Y :=

�
I

0

�
:(2.9)

The definition for the null-spaceZ implies that the reduced gradient is given by

gz = gd �A
T
dA

�T
s gs;(2.10)

and the reduced Hessian is given by

Wz = AT
dA

�T
s WssA

�1
s Ad �A

T
dA

�T
s Wsd �WdsA

�1
s Ad +Wdd:(2.11)

Algorithm 2 states a particularized (to the special form ofZ andY given above) description
for the Newton-RSQP. The algorithm can be decomposed into three main steps: inverting the
reduced Hessian for the decision search direction (step 8), inverting the (linearized) forward
operator for the state search direction (step 9), and inverting the adjoint of the (linearized)
forward operator for the Lagrange multipliers (step 10).

There are two ways to solve the decision equation in step 8. We can either compute
and store the reduced HessianWz in order to use it with a direct solver, or we can use an
iterative method which only requires matrix–vector products withWz. Direct solvers are
very effective, but computing the reduced Hessian requiresm linearized forward solves. If we
count the solves for the right-hand side of the decision equation and the adjoint and forward
steps then we have a total ofm+ 4 solvesat eachoptimization iteration.

If an iterative method is used then a matrix-vector multiplication withWz requires solves
with A�1

s andA�T
s . A Krylov method like Conjugate Gradient (CG) will converge inm

steps (in exact arithmetic) and thus the number of forward solves will not exceed2m. In
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Algorithm 2 Newton RSQP
1: Choosexs;xd;�
2: loop
3: Evaluatec; g; A; W
4: gz = gd +A

T
d �

5: if kgzk � tol andkck � tol then
6: Converged
7: end if
8: Wzpd = �gz + (Wds �A

T
dA

�T
s Wss)A

�1
s c solve forpd (Decision step)

9: Asps = �Adpd � c solve forps (State step)
10: AT

s �+ = �gs solve for�+ (Adjoint Step)
11: x+ = x+ px
12: end loop

practice the number of iterations depends on the condition number of the reduced Hessian.
With an optimal preconditioner the iteration count will be independent ofm. However, it is
not obvious how to devise optimal preconditioners for the reduced Hessian. Furthermore, we
still require four extra forward (and adjoint) solves for each SQP iteration.

Even when the number of decision variables is small, it is advantageous to opt for an
RSQP variant that avoids computingWz. The main reason is that, usually, second derivatives
are not available. Moreover, Newton’s method is not globally convergent and far from the
solution the quality of the decision steppz is questionable.

In a quasi-Newton RSQP methodWz is replaced by its quasi-Newton approximation. In
addition, the second derivative terms are dropped from the right hand sides of the decision and
adjoint steps, at the expense of a reduction from one-step to two-step superlinear convergence
[7]. An important advantage of this quasi-Newton method is that only two linearized forward

Algorithm 3 Quasi-Newton RSQP
1: Choosexs;xd;�;Bz
2: loop
3: Evaluatec; g; A
4: gz = gd +A

T
d �

5: if kgzk � tol andkck � tol then
6: Converged
7: end if
8: Bzpd = �gz solve forpd (Decision step)
9: Asps = �Adpd � c solve forps (State step)

10: AT
s �+ = �gs solve for�+ (Adjoint Step)

11: x+ = x+ px
12: UpdateBz
13: end loop

problems need to be solved at each iteration, as opposed to them needed by N-RSQP for
constructingA�1

s Ad in Wz [18]. Furthermore, no second derivatives are required. The
combination of a sufficiently accurate line search and an appropriate quasi-Newton update
guarantees a descent search direction and thus a globally convergent algorithm [12].

QN-RSQP has been very efficiently parallelized for moderate numbers of decision vari-
ables [28]. Unfortunately, the number of iterations taken by quasi-Newton methods often
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increases as the number of decision variables grows,5 rendering large-scale problems in-
tractable. Additional processors will not help since the bottleneck is in the iteration dimen-
sion.

On the other hand, convergence of the N-RSQP method can be independent of the num-
ber of decision variablesm. However, unless an optimalWz preconditioner is used, the
necessarym forward solves per iteration preclude its use, particularly on a parallel machine,
where iterative methods for the forward problem must be used. However, there is a way to
exploit the fast convergence of the Newton method and avoid solving the PDEs exactly, and
this method is proposed, in the next section.

3. Lagrange-Newton-Krylov-Schur method. The KKT optimality conditions (2.4)
define a system of nonlinear equations. The JacobianK of this system is termed theKKT
matrix. A Newton step on the optimality conditions is given by

�
W AT

A 0

��
px
p�

�
= �

�
g+AT

�

c

�
( orKv = �h);(3.1)

wherepx andp� are the updates ofx and� from current to next iterations. Assuming
sufficient smoothness, and that the initial guess is sufficiently close to a solution, Newton
steps obtained by the above system will quadratically converge to the solution [16]. Thus,
the forward solves required for reduced methods can be avoided by remaining in the full
space of state and decision variables, since it is the reduction onto the decision space that
necessitates them solves. Nevertheless, the full space approach also presents difficulties: a
descent direction is not guaranteed, second derivatives are required, and the KKT system itself
is very difficult to solve. The size of the KKT matrix is more than twice that of the forward
problem, and it is expected to be very ill-conditioned. Ill-conditioning results not only from
the forward problem but also from the different scales between first and second derivatives
submatrices. Moreover, the system is indefinite; mixing negative and positive eigenvalues is
known to slow down Krylov solvers. Therefore, a good preconditioner is essential to make
the method efficient.

We present an algorithm that uses a proper Newton method to solve for the KKT optimal-
ity conditions. To compute the Newton step we solve the KKT system using an appropriate
Krylov method. At the core of the algorithm lies the preconditionerP for the Krylov method:
an inexactversion of the QN-RSQP algorithm. An outline of the LNKS algorithm is given
by the following:

Algorithm 4 Lagrange-Newton-Krylov-Schur
1: Choosex;�
2: loop
3: Check for convergence
4: Computec;g;A;W
5: SolveP�1Kv = �P�1h

6: Updatex+ = x+ px
7: Update�+ = �+ p�
8: end loop

This algorithm will produce the same steps as solving the optimization problem with the
N-RSQP (in exact arithmetic). It is easier to see the connection between RSQP and the LNKS

5E.g. for the limiting quadratic case, the popular BFGS quasi-Newton method is equivalent to conjugate gradi-
ents, which scales with the square root of the condition number of the reduced Hessian.
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method if we rewrite (3.1) in a block-partitioned form:2
4 Wss Wsd AT

s

Wds Wdd AT
d

As Ad 0

3
5
8<
:

ps
pd
p�

9=
; = �

8<
:
gs +A

T
s �

gd +A
T
d �

c

9=
; :(3.2)

RSQP is equivalent to a block-row elimination; givenpd, solve the last block of equations
for ps, then solve the first to findp�, and finally solve the middle one forpd, the search
direction for the decision variables. Therefore RSQP can be written as a particular block-LU
factorization of the KKT matrix:

K =

2
4 WssA

�1
s 0 I

WdsA
�1
s I AT

dA
�T
s

I 0 0

3
5
2
4 As Ad 0

0 Wz 0

0 Wsd �WssA
�1
s Ad AT

s

3
5 :(3.3)

Note that these factors are permutable to block triangular form (this is why we refer to the
factorization as block-LU) and thatWz is the Schur-complement forpd.

This block factorization suggests a preconditioner created by replacing the reduced Hes-
sianWz with its quasi-Newton approximationBz. However, we still require four forward
solves per inner iteration. One way to restore the two solves per iteration of QN-RSQP is
to, in addition, drop second order information from the preconditioner, exactly as one often
does when going from N-RSQP to QN-RSQP. A further simplification of the preconditioner
is to replace the exact forward operatorAs by an approximation~As, which could be any
appropriate forward problem preconditioner. With these changes,no forward solves need to
be performed at each inner iteration. Thus, the work per inner iteration becomes linear in the
state variable dimension (e.g. when~As is a constant-fill domain decomposition approxima-
tion).Furthermore, whenBz is based on a limited-memory quasi-Newton update, the work
per inner iteration is linear also in the decision variable dimension. Since all of the steps
involved in an inner iteration not only require linear work but are also readily parallelized, we
conclude that each inner (KKT) iteration will have high parallel efficiency and scalability.

Scalability of the entire method additionally requires mesh-independence of both inner
and outer iterations. Newton methods (unlike quasi-Newton) are often characterized by a
number of iterations that is independent of problem size [1]. With an “optimal” forward
preconditioner and a goodBz approximation, we can hope that the number of inner iterations
is insensitive to the problem size. This is indeed observed in the next section. Scalability with
respect to both state and decision variables would then result.

Below we present several preconditioners for the KKT matrix. These are based on the
exact block-factorization of the KKT matrix and therefore are indefinite. To examine sepa-
rately the effects of discarding the Hessian terms and approximating the forward solver, we
define four different variations. The subscript denotes the number of the forward solves per
Krylov iteration, and a tilde mark on (top of) the preconditioner means that the forward solves
are replaced by a single application of their preconditioner.

� PreconditionerP4 takesWz = Bz and retains the four linearized solves per itera-
tion. The preconditioner is

P4 =

2
4 WssA

�1
s 0 I

WdsA
�1
s I AT

dA
�T
s

I 0 0

3
5
2
4 As Ad 0

0 Bz 0

0 Wy AT
s

3
5 ;(3.4)

and the preconditioned KKT matrix is

P�14 K =

2
4 I 0 0

0 WzB
�1
z 0

0 0 I

3
5 :(3.5)
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� PreconditionerP2 takesWz = Bz and discards all other Hessian terms, resulting in
two linearized solves per iteration. The preconditioner is

P2 =

2
4 0 0 I

0 I AT
dA

�T
s

I 0 0

3
5
2
4 As Ad 0

0 Bz 0

0 0 AT
s

3
5 ;(3.6)

and the preconditioned KKT matrix is

P�12 K =

2
4 I 0 0

WT
y A

�1
s WzB

�1
z 0

WssA
�1
s WyB

�1
z I

3
5 :(3.7)

Note that the spectrum of the preconditioned KKT matrix is unaffected by dropping
the second derivative terms.

� Preconditioner~P4 takesWz = Bz andAs = ~As, and retains all other Hessian
terms, resulting in no forward solves. The preconditioner is

~P�14

2
4 Wss

~A�1
s 0 I

Wds
~A�1
s I AT

d
~A�T
s

I 0 0

3
5
2
4

~As Ad 0

0 Bz 0

0 ~Wy
~AT
s

3
5 ;(3.8)

and the preconditioned KKT matrix is

~P�14 K =

2
4 Is 0 0

0 WzB
�1
z 0

0 0 ITs

3
5+

2
4 0 O(Es) 0

O(Es) O(Es) O(Es)

O(Es) O(Es) 0

3
5 ;(3.9)

whereEs := A�1
s � ~A�1

s and Is := As
~A�1
s . Wy is given by (2.7) with the

difference that inZ , A�1
s is being replaced by~As

�1
. Clearly,Es = 0 andIs = I

for exact forward solves.
� Preconditioner~P2 takesWz = Bz andAs = ~As, and drops all other Hessian terms,

resulting in no forward solves. The preconditioner is

~P�12 =

2
4 0 0 I

0 I AT
d
~A�T
s

I 0 0

3
5
2
4

~As Ad 0

0 Bz 0

0 0 ~AT
s

3
5 ;(3.10)

and the preconditioned KKT matrix is

~P�12 K =

2
4 Is 0 0

~WT
y WzB

�1
z 0

Wss
~A�1
s

~WT
y ITs

3
5+

2
4 0 O(Es) 0

0 O(Es) O(Es)

0 0 0

3
5 :(3.11)

Let us comment on some basic properties of the Krylov methods that will allow us to
understand the effectiveness of the preconditioners. The performance of a Krylov method
depends highly on the preconditioned operator spectrum [21, 36]. In most Krylov methods
the number of iterations required to obtain the solution is at most equal to the number of
distinct eigenvalues (in exact arithmetic). When solvingKv = �h such methods satisfy the
following relation for the residual:

ri = span
�
r0 +Kr0 +K

2r0 + � � �+Kir0
	
=  (K)r0;  2 Pi:



10 G. BIROS AND O. GHATTAS

Herev0 is the initial guess,r is defined asr = h+Kv, r0 = h+Kv0, andPi is the space
of monic polynomials of degree at mosti. Minimum residual methods like MINRES and
GMRES determine a polynomial so that6

krik = min
 2Pi

k (K)r0k:

If K is diagonalizable withX the matrix its of eigenvectors and spectrumS(K), then7

krik

kr0k
� cond(X) min

�2S(K)
j (�)j:(3.12)

Additionally, if the spectrum lies in the positive real axis, it can be shown that:

krik

kr0k
� cond(X)

�max

�min
:(3.13)

From (3.12) we can see why clustering the eigenvalues is important. Indeed, if the eigen-
values are clustered, then the solution polynomial in the right hand side of (3.12) can be
approximated by the zeros of a low degree polynomial (resulting in fewer Krylov iterations).
WhenK is normal (unitarily diagonalizable) then cond(X) = 1; in this case the estimates
(3.12) and (3.13) are known to be sharp [21].

The preconditioned KKT matrixP�14 K is a block diagonal matrix with two unit eigen-
values and them eigenvalues of the preconditioned reduced Hessian. It is immediate that
GMRES takesO(cond(B�1

z Wz)) or at mostm + 2 steps to converge. This is in agreement
with the complexity estimates for Krylov solution of N-RSQP. Preconditioner (3.6) has the
same effect on the spectrum of the KKT matrix, but the preconditioned KKT system is no
longer a normal operator. Yet, ifP�12 K is diagonalizable and its eigenvector matrix well
conditioned, relation (3.13) is still a good indicator of the effectiveness of the preconditioner.

If we replace the exact forward operatorsAs by their forward preconditioners~As the
preconditioned KKT matrix assumes a more complicated structure. We write~P�14 K as the
sum of two matrices; the second matrix in this sum includes terms that approach0 as the
forward preconditioner improves. The spectrum of the first matrix in (3.9) is given bySn =

S(B�1
z Wz) [ S( ~A

�1
s As). If ~As

�1
As is normal, then by the Bauer-Fike theorem [20] the

eigenvalues are not sensitive to small KKT matrix perturbations andS( ~P�14 K) �= Sn. Hence,
a good preconditioner for the forward problem would bring the spectrum of~P�14 K close to
the spectrum ofP�14 K. A similar statement is not true for preconditioner~P2 since the left
matrix in (3.11) is not normal and may have ill-conditioned eigenvalues.

3.1. Preconditioners for the reduced Hessian.A very important component of the
LNKS preconditioner is an approximation to the inverse of the reduced Hessian. In the pre-
ceding sections we suggested a quasi-Newton approximation for the reduced Hessian—in
the spirit of using QN-RSQP as a preconditioner. However, there other options. Here we
summarize the different possibilities:

� Incomplete factorizations. Incomplete factorizations are popular and robust pre-
conditioners, but an assembled matrix (modulo some exceptions for structured grids)
is required. Not only is the reduced Hessian expensive to assemble but, in general,
it is dense and thus impossible to store for large number of decision variables. An
incomplete factorization could be feasible only if the exact solves are replaced by
the forward preconditioner and if some kind of sparsity is enforced (perhaps via
element-by-element computations and threshold-ILU methods).

6Throughout this paper we use the vector 2-norm for norms and condition numbers.
7Here� is temporary overloaded to denote an eigenvalue ofK.
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� SPAI. Sparse approximate inverse techniques are attractive since they only require
matrix-vector multiplications and a given sparsity pattern. In [14] an analysis for
CFD-related Schur-complements shows that this method is very promising.

� Range Space. In [29] two different reduced Hessian preconditioners are presented,
one based on a state-Schur complement factorization and the second on power se-
ries expansions. It is assumed that a (non-singular approximation)~W�1 is available.
The basic component of their preconditioners is the application ofZT ~W�1Z on a
vector. We did not test these preconditioners, since in our problemsW has thou-
sands of zero eigenvalues and it is not clear how to construct an approximation to
W�1. If Wdd is non-singular then a block-Jacobi-ILU technique could be used to
approximateW�1

z withW�1
dd (or an approximation~W�1

dd ).
� Krylov self-preconditioning . Another option is to take a few CG iterations in the

reduced space at each preconditioner application. Since we want to avoid solving
exactly the forward problem we replaceA�1

s with ~A�1
s in (2.11). We experimented

with this approach but we found that we need to allow CG to fully converge to
avoid loss of orthogonality for the Krylov vectors. This slowed down the method
significantly. We have also experimented with flexible GMRES for the KKT solver,
but the nice properties of a symmetric Krylov solver are lost and the algorithm was
slow to converge.

� Quasi-Newton. This method has been used as an approximation for second deriva-
tives and employed not as a preconditioner but as a driver for constrained and uncon-
strained optimization problems. It is therefore a natural candidate to precondition
the reduced Hessian. We discuss this method in the companion paper.

� Stationary Methods. Holding to the idea of using some kind of approximate solve
as a preconditioner but at the same time avoiding full convergence and retaining a
constant preconditioner, we looked at stationary iterative methods for linear systems
(like Jacobi, SOR). To guarantee convergence, the majority of such algorithms re-
quire the operator (of a linear system) to have small spectral radius (less than 1),
which is difficult to guarantee in the general case. Furthermore, most methods re-
quire some kind of splitting, which is not convenient with unassembled operators. A
method that does not have the above restrictions is a two-step stationary algorithm
which is suitable for positive-definite matrices. Details can be found in [4]. The
tradeoff is that this method requires an accurate estimate of the minimum and max-
imum eigenvalues. The preconditioner can be arbitrarily effective depending on the
number of iterationsL it is carried to. If�1 � �m are the estimates for the extreme
eigenvalues of~Wz then the application of the preconditioner to a vectordin is given
by Algorithm 5. In Algorithm 5 step 4 requires the action of the reduced Hessian to

Algorithm 5 2-step stationary reduced space preconditioner

1: � =
1��1=�n
1+�1=�n

, � = 2
1+(1��2)1=2

, �0 = 1
�1+�n

, � = 2�
�1+�n

,
2: r = �din, d0 = 0, d1 = �0r

3: for i = 1 : : : L do
4: r = ~Wzd1 � din
5: d = �d1 + (1� �)d0 � �r

6: d0 = d1; d1 = d

7: end for

a vector. To avoid exact forward solves, we use~Wz instead ofWz. ~Wz is obtained
by (2.11) if we replaceA�1

s andA�T
s with ~A�1

s and ~A�T
s (their preconditioners).
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Like CG the method’s convergence rate depends on the square root of the condition
number of the (approximate) reduced Hessian. It parallelizes well because it does
not require any inner products. To obtain estimates of the eigenvalues we use the
Lanzos method (once per Newton iteration).

� Infinite dimension-based preconditioners. For PDE-constrained problems it might
be the case that one can derive an exact expression for the infinite-dimensional re-
duced Hessian. A preconditioner based upon a discretization of this expression could
be used to scale the reduced Hessian [3].

In the we next section will discuss results from numerical experiments that we conducted
to assess the effectiveness of the preconditioners. To isolate the effects of the Krylov-Schur
solver on LNKS, we will study problems with linear constraints and quadratic objective func-
tions. For this class of problems, Newton’s method requires only one step to converge.

4. Stokes Optimal Control Results. To evaluate the proposed algorithms, we solve
a matching velocity problem for a Poiseuille flow and an energy dissipation minimization
problem for a flow around a cylinder. Our implementation is based on the PETSc library [5],
and makes use of PETSc parallel domain-decomposition preconditioners for the approximate
forward solves.

The LNKS method has been tested on two different quadratic optimization problems.
Both cases have 3D interior Stokes flow as the PDE-constraint. The decision variables are
Dirichlet boundary conditions on some portion of the boundary. An optimal control problem
can be stated as follows:

min
u;ud;p

J (u;ud; p)(4.1)

subject to � �r � (ru+ruT ) +rp = b in 
;

r � u = 0 in 
;

u = u
� on �u;

u = ud on �d;

�pn+ �(ru+ruT )n = 0 on �N :

(4.2)

Hereu is the fluid velocity,p is the pressure,� is a non-dimensional viscosity,b is a body
force, andn is the outward unit normal vector on the boundary. The first problem we studied
is a velocity matching optimal control problem. A velocity profile is prescribed on the inflow
boundary�u, and we specify a traction-free outflow boundary�N . The velocitiesud, defined
on�d are the decision variables. In this example,u

� is taken as a Poiseuille flow inside a pipe,
and the decision variables correspond to boundary velocities on the circumferential surface
of the pipe (Fig 4.1). The objective functional is given by

J (u;ud; p) =
1

2

Z



(u� � u)2 d
:

The exact solution in this case is given byud = 0.
In the second problem we examine the flow around a cylinder (which is anchored inside

a rectangular duct). A quadratic velocity profile is used as an inflow Dirichlet condition and
we prescribe a traction-free outflow. The decision variables are defined to be the velocities
on the downstream portion of the cylinder surface. In this problem the objective functional is
given by

J (u;ud; p) =
1

2

Z



(ru+ruT ) � (ru+ruT ) d
:
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FIG. 4.1. This figure depicts the (partitioned)
computational domains used in our numerical ex-
periments. We have solved two different optimal
flow control problems: that of Poiseuille flow, and
that of a flow around a cylinder embedded inside a
rectangular duct. Both flows are interior problems
with non-slip conditions everywhere except the out-
flow boundary. In the case of the Poiseuille flow the
decision variables are the boundary conditions on
the circumferential walls of the pipe. In the cylinder
problem the decision variables are the downstream
boundary conditions.

The Stokes equations are discretized by the Galerkin finite element method, using tetra-
hedral Taylor-Hood elements. The reduced-space algorithms as well as the LNKS method
with (the four different preconditioners) were implemented.

The most popular method for large symmetric indefinite systems is the MINRES method.
However, MINRES works only with positive-definite preconditioners—the preconditioners
(for the KKT matrix) defined in Section 3 are indefinite. Instead, we use a quasi-minimum
residual (QMR) method [17]. The transpose-free QMR implementation which comes with the
PETSc distribution is designed for general unsymmetric problems and requires two matrix-
vector multiplications per Krylov iteration. The variant described in [17], which we use in
our implementation exploits symmetry and uses only one matrix-vector multiplication per
iteration. The symmetric version of QMR is also used to converge the Stokes forward solver.

The two flow control problems have quadratic objective functions and linear constraints
and thus Newton’s method takes only one iteration to converge. Hence, it is not possible to
build a quasi-Newton approximation to use within the KKT preconditioner. Instead we use
the 2-step stationary algorithm to precondition the reduced Hessian.

4.1. Forward preconditioner. It is evident that the major component of the LNKS
method is the forward solver preconditioner8. Let us begin with the Stokes equations, which
in their algebraic form are given by�

V PT

P 0

��
u

p

�
=

�
bu
bp

�
:(4.3)

In our first round of numerical experiments (results are reported in [9, 10]) we used the fol-
lowing forward problem preconditioner:�

V�1 0

0 M�1

�
:(4.4)

8Of course, the analysis of the forward preconditioner is problem dependent.
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We use PETSc’s block-Jacobi preconditioners with local ILU(0) for a domain decomposi-
tion approximation ofV�1 andM�1—the discrete Laplacian and discrete pressure mass
matrices, respectively. We found the performance of this block preconditioner unsatisfactory
especially when it was part of the KKT preconditioner. For this reason we have switched to a
preconditioner which is based on the following (exact) factorization of the Stokes operator:�

I �V�1PT

0 I

� �
V�1 0

0 S�1

��
I 0

�PV�1 I

�
;(4.5)

whereS := �PV�1PT is the Schur complement for the pressure. Based on this factoriza-
tion, the preconditioner is defined by replacing the exact solvesV�1 with ~V�1. For the pres-
sure Schur compleme nt block we use the 2-step stationary method. Performance statistics are
presented in Table 4.1. We can see that it significantly reduces solution times compared to the

TABLE 4.1
Forward solver efficiency. Each column has the number of Krylov iterations required to satisfykrk=kr0k �

1 � 10
�8; (n) is the problem size; (none) no preconditioner; (bd) block-diagonal, each block is block-Jacobi with

local ILU(0); (psc3) the factorization, with 3 stationary iterations forS; (psc7) employs 7 stationary iterations. In
parentheses is wall-clock time in seconds on the Pittsburgh Supercomputing Center’s CRAY T3E-900.

POISEUILLE FLOW
PEs n none bd psc3 psc7
16 64,491 18,324 (250) 1,668 (86) 140 (30) 128 (39)
32 114,487 24,334 (620) 2,358 (221) 197 (39) 164 (45)
64 280,161 27,763 (1410) 3,847 (515) 294 (71) 249 (84)
128 557,693 32,764 (1297) 5,010 (620) 446 (109) 357 (123)
256 960,512 49,178 (2272) 6,531 (780) 548 (122) 389 (128)

FLOW AROUND A CYLINDER
PEs n none bd psc3 psc7
16 50,020 24,190 (720) 2,820 (206) 251 (72) 234 (103)
32 117,048 35,689 (1284) 4,512 (405) 363 (120) 327 (176)
64 389,440 41,293 (1720) 7,219 (1143) 581 (332) 497 (456)
128 615,981 52,764 (2345) 10,678 (1421) 882 (421) 632 (512)
256 941,685 71,128 (3578) 13,986 (1578) 1,289 (501) 702 (547)

block-diagonal variant. Nevertheless, the efficiency of the new preconditioner is still mesh-
dependent. It is known that block-Jacobi-ILU preconditioners do not scale linearly. This
could be overcome with an additive Schwartz domain-decomposition preconditioner (with
generous overlap) as has been shown in [13].

5. Numerical results. Poiseuille flow. Results on the Poiseuille flow problem are pre-
sented in Table 5.1. We have solved five different problem sizes on up to 256 processors
in order to assess the performance and scalability of the LNKS algorithm. Our first and
most important finding is that the fastest variant is LNKS-II (~P2), which is approximately30
timesfaster than QN-RSQP. Another observation is that LNKS-I (2-exact solves), despite its
discarding second order terms, is very effective in reducing the number of iterations—note
the difference in KKT iterations between the second (unpreconditioned) and third (precondi-
tioned) lines of each problem instance. One can improve LNKS further by replacing the exact
forward solver by precondition applications (LNKS-II). For example, in the largest problem
size case, we lose by a factor of 24 KKT iterations, but we gain a factor of 4.5 in execution
time.
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TABLE 5.1
Performance of LNKS and comparisons with QN-RSQP for the Poiseuille flow problem as a function of in-

creasing number of state and decision variables and number of processors. Here, (QN-RSQP) is quasi-Newton
reduced-space SQP; (LNK ) is the the full-space Lagrange-Newton-Krylov method with no preconditioning for the
KKT system; (LNKS-I ) is theP2 preconditioner—which requires two Stokes solves—combined with the 2-step iter-
ative preconditioner for the reduced Hessian (3 steps); in (LNKS-II ) the exact solves have been replaced by approxi-
mate solves; in (LNKS-III ) the exact solves have been replaced by approximate ones and there is no preconditioning
in the reduced space, i.e.Bz = I; (N or QN iter ) reports the number of Newton or quasi-Newton iterations; (KKT
iter ) are the number of Krylov iterations for the KKT system to converge; finally (time) is wall-clock time in sec-
onds on a Cray T3E-900. Both QN-RSQP and the LNKS methods are converged so thatkck=kc0k � 1 � 10

�6

andkgk=kg0k � 1 � 10
�6 , in all cases but for the unpreconditioned KKT case in which the Krylov method was

terminated when the number of iterations exceeded 500,000.

states
decisions

method N or QN iter KKT iter time

64,491 QN-RSQP 221 — 15,365
7,020 LNK 1 274,101 19,228

(16 PEs) LNKS-I 1 27 1,765
LNKS-II 1 170 482
LNKS-III 1 1,102 969

114,487 QN-RSQP 224 — 19,493
10,152 LNK 1 499,971 39,077

(32 PEs) LNKS-I 1 26 2,089
LNKS-II 1 258 519
LNKS-III 1 1,525 1225

280,161 QN-RSQP 228 — 33,167
18,144 LNK 1 >500,000 —

(64 PEs) LNKS-I 1 29 4,327
LNKS-II 1 364 934
LNKS-III 1 1,913 1,938

557,693 QN-RSQP 232 — 53,592
28,440 LNK 1 >500,000 —

(128 PEs) LNKS-I 1 29 6,815
LNKS-II 1 603 1,623
LNKS-III 1 2,501 3,334

960,512 QN-RSQP 241 — 63,865
40,252 LNK 1 >500,000 —

(256 PEs) LNKS-I 1 32 8,857
LNKS-II 1 763 1,987
LNKS-III 1 2,830 3,735

The number of unpreconditioned KKT iterations illustrates the severe ill-conditioning of
the KKT matrix (even for a problem as simple as controlling a Poiseuille flow!). The compar-
ison between LNKS-I and QN-RSQP simply illustrates the better convergence properties of
a proper Newton as opposed to a quasi-Newton method. The comparison between LNKS-II
and LNKS-III reveals the significance of a good preconditioner for the reduced space. When
the 2-step preconditioner is used, LNKS runs approximately twice as fast as with no precon-
ditioning.

The scalability of LNKS is studied by tracking the execution time for LNKS as the
size of the problem and number of processors increase proportionately. The problem size
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per processor is held constant, and execution time increases from about 8 minutes for 16
processors (65,000 states, 7,000 decisions) to about 30 minutes for 256 processors (960,000
states, 40,252 decisions); one may conclude that the method is not scalable. However, a
glance at the KKT iterations column reveals that the number of optimization iterations when
using the LNKS-I variant (so that the effect of inexact forward problem solves is factored
out) is largely independent of problem size, and thus the algorithmic efficiency of the LNKS
should be very high. Furthermore, the Mflop rate drops (probably due to a poorer-quality
mesh partition) only slowly as the problem size increases, suggesting good implementation
efficiency. What, then, accounts for the increase in execution time?

Table 5.2 provides the answer. Following [23], overall parallel efficiency� (based on ex-

TABLE 5.2
Isogranular scalability results for the LNKS-I variant. The third and fourth columns give per processor maxi-

mum (across PEs) sustained Mflop/s, and average sustained Mflop/s. Comparison between these two columns is an
indication of load imbalance. Implementation efficiency (�i) is based on Mflop rate; optimization algorithmic effi-
ciency (�a) is based on number of optimization iterations; forward solver algorithmic efficiency (�f ) is the forward
problem efficiency (computed from Table 4.1); overall efficiency (�) is based on execution time; (�0) is an estimate
of the overall efficiency given by�0 = �f � �i � �a.

PEs max Mflop/s/PE Mflop/s/PE �i �a �f � �0

16 76.5 52.0 1.00 1.00 1.00 1.00 1.00
32 74.8 51.1 0.98 1.04 0.71 0.84 0.72
64 74.9 49.2 0.96 0.93 0.48 0.41 0.43
128 71.2 47.8 0.91 0.93 0.31 0.26 0.26
256 69.8 45.1 0.87 0.84 0.26 0.18 0.19

ecution time) has been decomposed into an implementation efficiency�i (based on Mflop/s)
and an algorithmic efficiency for the optimization algorithm�a (based on the number of op-
timization iterations) and the forward solver�f (computed from Table 4.1). Whereas the
optimization algorithm and the implementation are reasonably scalable (84% and 87% effi-
ciency over a 16-fold increase in the number of processors), the forward solver’s parallel ef-
ficiency drops to near 26% for the largest problem size. The last column, (�0), gives what the
overall efficiency would be had we not used the time measurement but instead had factored
in the forward solver efficiency. The match between the last two columns makes apparent
that the overall efficiency of the algorithm greatly depends upon the forward solver. The
parallel inefficiency of the forward preconditioner can be addressed by switching to a more
scalable approximation than the one we are currently using (non-overlapping local ILU(0)
block-Jacobi). With a better forward preconditioner, we anticipate good overall scalability.

Timings and flop measurements were performed by using PETSc logging routines which
were validated with native performance analyzers on the T3E and Origin platforms. At first
glance CPU performance appears to be mediocre—less than 10% of the peak machine per-
formance. Recall however, that unstructured grid computations are not cache coherent and
therefore the bottleneck is in memory bandwidth and not in the CPU flop rate. In fact, our
implementation has achieved CPU efficiencies on par with a PETSc-based, unstructured grid
CFD code that was awarded the Gordon Bell prize in Supercomputing’99 [2].

Remark 1. We do not advocate the use of exact solves within the LNKS context. If one
is willing to afford exact solves, then one should iterate in the reduced space. If both exact
forward solves and Hessian terms are retained then4 solves per KKT-Krylov iteration are
required; iterating with N-RSQP requires only2 solves perWz-Krylov iteration. Even when
the Hessian terms are dropped (which is equivalent to retaining onlygz on the right-hand
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side of the decision equation (in Algorithm 2) it seems natural to use CG in the reduced space
(with a good preconditioner).

An order-of-magnitude argument can be used to illustrate why it should be advantageous
to stay in the full space when approximate solves are used. If the condition number of the
preconditioned reduced Hessian is given by

p
�m=�1 and the condition number of the pre-

conditioned forward operator is given by
p
�n=�1, the complexity for N-RSQP (Algorithm

2) isO(
p
�m=�1 �

p
�n=�1 �N). Assuming effective reduced Hessian and forward prob-

lem preconditioners, then the expected complexity for the solution of the KKT system (3.9) is
O(
p
max(�m; �n)=min(�1; �1)�N). If, in addition, the spectra of the preconditioned for-

ward and reduced Hessian operators overlap, then a reduced method has a condition number
which is approximately the square of the KKT system’s condition number.

Remark 2. We have tested the four different preconditioners for the LNKS algorithm.
Here we report results only for preconditionersP2 and ~P2. In our numerical experiments
preconditionersP4 andP2 took approximately the same number of KKT iterations to con-
verge. SinceP2 requires two solves fewer, it is twice as fast asP4 and for this reason we
report results only forP2. The same is true when comparing the preconditioners~P4 and ~P2

although the differences are less pronounced.
Flow around a cylinder. We performed additional computational experiments on cylin-

der external flow problem in order to test the LNKS algorithm. Figure 5.1 compares between
the controlled and the uncontrolled flow. The optimizer drove the downstream surface of the
cylinder to become a sink flow. As we can see in Fig 5.1 the locally controlled flow (around
the cylinder) appears to be more irregular than the uncontrolled one. Yet, the overall dissi-
pation is reduced. The results can be explained if we consider the dissipation function as the
sum along both the upstream and the downstream part of the duct. Flow suction results in
reduced mass flow (i.e. velocity) on the downstream portion of the duct and thus minimizing
dissipation losses.

Table 5.3 presents the scalability results for this problem. We observe similar perfor-
mance to the Poiseuille flow. The use of a Newton method accelerates the algorithm by a fac-
tor of two. Switching to inexact solves makes the method another 6 (or more) times faster. For
the 256 processor problem (941,685 states and 11,817 controls) the quasi-Newton required
38 hours, whereas the LNKS algorithm with the~P2 preconditioner required only 3 hours, al-
most 13 times faster. Notice that the fastest LNKS variant for this example (LNKS-III) does
not precondition in the reduced space. Although LNKS-II takes fewer iterations to converge,
the cost per KKT Krylov iteration is increased due to load imbalance—the Poiseuille flow
problem has more uniform distribution of decision variables across processors.

The CPU performance has dropped compared to the Poiseuille flow results, but not sig-
nificantly, as we can see in Table 5.4. The overall efficiency appears to be governed by the
forward problem preconditioner, however there is a slight disagreement between the last two
columns. An explanation can be found in�a which seems to drop faster than in the Poiseuille
flow case. The reason is that the faster LNKS variant for the cylinder example does not
precondition in the reduced space.

Our performance analyses are based on isogranular scaling. More common are fixed-
problem size scalability analyses. Although these kinds of tests are very good indicators of
the performance of an algorithm, they do not capture the important issue of mesh dependence
of iterations. For completeness, we present a standard fixed-problem-size scalability analysis
for the (117,048 states, 2,925 controls) cylinder problem for 4 different partitions and across
two different platforms: a T3E-900 and an Origin 2000. Our experiments showed Origin to
have superior performance, which is surprising since the T3E has a much faster interconnect.
The fact that the Origin has bigger cache size is the likely reason. Another observation is
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(a) (b)

(c) (d)

(e) (f)

FIG. 5.1. This is an example of a PDE-constrained optimal control problem. The constraints are the steady
incompressible Stokes equations; they model a viscous flow around a cylinder. The objective is to minimize the
energy dissipation. The controls are injection points (velocity Dirichlet boundary conditions) on the downstream
portion of the cylinder surface. The left column is the uncontrolled flow and the right column is the controlled one.
Images (a) and (b) depict a color map of the velocity norm on a cross section at the middle of the duct. Comparing
image (a) with (b) notice the lighter blue (or grey in bw) throughout the downstream region. This indicates smaller
velocities and thus reduced dissipation. Images (c) and (d) show a local snapshot of the flow around the cylinder.
The suction Dirichlet conditions (set by the optimizer) are clearly visible. Finally, the last two images show stream
tubes of the flow around the cylinder. Although the flow appears to be more irregular (locally) for the controlled flow,
overall the dissipation is minimized.

that the effectiveness of the LNKS algorithm degrades with the number of processors. The
overall efficiency drops to 71% for the T3E and to 83% for the Origin. The algorithmic
efficiency remains constant but part of it is hidden in� because the time per preconditioner
application increases. Recall that the condition number of a linear system preconditioned
with block-Jacobi is approximatelyO((pn)1=6) and therefore the flop count increases with
the number of processorsp. Our forward solver implementation uses such a preconditioner
and this is why we observe the decrease in overall efficiency. We have not conducted any
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TABLE 5.3
Performance and scalability of the LNKS algorithm for the control of a 3D flow around a cylinder. Here

the objective function is the energy dissipation and the constraints are Stokes equations. (QN-RSQP) is quasi-
Newton reduced-space SQP; (LNK ) is the the full-space Lagrange-Newton-Krylov method with no preconditioning;
(LNKS-I ) requires two exact solves per Krylov step combined with the 2-step stationary preconditioner for the
reduced Hessian; in (LNKS-II ) the exact solves have been replaced by approximate solves; (LNKS-III ) is the same
as LNKS-II but the reduced Hessian is not preconditioned; (time) is wall-clock time in seconds on a T3E-900. The
reduced gradient and the constraints were converged to a relative norm of1� 10

�6.

states
controls

method N or QN iter KKT iter time

50,020 QN-RSQP 116 — 9,320
1,653 LNK 1 390,456 37,670

(16 PEs) LNKS-I 1 41 6.833
LNKS-II 1 1,101 3,100
LNKS-III 1 1,312 1,812

117,048 QN-RSQP 120 — 27,669
2,925 LNK 1 >500,000 —

(32 PEs) LNKS-I 1 39 10,780
LNKS-II 1 1,522 5,180
LNKS-III 1 1,731 2,364

389,440 QN-RSQP 128 — 92,874
6,549 LNK 1 > 500,000 —

(64 PEs) LNKS-I 1 50 34,281
LNKS-II 1 2,987 18,451
LNKS-III 1 3,637 15,132

615,981 QN-RSQP 132 — 113,676
8,901 LNK 1 > 500,000 —

(128 PEs) LNKS-I 1 53 54,678
LNKS-II 1 3,150 17,144
LNKS-III 1 4,235 9,325

941,685 QN-RSQP 138 — 140,085
11,817 LNK 1 > 500,000 —

(256 PEs) LNKS-I 1 52 59,912
LNKS-II 1 4,585 20,384
LNKS-III 1 5,687 11,028

measurements on latency and bandwidth dependencies on the number of processors. The
inferior performance of the T3E is somewhat surprising but this would probably change had
we increased the number of processors further9.

5.1. LNKS parallel scalability. How scalable is the method, with respect to increasing
problem size and number of processors? For scalability, we require that the work increases
near-linearly with problem size (algorithmic scalability) and that it parallelizes well (parallel
scalability). Let us examine the major components:
Formation of the KKT matrix–vector product. For PDE-constrained optimization, the
Hessian of the Lagrangian function and the Jacobian of the constraints are usually sparse with
structure dictated by the mesh (particularly when the decision variables are mesh-related).

9At the time these experiments were performed, the 256 partition on the Origin was not available.
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TABLE 5.4
Isogranular scalability results for the LNKS-III variant (Preconditioner given by (3.10)) with no precondition-

ing for the reduced Hessian. The Mflop rates given are sustained Mflop per processor; the first column is maximum
across processors and the second column lists the average rate. The difference is an indication of imbalance. Effi-
ciency (�i) is based on Mflop rate; algorithmic efficiency (�a) is based on number of optimization iterations; forward
solver algorithmic efficiency (�f ) is the forward problem efficiency (computed from Table 4.1); overall efficiency (�)
is based on execution time; (�0) is an estimate of the overall efficiency given by�0 = �f � �i � �a.

PEs max Mflop/s/PE Mflop/s/PE �i �a �f � �0

16 69.1 50.9 1.00 1.00 1.00 1.00 1.00
32 69.2 48.5 0.94 1.05 0.69 0.64 0.67
64 73.9 45.7 0.89 0.82 0.62 0.20 0.45
128 65.6 42.9 0.84 0.77 0.29 0.13 0.18
256 66.4 39.3 0.77 0.78 0.19 0.12 0.11

TABLE 5.5
Fixed-problem-size scalability analysis for the 117,028 state variables problem. The experiments were per-

formed on a SGI Origin 2000 and on a T3E-900. The 450 MHz Compaq/Alpha 21164 processor on T3E is equipped
with 8 KB L1 cache and 96 KB L2 cache. The Origin uses the 250 MHz MIPS R10000 processor with 32 KB L1 and
4MB L2 cache. Bisection bandwidth is 128GB/s for the T3E and 20.5 GB/s for the Origin (128 PEs).

CRAY T3E-900

procs agr Gflop/s its time speedup �i �a �

16 0.81 38 18,713 1.00 1.00 1.00 1.00
32 1.55 39 10,170 1.84 0.95 0.97 0.92
64 3 14 40 5,985 3.13 0.97 0.95 0.92
128 4.86 40 3,294 5.68 0.75 0.95 0.71

SGI ORIGIN 2000

procs agr Gflop/s its time speedup �i �a �

16 1.09 37 13,512 1.00 1.00 1.00 1.00
32 2.13 40 6,188 1.84 0.96 0.93 0.89
64 6.08 38 3,141 3.13 0.96 0.97 0.93
128 7.90 39 1,402 5.68 0.87 0.95 0.83

Thus, formation of the matrix-vector product at each QMR iteration is linear in both state and
decision variables, and parallelizes well due to a high computation-to-communication ratio
and minimal sequential bottlenecks.
Application of the QN-RSQP preconditioner. The main work involved is application of
the state Jacobian preconditioner~As and its transpose, and “inversion” of an approxima-
tion to the reduced Hessian,Bz . We can often make use of scalable, parallel state Jacobian
preconditioners that requiresO(n) work to apply (as in various domain decomposition pre-
conditioners for elliptic problems). The stationary preconditioner for the reduced Hessian is
also scalable since it only involves matrix-vector multiplications. Furthermore, whenBz is
based on a limited-memory quasi-Newton update or the 2-step stationary preconditioner (as
in our implementation) the work is also linear in the decision variables. Despite the need for
inner work, quasi-Newton updates and applications to a vector are easily parallelized. The
same is true for the stationary preconditioner. Therefore, we conclude that application of the
QN-RSQP preconditioner requires linear work and parallelizes well.
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The Krylov (inner) iteration. As argued above, with an “optimal” state preconditioner and
a goodBz approximation, we can anticipate that the number of inner (Krylov) iterations will
be relatively insensitive to the problem size.
The Lagrange-Newton (outer) iteration. The number of outer (Newton) iterations is often
independent of problem size for PDE-type problems, and the PDE-constrained optimization
problems we have solved exhibit this type of behavior as well.

This combination of linear work per Krylov iteration, weak dependence of Krylov iter-
ations on problem size, and independence of Lagrange-Newton iterations on problem size
suggest a method that scales well with increasing problem size and number of processors.

6. Conclusions.The basic new component LNKS brings to PDE-constrained optimiza-
tion is the use of QN-RSQP not as a driver but rather as a preconditioner for the KKT system.
We advocate that in order to achieve algorithmic scalability, a proper Newton method is nec-
essary. The method requires second derivatives (only matrix-vector multiplications) and the
adjoint operator of the forward problem.The most important result is that we have presented
a methodology by which the problem of devising a good preconditioner for the KKT system
is reduced to that of finding a good preconditioner for the PDE operator.

The problems we have chosen to investigate are relatively simple, yet provide a reason-
able testbed for algorithmic tuning and experimentation. The results obtained thus far are very
encouraging: the full space Newton-Krylov optimization method with reduced-space precon-
ditioning is by a factor of 10–30 faster than current reduced space methods. We have no
reason to believe that other problems should behave very differently. Moreover, the method
can be parallelized efficiently, and algorithmic efficiency can be achieved provided a good
forward preconditioner is available. Scalability then results from the combination of these
two.

In the companion paper we extend our discussion to nonlinear constraints and we exam-
ine issues as robustness and globalization of the LNKS method.
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useful comments.

REFERENCES
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