A Matter of Degree: Improved Approximation Algorithms
for Degree-Bounded Minimum Spanning Trees

*

J. Konemann
Carnegie Mellon University
GSIA
Pittsburgh, PA 15213

jochen@cmu.edu

ABSTRACT

In this paper, we present a new bicriteria approximation
algorithm for the degree-bounded minimum spanning tree
problem. In this problem, we are given an undirected graph,
a nonnegative cost function on the edges, and a positive in-
teger B*, and the goal is to find a minimum cost spanning
tree T' with maximum degree at most B*. In an n-node
graph, our algorithm finds a spanning tree with maximum
degree O(B™ 4 logn) and cost O(opt g.) where opt 5. is
the minimum cost of any spanning whose maximum degree
is at most B*. Our algorithm uses ideas from Lagrangean
duality in a novel way. We show how a set of optimum La-
grangean multipliers yields bounds on both the degree and
the cost of the computed solution.

1. INTRODUCTION

1.1 Motivation and formulation

In the design of computer networks a fundamental problem
is that of transmitting a single information packet from a
given source-host to a set of recipient-hosts. This problem
is widely known as the broadcast or multicast problem, de-
pending on whether we want to transmit the packet to all
other hosts or to a specific subset of recipients. Both prob-
lems have been widely studied [4; 6; 17]. In particular, it is
believed that the multicast problem will play an increasingly
important role in data networks.

A naive solution to the multicast problem would be to im-
plement it as a series of unicasts. In other words, the source
sends a single packet to every recipient host. The routing is
done independently for each of the unicasts. However, the

*Research supported in part by NSF CAREER grant 96-
25279

TResearch supported in part by NSF CAREER grant 96-
25279

R. Ravi f
Carnegie Mellon University
GSIA
Pittsburgh, PA 15213

ravi@cmu.edu

cost of this approach in terms of bandwidth consumption be-
comes unacceptable if the number of hosts in the multicast
group grows.

Graph theoretic ideas have turned out to be essential in the
design of efficient network routing protocols. A physical net-
work can be modeled as a complete graph where each host is
associated with a node and an edge uv represents the virtual
link between the corresponding hosts. Usually, edges of that
graph are annotated by the transmission delay of the corre-
sponding virtual link. A standard solution to broadcasting
and multicasting problems is then to send packets along the
edges of a minimum spanning tree rooted at the source node
[17]. Every internal node duplicates the incoming message
and sends it to its children.

However, a spanning tree might have a high fan-out out at
certain internal nodes. Switches in point-to-point networks
may vary in their ability to support multicasting. That is,
some routers may not support multicasting at all and others
may only support a limited number of copies they can make
of an incoming packet [18]. Bauer and Varma [1] show that
it is natural to model switch capabilities by node degrees in
graphs.

The preceding discussion suggests that a solution to the mul-
ticasting problem should minimize the total transmission de-
lay and the maximum degree of a vertex in the computed
solution. Traditional approaches for this kind of bicriteria
problem often compute the minimum solution under a linear
combination of the two cost measures [2]. However, in the
case of very disparate objectives these techniques do usually
not produce useful solutions.

In this paper, we address a natural budgeted version of the
degree-bounded minimum spanning tree problem. Here, we
are given an undirected graph G = (V, E), a cost function
c: E = IRY and a positive integer B > 2. We would like to
find a spanning tree T' of maximum vertex degree at most
B and minimum cost. This formulation was first introduced
in [16] and can be modeled by the following integer linear
program.

opty = min Z CeTe (IP)
ecE
st z(6(v))<B YveV (1)
xr € SPs

Here, 6(v) denotes the set of all edges of E that are incident
to v and SPsis the spanning tree polyhedron, that is, the

convex hull of edge-incidence vectors of spanning trees of G.

1.2 Previous work and our result

Ravi et al. [16] showed how to compute a spanning tree
T of maximum degree O(Blog (%)) and total cost at most
O(log n) opt ;. They generalize their ideas to Steiner trees,
generalized Steiner forests and the node-weighted case.
Another result that is related to our work is given in a paper
by Khuller, Raghavachari and Young [12]. The authors show
how to compute a spanning tree of n points in the plane that
has degree at most 3 (4) and weight at most 1.5 (1.25) that
of a minimum weight spanning tree (without any degree
constraints).

While the approximation factor of O(log n) on the cost of the
solution cannot be improved substantially (via reductions
from the set covering problem [13]) in the node-weighted
case, improvements for the edge-weighted case were left open
n [16]. Our main result is such an improvement and is stated
in the following theorem. We denote the degree of a node v
in tree T' by 5T(U). Let the maximum node degree in a tree

T be denoted by A(T).

THEOREM 1. There is a polynomial-time approximation
algorithm that, given a graph G = (V, E), a nonnegative cost
function ¢ : £ — IRT, a constant B* > 2 and a parameter
w > 0, computes a spanning tree T' such that

1. A(T) < vB* +logyn for any arbitrary constant b > 1
andv > (1+ w)b

2. ¢(T)< (14+1/w) opt ..

For instance, choosing w = 1—e¢ and b = 2 would yield a tree
with degree at most 4B* +log, n and cost at most 2 opt ..

1.3 Technique: Lagrangean Duality

Our algorithm builds on the Lagrangean dual of (IP) re-
sulting from dualizing the degree constraints. We denote its
value by opt; p(p) -

max min {c(T)+ > A(7(v) — B)}.

(LD(B))
A>0 Te€SPy s

For any fixed A > 0, an optimum integral solution to IP is
a feasible candidate for attaining the inner minimum above.
Since the maximum degree of such a solution is at most B
and A > 0, it follows that opt; p(m) is a lower bound on

optyg.
PROPOSITION 1. [14] opt; (5 < opty

The interesting fact is that opt, () can be computed in

polynomial time [14]. The result is a vector AP of optimum
Lagrangean multipliers on the nodes and a set of optimum
trees OF, all of which achieve the inner minimum for this
set of multipliers. In other words, every tree 7% ¢ OF
minimizes the following objective:

o(TP)+ Y A\ (6r5(v) — B).

veEV

Given AP, the task of finding a tree T' that minimizes the
above objective function is called the Lagrangean subprob-

lem of LD(B).

Using ckB (uv) = c(uv) + AZ + AP the last expression can be
restated as

NP = BY AP (2)

veEV

Notice that for a given AP and B, the second term is a
constant. Hence, any minimum spanning tree of GG under
cost ckB7 denoted by MST(G, cXB)7 is a solution for T

An important feature of our algorithm is to relax the degree
constraints slightly from B to (14 w)B for some fixed w > 0
and show that there is a tree T € OU'T¥)F that satisfies the
conditions of Theorem 1.

This paper is organized as follows: in Section 2 we review
results on the related minimum-degree spanning tree prob-
lem. In particular, we present the fundamental ideas from
[5; 7]. In Section 3, we state our algorithm. Finally, we give
the analysis of our procedure in Section 4.

2. MINIMUM DEGREE SPANNING TREES

Related to the BMST problem is the problem of minimizing
the maximum degree of a spanning tree in some graph G
(MDST). This problem is NP-hard since the Hamiltonian
path problem is a special case. In fact, it is NP-complete to
decide for any £ > 2 whether G contains a spanning tree of
maximum degree k [8].

Firer and Raghavachari presented an approximation algo-
rithm with an additive performance guarantee of one [7]:
i.e., they describe a polynomial time algorithm that finds
a spanning tree T of G such that A(T) < A* + 1, where
A* denotes the minimum possible maximum degree over all
spanning trees. In the same paper the authors also give a lo-
cal search algorithm for the MDST problem. This approach
yields a tree with maximum degree at most bA* + log, n
for any constant & > 1 and is obviously worse than the
previously mentioned result. However, this latter technique
turns out to be useful for our algorithm. Finally, Fischer
noted that the local search algorithm can be adapted to find
a minimum-cost spanning tree of approximately minimum
maximum degree in an edge-weighted graph [5].

2.1 A local improvement algorithm

In this section, we explain the basic ideas from the local
search algorithm for the MDST problem. We state the al-
gorithm since we use it later. The procedure starts with a
spanning tree 7' and tries to improve it by swapping non-tree
edges against tree edges.

DEFINITION 1. Given a tree T' and a non-tree edge uv.
Let C(uv) be the unique cycle in TU{uv} and let wz € C(e).
We call the swap {uv, wz) an improvement for w if

max{dr(u),dr(v)} +1 < ér(w).

If an edge swap (uv,wz) is an improvement step for either
w or z then the mazimum degree of the nodes u,v, w and z
decreases as a result of the swap; We call such a swap simply
an tmprovement.

The algorithm in [7] performs improvement steps as long as
possible. In fact, it is not hard to see that starting with
an arbitrary tree, the number of possible improvements is
finite. We end up with a locally optimal tree.

DEFINITION 2. A tree T is called locally optimal (LOT)
tf no vertex degree can be decreased by applying an tmprove-
ment swap.

Computing a locally optimal tree might be too ambitious
a goal however. In fact, it is not known how to do this in
polynomial time. However, the analysis in [7] shows that it
is enough to compute a pseudo-optimal tree.

DEFINITION 3. A tree T' of mazimum degree A(T) is called
pseudo-optimal (POT) if for all vertices v with A(T) —
[log, n] < dr(v) < A(T), no improvement step for v is
applicable. Here b is an arbitrary constant bigger than one.

Fischer’s adaptation [5] of the algorithm from [7] computes
a minimum-cost spanning tree of approximately minimum
maximum degree. To obtain his algorithm we have to make
two small changes to the procedure from [7]. First, instead
of starting with an arbitrary spanning tree, we start with
a minimum-cost spanning tree. Second, an improvement
step must be cost neutral. That 1s, for an improvement
step {uv,wz) to be applicable we must have cuy = Cuwz.
Algorithm 1 states the procedure.

Algorithm 1 The algorithm PLocal computes a pseudo-
optimal tree.

1: Given: graph G = (V, F) and cost function ¢ : £ — IR*
T « MST(G,c)
while T is not pseudo optimal do
Identify cost neutral improvement {uv,wsz).
T+ T —wz+uv
end while

2.2 Analysis and running time

In what follows we highlight the major ideas from the analy-
sis from [7]. Let a set W C V be such that for a given graph
G = (V, E), the graph G[V — W] has ¢ connected compo-
nents. A spanning tree of G has to connect these ¢ compo-
nents and the nodes from W. We need exactly ¢t + |W| —1
edges going between the nodes of W and the ¢ connected
components to accomplish this. Each of these edges must
be incident a node from W. Hence averaging yields a lower

bound of (¢t + |W]| —1)/|W]| on the maximum degree A* of
T.

PROPOSITION 2. [7] Let W be a set of size w whose re-
moval splits G into t components. Then A* > [%] .

The set W bears witness to the fact that A* > [%] and
is therefore referred to as a witness set. The following easy
proposition will be used in the later analysis.

PROPOSITION 3. [7] For any constantb > 1 and a tree T,
let Sq be the set of nodes that have degree at least d in T
Then, there is a

de{Ar —[log,n]+1,...,Ar}
such that | Sq—1| < b|Sq].
The main theorem is the following.

THEOREM 2. [7] If T is a pseudo-optimal MWST, then
A7 < bA* + [log, n] for any constant b > 1. Moreover, a
pseudo-optimal MWST can be computed in polynomzeal time.

Proof: Given a constant b > 1, choose d as in Proposition
3. That is, we have |Sq—1| < b|S4|. Recall that Sq contains
the nodes of degree at least d in the tree 7.

Removing Sq from T leaves us with a forest F. By the
definition of Sg, we know that F' has at least

[Sald — 2(]Sal — 1)

trees. This is, since every node in Sq has degree at least d in
T and there are at most |Sq| — 1 edges going between nodes

of Sg4.

This means, that we need at least
|Sald = 2(|Sa] — 1) + |Sa| = 1

edges to connect up the trees of F' and the nodes of S4. By
the pseudo-optimality of 7', each these edges must be inci-
dent to some node in S¢—;. Hence, the minimum maximum
degree of any tree on F'U Sy 1s at least the average degree
it induces on a node of S4_1, viz.

|Sal(d —=1) +1
[Sa—1|

Using |S4| > |Sa—1]/b we derive

«_ d—1
A" > b
Using the range of d we obtain A(T) < bA* + [log, n].
For the running time, note that each improvement step can
be implemented in polynomial time. We need to bound the
number of iterations. The proof uses a potential function
argument. Define the potential of a vertex v as

P(v) =37

where T is the current tree. The total potential is the sum
over all vertex potentials, that is

(1) =) ().

veEV

Now, an improvement step in Algorithm 1 improves the de-
gree of a vertex v € Sg with ér(v) = d and d > A(T) —
[log, n] + 1. Hence, the reduction in the potential is going
to be at least

(3% +2.37%)—3.3"7 =2.3%72,

Using the range of d we can lower bound the right hand side
of the last equality by
A(T)
(=)
n

The potential ®(7") of the tree T' is at most n32(M) This
implies that the overall decrease of the potential due to the

improvement step is
(T
*(55)
n

In other words, we reduce the potential by at least a poly-
nomial factor in each iteration. In O(n2) iterations the re-
duction is by a constant factor. Hence, the algorithm needs
O(n®) improvement steps in total. |

3A(T) —log, n—1

3. THE BMST-ALGORITHM

In this section, we describe our algorithm for the BMST
problem. It uses the Lagrangean formulation LD(B) from
the introduction and Algorithm 1.

The input to our algorithm consists of a graph G, a non-

negative cost function ¢, a degree bound B* and a positive
constant w. Let B = (14 w)B™.

Algorithm 2 Our algorithm for the BMST problem

1: Given: graph G = (V, E), a cost function ¢ : E — IR™,
a degree bound B* > 2 and a parameter w > 0.

2: B+ (1+w)B*

3: AP « solve(LD(RB))

4: T « PLocal(G,ckB)

Since the optimum Lagrange multipliers and pseudo-optimal
MWSTs can be computed in polynomial time [7; 14], Algo-
rithm 2 runs in polynomial time. In the sequel we use @F to
denote the set of all optimum spanning trees. That is, OF
contains all minimum-weight spanning trees of G for cost

. B
function ¢* .

4. ANALYSIS

In this section we prove Theorem 1. First we show that
the cost ¢(T*) of our tree T is small. Then, we prove that
T% has low maximum degree in several steps. Our proofs
will make heavy use of techniques from Lagrangean duality
and of results on the spanning tree polyhedron from [3]. We
provide the details on demand.

4.1 The cost of 7

Recall that opt;pp < optp from Proposition 1. Unfor-
tunately, opt; B = OPtp is not true in general. There
might be a duagz’ty gap. However, it can be shown that
oPt; p(p) equals the optimum objective function value of
the relaxation of (IP). The proof is insightful. Hence we
present it here.

THEOREM 3. [14] opt;p(p) =min{c(T):T € SRy, Vv €
V:ér(v) < B}

Proof: We can restate (LD(B)) as the following linear pro-
gram in variables and A. Recall that we denote its maxi-
mum objective function value by oPt, p(p) -

max n (3)
st. n<e(T)= Y M(B-dr(v)) VT € Sk
veEV
A>0

The first block of constraints states that n is the cost of
any spanning tree T' of G with respect to the Lagrangean
function (2). The maximization objective of (3) forces n to
attain the best possible cost. Writing down the dual of the

last program yields

min ¢ Z arT) (4)
s.t. Z ar =1

Z ardr(v) < B Z ar=B YveV
Te SP4

Note that 7' = ZTG SP. a7l 1s a convex combination of
trees in SPz. Also, observe that ZTG SP, ardr(v) is pre-
cisely the degree d7/(v) of this fractional tree at node wv.
These observations yield the theorem. |
The theorem has a nice corollary that we use.

COROLLARY 1. There exists a convex combination T =
YoreoarT such that Vo €V 1 d5;(v) < B and A} > 0 only
Zf 5Tf (U) =B.

Proof: This follows from complementary slackness applied
to the optimum solutions of (3) and (4).
We now prove that ¢(7') is small.

LEMMA 1. For all trees T € OF we have o(T) < (14
1/w) opt 5..
Proof: Let AZ be the vector of optimal Lagrangean multipli-

ers for (LD(B)). Recall that OF is the set of minimum-cost

spanning trees under A and that B = (1+w)B*
The following inequality holds for every T € OF:

DA Gr(v) =BT < eo(T)+ Y A (8r(v) = B7)(5)

vEeEV vEV

IN

oPt 1 p(B¥)

In the first inequality we just added ¢(7'). Note, that the
right hand side of the first line is just the Lagrangean objec-
tive function (2) for B*. Recall that T is a minimum span-
ning tree with respect to A7 Moreover, AF is a feasible set
of multipliers for (LD(B*)). Hence, the second inequality
follows.

We also have

o(T) = (D) + Y N (r(v) = B)+) N (B" = dr(v))

vEeEV vEV

opt [p(pey t Z)‘vB(B* — b7(v))
veEV

IN

where the inequality follows from (5). Applying Proposition
1 and the fact that dr(v) > 1 for all v € V leads to

c(T) < opt 5. + B* Z)\vB.
veEV

In the remainder of this proof we will derive the inequality
B*Y ev AP < opt g./w. This yields the lemma. From
Corollary 1, we know that there is a convex combination

T = Z arT
TeOB

such that AZ > 0 only if 67, (v) = B.

We derive a new inequality by summing over all T € OF,
ar times the inequality (5) for each T. We obtain

Z ar (Z)\vB(‘sT(U)_B*)) < opt ;p(pe Z ar

TeoB veV TeoB
(6)

The right hand side is equivalent to opt LD(B*) because
ZTGOB at = 1. Reordering the left hand side yields

Z)\vB Z ardr(v) | — B*

vEV TeoB

Instead of summing over all v € V' it suffices to sum over v,
where A, > 0. For such v, we have

Z ardr(v) =B

TeoB

by Corollary 1. Using B = (1+w)B™ it follows that the left
hand side of (6) is equivalent to

wB* Y A

veEV

and this finishes the proof of the lemma. |
4.2 Background: Yet another MST algorithm

Before we present a proof for the upper bound on A(T%), we
have to discuss some results on the spanning tree polyhedron
from [3]. We give a complete description of the convex hull
of all spanning trees. Furthermore, we describe a dual based
procedure from [3] to compute those trees. Ideas from this
procedure will turn out to be useful in our later discussion.
A feasible partition of vertex set V is aset # = {V1,...,Vi}
such that the V; are subsets of V and pairwise disjoint.
Moreover, V. = Vi U ... UV, and the induced subgraphs
G[V;] are connected. Let G denote the (multi-) graph that
has one vertex for each V; and edge (V,‘7 V]) occurs with mul-
tiplicity [{(vs,v5) @ vi € Vi,v; € V;}|. In other words, Gr
results from G by contracting each of the V; to single nodes.
Define the rank T(ﬂ') of 7 as the number of nodes of G.. The
main result from [3] is stated in the following theorem.

THEOREM 4. [3] SB; = {z € IR™
r(m) —1 V feasible partitions w}.

: ZeeE(G,,) Te >

Using this formulation, the dual of the minimum spanning
tree problem is as follows.

max Z(T(ﬂ') — Dyx (DSP)
s.t Z Yr S Ce
me€B(Gr)
x>0

Intuitively, each partition 7= with y. > 0 loads the edges
which go between the components of 7, i.e. the edges from
E(Gr). In a feasible dual solution, we pack partitions so
that no edge is overloaded. By complementary slackness we
know that e € E only if ZmeeE(G,,) Yr = Ce, 1.e. € € T only
if the dual constraint for edge e is tight. We will call edges
e with tight corresponding dual constraints tight edges. The
following algorithm of Chopra [3] produces a pair (z,y) of

primal and dual solutions to the minimum spanning tree
problem at the same time.

Algorithm 3 A minimum spanning tree algorithm
1: k0, Go « G, cole) «cle) VeeE
2: repeat
3: k—k+1
4 er — argmineeE(Gk)ck(e)
5 cnra(e) = cu(e) ~ ca(en)
6: Gry1 < contract(Gy,ex)
7: until |V(Gk+1)| =1

The algorithm regards the current active node set V(Gy) as
a partition 7. Note, that a single node in V(G}) can stand
for a set in V since we perform a series of contractions in the
course of the algorithm. Notice, that step 4 does not neces-
sarily return a unique edge e. There may be more than one
edge e # e in E[G}] with ci(ex) = cx(e). The algorithm
then goes through a series of iterations contracting one of
these equivalent edges at a time (if it continues to cross the
current partition).

Let 7, denote the partition defined by G. Picking edge ex
with respect to the edge costs ci and subtracting its cost
from all other edge costs can be viewed as growing partition
7k by cr(ex). In iteration k edge e becomes tight. Hence,
the primal solution that Algorithm 3 computes is T' = {e :
1 <k <n—1}. The dual solution computed by Algorithm

3 is
_ [exlen)
yﬂ' - { 0

Observe that there may be tight non-tree edges. A tight edge
e ¢ T forms a unique cycle C(e) in T There is another edge
e’ € C(e) that became tight at the same time as e. Hence,
c(e') = ¢(e) and T'— €' + € is also a minimum spanning tree.
We say e is swappable against e’ in T

Finally, observe that we can use the latter dual to reformu-

late (LD(B)).

nay > (r(m) = Ly=— Y \B

max max
T veEV

s.t. Z Yr < Cup + Au + Ay Yuv € F
muvEE(Gx)

T = 7k
otherwise.

(LD'(B))

y=>0

In the sequel, we use the abbreviation

z(Ay) = Z(T(ﬂ') — Dy~ — Z Ay B.

T veEV

4.3 The Maximum Degree of 7¢: Overview
The overview of the proof is as follows: We show, that the
existence of a high-degree vertex leads to an improvement of
the Lagrangean dual solution. However, we started off with
an optimum Lagrangean solution. Hence we have derived a
contradiction.

LEMMA 2. Aga < vB* 4 [log, n] for constants v, b and
w such that v > (1 +w)b and b > 1.

Proof: Assume for the sake of contradiction that Aza >
vB* + [log, n]. Again, let Sy denote the set of nodes that

has degree at least d in T. Then, choose a d € {Ara —
[log, n],...,Ara} such that |Sq—1| < b|Sa| (see Proposi-
tion 3). Also, assume that we are given the optimum dual
solution (A®,yF) for (LD'(B)). The idea of the following
proof is to show that we can obtain a new feasible solution
(X, y) from (AZ, y®) such that

z(A,y) > z()\B, yB)

which would contradict the optimality of (A%, y%).

Figure 1(a) shows the basic idea of the proof: By increasing
the A values of high degree nodes from 5S4, we make the cost
cfw(: Cuv + Au + Av) of the edges uv incident to S4 nodes
higher. For the sake of simplicity, assume that S¢ = {v}. In
terms of the dual solution, by increasing A, by €, we create
some slack in the edges incident to v. This allows further
growth of the partition # = {{v},T1,... ,Tx}. The rank of
this partition is k 4+ 1. Increasing the A value of node v by €
decreases z(A,y) by eB = ¢(1 + w)B*. However, we should
also be able to increase yr by €. This would yield an increase
in z(A,y) of e(r(m) — 1) = ek. We show later that by our
initial assumption that Are« > vB* 4 [log, n] and by the
choice of d, we can choose k to satisfy

k>(1+w)B".

This leads to a net-increase in the dual of e(k—(14+w)B*) >
0, and hence to a better dual solution. That is a contradic-
tion. The above discussion is meant to illustrate the proof
idea and is informal and oversimplifying.

4.4 The Maximum Degree of 7¢: Details

Call the tree edges p1, ... ,pr that are incident to Sq nodes

peer edges and assume A () <...< A (px). Let Tj be
the component of T that is connected to an Syq node by
edge p;. Observe, that 7 and 7; might be identical even
for ¢ # 3. Also, T} might be empty for an edge p; that goes
between two nodes in Sq. Now, let

\ = A, +e v € Sa—1
YTl A\B otherwise
for a small constant € > 0.
Call the non-tree edges e = uv between the components
Tv, ..., T, with
B A
> v =)

me€E(m)

cross edges. Note that the latter equality can only hold
for u,v & Sq—1 since we increased the A-values of nodes
in Sq—1. Hence cross edges are tight non-tree edges that
are not incident to Sgq—1 nodes. Let R = {ri,...,ri} be

all cross edges such that ckB(rl) < ... < ckB(m). Why
do we consider those edges? The simplified explanation of
the proof idea from above increases the dual variable corre-
sponding to partition = = {{v},T1,...,Tx}. However, this
might not be possible! There may be cross edges linking dif-
ferent subtrees T;. Increasing yZ would yield an infeasible
dual solution, that is 3~ .y > c(e) for such cross edges
(see figure 1(b)). Thus, the final version of the dual update
hinted at in the proof idea will be more intricate.

Fach cross edge r has a set of associated peer edges

P(r)y={e €C(r) :e =p; for somel < i<k}

where C(r) denotes the unique cycle in T* U {r}. We also
define sets R(p) for each peer edge p:

R(p)={reR:pe P(r)}.

In other words, R(p) contains all cross edges r such that
p € C(r). Look at Figure 2 for an example.

PRrROPOSITION 4. Letr be a cross edge in a pseudo-optimal
tree. We must have

for all p € P(r).

Proof: By definition, a cross edge is not incident to an Sq—1

node. Hence, A (r) < A (p) would contradict the pseudo-
optimality of our tree T |

Alternatively, we must have o (p) < o (r) for all r €
R(p). The last proposition has one important corollary.

COROLLARY 2. For each cross edge r, there is a partition
7 such that

1. r € E[x]
2. P(r)yNE[x]=0
and yZ > 0.

4.5 Simplifyingassumptionsand consequences

For now, assume that
[A1] No two nodes in Sg are neighbors in T

[A2] Peer edges have pairwise different costs with respect
to ckB
We relax these assumptions later but this simplifies the dis-
cussion for now. Note, that this implies that none of the T}
components are empty.

For each edge p; we identify two partitions =
that

1

5 and 7r]2 such

. 7r]1 is the partition of lowest rank with p; € E(ﬂ']l) and
yo >0
7

e 7 is the partition of highest rank with p; ¢ E(#7) and
yos >0
7

The two assumptions stated above and Corollary 2 ensure
that 7r]1 and 7r]2 are indeed well defined (e.g., if we don’t

require [A1] we might have one partition for 2 different nodes
from Sq).

If we think of y® as being generated by Algorithm 3 then
7r]1 corresponds to the partition just before edge p; has been
contracted and 7r]2 is the partition just after the contraction.
Recall, that in an iteration of algorithm 3, there can be many
equivalent edges in a contraction step. The processing order
of these edges, however, is arbitrary.

The following proposition is crucial for the proof.

PROPOSITION 5. Suppose that fore € E and 1 < 53 <k
we have that

e € E[r}] and e g E[x2]. (7)
Then, the following holds

€

V, s
e >

(a)

€

e/ \‘:\
: e >
(b)

Figure 1: (a) We introduce some eztra space in the edges incident to high degree nodes. (b) The dashed lines represent cross
edges. Their tightness keeps us from increasing y~ for # = {{v}, T1,... , Tx}.

Figure 2: Each cross edge r has a set of associated peer edges P(r) (here: {pi,...

i=1,...,8.

1. V partitions © with r(7w) < 7“(71']2) and yZ > 0 we have
ed Fr

2. Y partitions = with r(x) > T(ﬂ']l) and yZ > 0 we have
ec bB,.

Proof: To see this we can think of y® as being generated by
Algorithm 3. In the construction of y® Algorithm 3 went
through a series of partitions

V=m,...,7n (8)

such that r(m) = r(mip1)+1forall 1 <7 < n-—1, ie
the above sequence is monotone with respect to the rank
function r.

Also, for all = with yZ > 0 there exists a a 1 < § < n such
that # = w;. Let 7r]1 = 7, and 7r]2 = 7.

The fact that e € E(7}) but e ¢ E(7;) shows that edge e
has been contracted in the process of moving from partition
7r]1 to 7r]2. It follows from the description of Algorithm 3 that
e€m;forall 1 <j<sandthat e g 7, forall t < 3 < n.
It follows from the rank-monotonicity of the sequence (8)
that a partition 7= with y™ > 0 and r(7) < 7“(71']2) corresponds

,ps} C P(r)). Similarly, r € R(p;) for

to a partition 7; with ¢ < 3y < n. Hence we have e € Er.
Similarly a partition 7 with y2 > 0 and r(x) > T(ﬂ']l) must
correspond to 7; with 1 < 57 < s. Thus we have that e € Er;.

|

The last proposition has two important corollaries.

COROLLARY 3. Given an edge e € E. Under assumption
[A1] we can have

ecFE . andeg F o
7 7
for at most one 1 < 3 <k.

Proof: Suppose we have e € F and 1 < 5 < k such that
e€FE_ 1 and e¢g E 2.
7 7

It follows from assumption [A1] and our choice of 7r]1 and 7r]2

that there cannot exist 1 <1 < k,l # j with
r(m)) < r(ml) <r(x))
or

T(ﬂ']l) < r(7r12) < 7“(71']2).

That is, we have one of the two following cases:

Lor(al) < r(x5)

2 r(r) < r(e2).
In case 1, we have that both r(#{) and r(#7) have rank at

most r(x3). It follows from Proposition 5 that e g E[n}]
and e € E[x?]. Case 2 can be proven similarly. |

COROLLARY 4. For all1 < 3 <k a cross edger € R is
either in both E(ﬂ']l) and E(ﬂ'?) or in neither one.

Proof: Assume for the sake of contradiction that there is a
1 <3< kandr e R such that r € E(r}) and r € E(x?)
for some j. By the definition of 7r we know that no = exists
such that 7“(71']2) <r(m) <r(m) and yZ > 0.

From Proposition 5, we know that for all partitions = with
yZ > 0 and r(%) S r(w3) we must have that r ¢ E, and
p;j & Ex. We also know that for all 7 such that r(7) > r(x})
with 2 > 0 it must be true that pj,r € Er. Intuitively,
this means that the edges r and p; are contained in exactly

the same partitions. But this means that ckB(r) = (pj)-
However, from the fact that r ¢ E[r}], we know that p; €
P(r). This contradicts Proposition 4. |
Observe that p; € E[x}] but p; & E[x;]. Thus, we have

r(mh) = r(72) > 1. (9)
Now, let

. . B .
€= mm{]=1l1,l.r.l,k yﬂ]g, e:1T5161r>10 s.} (10)

where s. is the slack of edge e with respect to ¢ is defined
as follows:
Se = Z yTr . (11)
me€E(m)

4.6 A revised dual solution

It remains to define the new dual solution:

B 1 .

y%—l—e 7r_7r]2f0r some j

Yr = y%—e 7 =, for some j
Y : otherwise.

We first prove feasibility of the new solution.

CLAM 1. For all edgese € E(G) : ZmeeE(ﬁ) yr < cMe).

Proof: We prove the claim using two cases: either eNSq_1 =
B or en Sq_1 # 0. We split the first case into 2 sub cases
according to whether e is a cross edge or not.

la eNSqg—1 = 0 and e is not a cross edge. Suppose, for all
j, either e € F(r}) and e € E(n2) or e € F(w}) and
e & E(r7). In that case, the e increase in the first
partition 1s canceled out exactly by the e decrease in
the second one and we have

S our=) ur (12)

me€E(m) e€E(m)

The claim clearly holds. On the other hand, assume
e € E(n}) but e ¢ E(x3) for some j. We know from

Corollary 3 that this can happen for at most one such
3

Since e is not a cross edge we know that e is non-tight,
i.e. s¢ > 0. Now,

Zyw=e+zyf

me€E(m) e€E(m)

S€+ Z yTr

e€E(m)

= ¢ (e).
The inequality follows from our choice of € (see 10) and
the last equality follows from (11). Since e N Sq = 0,
2B (€) = ¢*(e) and the claim follows.

IN

we know that ¢

1b eNSq—1 =0 and e is a cross edge. By Corollary 4 we
know that for all 1 < j < k either e is in both E(7})
and E(n;

%) or in none of them. Hence the argument
from (12) applies also here.

2 eNSq_1 # 0. In this case it might be the case that e €
E(x}) but e g€ E(r}) for exactly one j (see Corollary

3). That is
B
Z Yr =€+ Z yr =l +e<ce).
me€E(m) e€E(m)

The last equality follows from the fact that we have
added € to)\vB forall v € Sq_1.

This finishes the proof of the claim. |
We now compute z(y, A) and show that we can choose v such
that it is bigger than ,z(yB7)\B). It follows from our previous
discussion and from the definition of 7r]1 and 7r]2 that

dy D) = D) - Dy =B Y A

™ vEeEV

—BZ)\B

™ vEeEV

eZ(r(ﬂ]l) — 7“(71']2)) —eB|Sa-1] (13)

(" A7)+ elk - B|Sai) (14)

v

where k i1s the number of peer edges. We have to choose
k > B|Si—1|. How large is k7 Since, by our assumption
[A1], Sq is an independent set in T and by our choice of d,
each node v € S4 has degree at least ¥B*, we know that

k > vB*|S4. (15)
We also know that |Sq| > |Sa—1|/b. That is, we have to

choose v such that
w[Sa—1]
b

which is equivalent to

vB* > B|Sa—1| = (1 + w)B*|Sa-1|

> (14 w)b.
Hence, choosing v > (1 4+ w)b suffices.
4.7 Taking care of the assumptions
It remains to relax the two assumptions [A1] and [A2]. First,

we relax [Al].Assume we have u, v € Sq such that (u,v) €
E(T*). The problem in the above analysis is equation (15).

We are not any longer able to argue that k > B|Sq|. How-
ever, note that ck(uv) = CZ\UB + 2¢. The idea then is to use
the extra ¢ to compensate for the decrease in k by one.

In fact, let K1,K2 be a partition of {1,...,k} such that
j € K1 iff p; has exactly one endpoint from S4. We redefine
y in the following way

yg—l—e ﬂ:ﬂ];,jEKl
y%—e ﬂ:ﬂ]l,JEKl

Yr = y%—l—Ze ﬂ:ﬂ%7JEK2
Yy — 2€ T=m;,3 €Kz
yZ : otherwise.

For Claim 1 to go through we need to replace the expression
in (10) by
min{minjzl,... k yf27 mine:se>0 Se}
J
2

Finally, in (13), we can replace 6Zf=1(7“(71']1) — 7“(71']2)) by

ey (r(m) =r(75) +2¢ Y (r(m)) —r(x)).
JEK, JEKS
Inequality (14) still holds because |K1| 4 2|Kz| = k.
Now we relax the second assumption, [A2]. Suppose we
allow peer edges of the same weight. Let Pi,..., Py be a
partition of {1,...,k} such that

€ =

. B B
ps,pi € Ps iff * (py) =ct (pi)

and let ¢*” (Py) be the cost of the edges from P;. Intuitively,
each part P; collects all edges in the spanning tree T that

are incident to nodes of S4 and that have weight ckB(P]).
Assume ckB(Pl) <...< A (P;). Instead of defining par-

titions 7r]17 7r]2 for each peer edge p; we define partitions 7r]1

and 7r]2 for each set P; as follows
e 7} is the partition of lowest rank with P; C E(x;) and
Yy >0
7

. 7r]2 is the partition of highest rank with P; N E(ﬂ'?) =0
and yfg > 0.
7
Notice, that we can now state something stronger than in-
equality (9):
1 2
r(my) —r(m) 2 [Py

for all 1 < j < ¢ (recall that this corresponds to a sequence
of contractions of O-edges in Algorithm 3). In equation (13)

we have to replace € Zle (r(mj)—r(73)) by € i (r(m))—
7“(71']2)) Inequality (14) is still valid since

q

e _(r(m) =r(m)) >) |P]

j=1
= ¢k

The last equality follgws from {1,... .k} =Uj_, P .

We have proved that in the presence of nodes of degree big-

ger than vB* + [log, n] we are able to modify the optimum

solution ()\B, yB) in order to obtain another feasible solution

(A, y) such that
z()\B, yB) < z(\y).

This is a contradiction to the optimality of (AZ, 7). |

5. CONCLUSIONS

5.1 Summary and remarks

In this paper we developed an improved approximation algo-
rithm for the degree-bounded minimum spanning tree prob-
lem. For a positive constant B* and an n-node graph, our
method computes a spanning tree whose cost is at most a
constant factor worse than the cost of the optimum degree-
B*-bounded minimum spanning tree. Additionally, we proved
that the maximum degree of the resulting tree is O(B* +
logn). Our procedure solves a Lagrangean relaxation of
the BMST integer program for slightly relaxed degree con-
straints ((1 4+ w)B™* instead of B*). We showed how this
slack helps to prove low cost of the resulting tree. Our algo-
rithm also makes use of a local search technique from [5; 7].
We used the local optimality and the fact that the final tree
belonged to the set OF of optimum trees for the Lagrangean
program (LD(B)) to prove low maximum degree.

As a side note, the reader should notice that in Algorithm
2 we assumed the exact solution of (LD(B)). However, for
practical purposes a reasonable approximation to the opti-
mum Lagrangean multipliers is sufficient. To compute such
an approximation, we could employ subgradient optimiza-
tion techniques from [9; 10; 15].

5.2 Extensions and open questions

An interesting open question is whether our results extend to
the case of Steiner trees and general Steiner networks. The
central difficulty of such an extension stems from the fact
that, in the Steiner case, the subproblem that arises from
dualizing the degree constraints (the minimum cost Steiner
tree problem) is NP-hard itself.

Another avenue for extending our work is to examine if our
approach capable of handling individual node degrees? In
the current version, node degrees are assumed to be uniform.
Lemma 2 relies on the pseudo-optimality of tree T¢ from
Algorithm 2 and on results from [5; 7]. These results do
not apply to non-uniform degrees. Is there an extention of
the known MDST algorithms to handle individual degree
bounds?

We believe that the techniques used in this paper can be
generalized to apply to a broader class of multicriteria prob-
lems. A central point in the development of a more general
framework is the identification of key properties of suitable
optimization problems; in the BMST problem, the dualiza-
tion of the degree constraints yields a tractable subproblem.
Furthermore, the compact form of the objective function of
this subproblem proved to be a key for the analysis.

6. REFERENCES

[1] F. Bauer and A. Varma. Degree-constrained multi-
casting in point-to-point networks. Technical Report
UCSC-CRI-95-08, Computer Engineering Department,
University of California, Santa Cruz, 1995.

[2] J. Cheriyan and R. Ravi. Approximation al-
gorithms for network problems. Lecture Notes
(http://www.gsia.cmu.edu/andrew /ravi), 1998.

[3] S. Chopra. On the spanning tree polyhedron. Opera-
tions Research Letters, 8:25-29, 1989.

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Deering, D. Estrin, and D. Farinacci. An architec-
ture for wide-area multicast routing. In Proceedings of

SIGCOMM, 1994.

T. Fischer. Optimizing the degree of minimum weight
spanning trees. Technical Report TR 93-1338, Dept.
of Computer Science, Cornell University, [thaca, NY
14853, 1993.

S. Floyd, V. Jacobson, S. MacCanne, and L. Zhang.
A reliable multicast framework for lightweight sessions

and application level framing. In Proceedings of SIG-
COMM, 1995.

Martin Furer and Balaji Raghavachari. Approximating
the minimum-degree Steiner tree to within one of opti-
mal. Journal of Algorithms, 17(3):409-423, November
1994.

M. R. Garey and D. S. Johnson. Computers and In-
tractabelity: A guide to the theory of NP-completeness.
W. H. Freeman and Company, San Francisco, 1979.

M. Held and R. M. Karp. The traveling-salesman prob-
lem and minimum spanning trees: part 1. Math. Pro-
grammang, 1:6-25, 1971.

Michael Held, Philip Wolfe, and Harlan P. Crowder.
Validation of subgradient optimization. Mathematical
Programming, 6(1):62-88, 1974.

D. Hochbaum, editor. Approzimation Algorithms for
NP-hard Problems. PWS Publishing Company, 1997.

Samir Khuller, Balaji Raghavachari, and Neal Young.
Low-degree spanning trees of small weight. STAM Jour-
nal on Computing, 25(2):355-368, April 1996.

P.N. Klein and R. Ravi. A nearly best-possible approx-
imation for node-weighted steiner trees. J. Algorithms,
19:104-115, 1995.

G.L. Nemhauser and L.A. Wolsey. Integer and Combz-
natorial Optimaization. Wiley, 1988.

B.T. Polyak. A general method of solving extremum
problems. Doklady Akademmi Nauk SSSR, 174(1):33—
36, 1967.

R. Ravi, M.V. Marathe, S.S.Ravi, D.J. Rosenkrantz,
and H.B. Hunt. Many birds with one stone: Multi-
objective approximation algorithms. In Proceedings,

ACM Symposium on Theory of Computing, pages 438—
447, 1993.

A.S. Tanenbaum. Computer Networks. Prentice Hall,
1996.

W. De Zhong. A copy network with shared buffers for
large-scale multicast atm switching. IEEE/ACM Trans-
actions on Networking, 1(2):157-165, 1993.

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

