
A Dynamic Adaptation of AD-trees for Efficient Machine Learning
on Large Data Sets

Paul Komarek KOMAREK@ANDREW.CMU.EDU

Department of Mathematical Sciences, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 USA

Andrew Moore AWM@CS.CMU.EDU

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 USA

Abstract

This paper has no novel learning or statistics: it
is concerned with making a wide class of pre-
existing statistics and learning algorithms com-
putationally tractable when faced with data sets
with massive numbers of records or attributes.
It briefly reviews the static AD-tree structure
of Moore and Lee (1998), and offers a new struc-
ture with more attractive properties: (1) the new
structure scales better with the number of at-
tributes in the data set; (2) it has zero initial build
time; (3) it adaptively caches only statistics rele-
vant to the current task; and (4) it can be used in-
crementally in cases where new data is frequently
being appended to the data set. We provide a
careful explanation of the data structure, and then
empirically evaluate the performance under vary-
ing access patterns induced by different learn-
ing algorithms such as association rules, decision
trees and Bayes net structures. We conclude by
discussing the longer term benefits of the new
structure: the eventual ability to apply AD-trees
to data sets with real-valued attributes.

1. Description of AD-trees

1.1 What is an AD-tree?

Table 1 shows a tiny data set with M � 3 symbolic (i.e., cat-
egorical) attributes (the columns), and R � 6 records (the
rows). A counting query has the form C(a1

� 2
�

a2
�

� �
a3

� 1), and is a request to count the number of
records matching the query, with asterisks interpreted as
“don’t cares”. C(a1

� 2
�

a2
� � �

a3
� 1)=3 in our

example.

Moore and Lee (1998) and Anderson and Moore (1998)
introduced a new data structure for representing the cached
counting statistics for a categorical data set, called an All-

Table 1. Sample data set with three attributes and six records.

ATTRIBUTES: a1 a2 a3

RECORD1 1 1 1
RECORD2 2 3 1
RECORD3 2 4 2
RECORD4 1 1 1
RECORD5 2 3 1
RECORD6 2 3 1

a2=1
MCV

a2=2
Null

a2=3
Null

a2=4
Null

a3=1
MCV

a3=2
Null

a3=1
MCV

a3=2
Null

a3=1
Null

a3=2
MCV

Vary a2 Vary a3 Vary a3 Vary a3

c=2
a2=1 a2=2

Null
a2=3
MCV c=1

a2=4
c=2
a1=1 a1=2

MCV

Vary a1 Vary a2

count=6
a3=*
a2=*
a1=*

Vary a3

a3=1
MCV c=1

a3=2

Figure 1. Sample static AD-tree for data set in Table 1, without
leaf lists.

Dimensions tree (AD-tree). The AD-tree corresponding to
the dataset in Table 1 is shown in Figure 1.

Each rectangular node in the figure stores the value of one
conjunctive counting query. These rectangles are called
AD-nodes. Let N represent an AD-node, and let Q be the
query whose count C(Q) is stored in N. Let k be the great-
est index such that the value of attribute ak is specified in Q.
Node N has M � k children called Vary nodes, one for each
attribute with index greater than k. These children are dis-
played as ovals with labels “Vary ak � 1, Vary ak � 2, . . . , Vary
aM”, and serve to specialize the query Q. Vary ai chooses
attribute ai for specialization, and has one AD-node child
for each value of ai. The jth AD-node child of Vary ai

stores the value of the counting query C(Q
�

ai
� j).

A tree built in this way would be enormous for non-trivially
sized data sets. To save space, all AD-nodes storing zero
counts are omitted from the AD-tree. In practice however,
this does not afford enough of a space-savings to make such
a tree practical. Consider the BIRTH data set of Moore and
Lee (1998). This data set has 9,672 rows of 97 attributes,
most of which are binary, Seventy of the binary attributes
are very sparse, with 95% of the values being FALSE. Af-
ter omitting all zero-count AD-nodes, it would require 1038

nodes. The trivial data set of Table 1 would require twelve
nodes. Another small reduction in size, and increase in
speed, can be obtained by not expanding AD-nodes near
the bottom of the AD-tree. Instead, when the number of
rows relevant to an AD-node is below the global “leaf list
size”, the indices of the relevant rows are stored in a “leaf
list”. Queries which require a more specialized count than
this AD-node can provide, search only the data set rows
mentioned in the leaf list.

More important is an innovation in Moore and Lee (1998)
that allows us to never expand any child of a Vary node in
which that child has a higher count than its immediate sib-
lings. Such a child is called a Most Common Value child,
or simply an MCV. Neither it nor any of its descendants are
stored in the tree, nor are they even temporarily computed
during its construction. The same paper shows how the an-
swer to any query, not merely those remaining in the AD-
tree, can be reconstructed efficiently despite this pruning.
More importantly, this pruning has a dramatic effect on the
memory used by the AD-tree. The BIRTH data set requires
only 105 nodes, for example.

AD-trees thus allow constant-time counting, independent
of the number of records in the data set. This in turn allows
contingency tables, probability tables, entropies, mutual in-
formation and chi-squared statistics to be computed almost
as rapidly for a data set with 109 records as for a data set
with 105 once the AD-tree has been built. As a result, many
learning algorithms such as decision trees, association rules
and Bayes net structures are dramatically accelerated when
faced with large data sets.

1.2 Description of Static AD-trees and Dynamic
AD-trees

1.2.1 MOTIVATION AND STRUCTURE

A static AD-tree is a straightforward implementation of
the AD-tree structure described above. A client which
uses a static AD-tree must wait for the entire AD-tree to
be built before making any conjunctive counting queries.
static AD-trees are built in an optimized manner which re-
duces the number of queries made to the data set. This
is roughly a depth-first construction which allows smaller
and smaller portions of the data set to be read for each node
created. Coupled with the amount of queries eliminated by

MCVs and other space-saving techniques, the cost of build-
ing a static AD-tree is often smaller than the cost of an-
swering the client’s queries without an AD-tree. Since the
cost of answering any counting query with an AD-tree is
constant in the number of data set rows, the cost of answer-
ing the client’s queries becomes negligible. Therefore if
a client will make many unique or repeated queries, static
AD-trees have excellent amortized performance (Moore &
Lee, 1998). Note that a static AD-tree cannot be changed
after it is built.

A dynamic AD-tree is an implementation of the AD-tree
structure which attempts to keep all the useful features,
while avoiding the long build time and inherent rigidity
of static AD-trees. Building an entire AD-tree is seldom
necessary for a particular client, thus static AD-trees often
waste time and space. Furthermore, if the data set gains
new rows, a static AD-tree must be rebuilt from scratch.

dynamic AD-trees contain only a root AD-node at first,
growing to reflect the queries made by the client. Doing
this while maintaining a static AD-tree’s speed is difficult.
If a client asks queries covering a small area of the tree,
dynamic AD-trees are easily superior. As more of the tree
is needed, matching the static AD-tree’s amortized speed is
more challenging.

If a data set grows after an AD-tree is built, updating all of
the nodes in the tree is potentially an exponential operation
in the number of attributes. For static AD-trees, rebuild-
ing from scratch is the only option. However, dynamic
AD-trees add state at each node to maintain consistency
with the data set on a node-by-node basis. Nodes are only
updated if and when accessed, achieving consistency with
constant amortized complexity.

1.2.2 IMPLEMENTATION OF DYNAMIC AD-TREES

A naive implementation of dynamic AD-trees would build
the AD-tree nodes as queries were answered, as well as
record data set state to maintain consistency when the data
set changed. This simple implementation would save space
and allow the data set to grow. However, it would be far
slower than a static AD-tree due to reading the entire data
set for each Vary node and AD-node creation.

In our implementation of dynamic AD-trees, node creation
is accelerated using structures we call skinny AD-nodes
and row caches. We illustrate their use with an example,
depicted in Figure 2. Suppose we are going to query the
six row data set of Table 1, using a dynamic AD-tree to
improve performance. Before our first query, the dynamic
AD-tree contains one AD-node, the root. The root AD-
node is equivalent to the most generic query, namely one
which specifies no attributes. The count it stores is six,
since every data set row matches the most generic query.

count=6

a2=*
a1=*

a3=*

Vary a2

count=6

a2=*
a1=*

a3=*

c=2
a2=1 Skinny

AD-nodes

Row

Cache

Vary a2

count=6

a2=*
a1=*

a3=*

c=2
a2=1 Skinny

AD-nodes

a3=1
MCV

a3=2
Null

Vary a3

Row

Cache

Vary a2

count=6

a2=*
a1=*

a3=*

c=2
a2=1 Skinny

AD-nodes

Vary a3

Row

Cache

Vary a2

count=6

a2=*
a1=*

a3=*A

D

C

B

Figure 2. Sequence of dynamic AD-trees on the data set in Table
1, without leaf lists.

We make our first query, C(a2
� 1

�
a3

� 2). To answer
this query, we create the Vary a2 beneath the root. This
process is represented by arrow A in the figure. This Vary
node partitions the data set according to each row’s value
for the second attribute, and chooses its MCV as the value
with the most rows. In this case the row indices are parti-
tioned as

� �
1 � 4 � � � � � �

2 � 5 � 6 � � �
3 � � for values 1, 2, 3, and 4,

respectively, and the MCV is 3. The Vary node is now ready
to create any children necessary to answer the query. It
pulls the first attribute-value pair from our query,

�
a2

� 1 � ,
and makes the corresponding AD-node. This is arrow B
in the figure. Since it has already partitioned the data set
for attribute two, and since value 1 is not its MCV, the Vary
node simply counts the rows in the first partition section
and stores this count in the new AD-node. Although there
are only two relevant rows, we will neglect leaf lists for
purposes of this discussion. In practice, dynamic AD-trees
do use leaf lists.

The new AD-node cannot answer the remaining query it-
self, and hence it will root a new subtree. This subtree
represents specializations of the counting query C(a2

� 1),
and as such it can restrict its scope to the rows matching
this query. These rows are exactly the first section of the
partition created by our Vary node. Therefore our new AD-
node stores this partition section in a row cache, which will
be used later when growing the subtree. Without this row
cache, future specializations of C(a2

� 1) would require
reading irrelevant rows of the data set.

The Vary node is not finished yet. Since we may later ask
it for a different AD-node child, the Vary node stores the
needed partition sections in skinny AD-nodes. A skinny
AD-node contains two items: the number of rows in the

data set when it was created, and the relevant partition sec-
tion. In this case the second and fourth partition sections
are stored, since the MCV is 3. These skinny AD-nodes are
placed underneath the Vary node, exactly where full AD-
nodes might later appear. If we ask a Vary node for an AD-
node child, and there is a skinny AD-node where the child
should be, the Vary node promotes the skinny AD-node to
a full AD-node.

Our Vary node has finished its work, and the new AD-node
services the remainder

�
a3

� 2 � of the original query. The
AD-node creates a child Vary node, namely Vary a3, fol-
lowing arrow C in the figure. This Vary node partitions
the data set rows listed in the AD-node’s row cache, and
finds that its MCV is value 1. Following arrow D in the
figure, the Vary node builds a child AD-node representing�

a3
� 2 � in order to service the query. Since the second

partition section is empty, the Vary node stores a count of
zero in the new AD-node. If the count weren’t zero, the
new AD-node would receive a row cache from the Vary
node. The new AD-node is able to answer the query, and
no new nodes are built. Note that if a3 could take any val-
ues other than 1 and 2, the Vary node would make skinny
AD-nodes for these values. This completes our explanation
of skinny AD-nodes and row caches.

static AD-trees never store AD-nodes with a count of zero,
resulting in space savings depending upon the sparseness of
the data. For dynamic AD-trees, doing this would cause a
problem. Suppose we didn’t create an AD-node for counts
of zero. Since the data set might later grow to include
new relevant rows, we would always recheck the entire data
set when a query needed the missing AD-node. Therefore
we create another specialization of an AD-node, called an
‘empty AD-node’, which stores only the size of the data
set. This size is updated whenever the empty AD-node
is accessed. Future queries involving the empty AD-node
only need to check for newly arrived relevant rows beyond
this stored value. If any are found, the empty AD-node is
replaced by a regular AD-node.

The space used by skinny AD-nodes and row caches could
quickly grow unacceptably large. Since both structures are
used for localized acceleration of growth, any skinny AD-
node or row cache may be deleted at any time. We derive
optimal benefit from these structures when they exist in ar-
eas of the dynamic AD-tree with rapid growth. Therefore
we track all skinny AD-nodes in a skinny AD-node queue
and all row caches in a row cache queue. Both queues are
ordered according to a simple least-recently-used scheme.
When the cumulative size of all skinny AD-nodes exceeds
a fixed upper bound, the least-recently-used skinny AD-
nodes are deleted from the tree and ejected from the queue.
The same is true for row caches, using a separate upper
bound.

Good sizes for the skinny AD-node and row cache upper
bounds depend upon the number of rows and attributes of
the data set, correlations between the data set attributes, and
the pattern of queries made on the dynamic AD-tree. Note
that if a Vary node’s MCV is dereferenced, all of its AD-node
children must exist or be created. Thus this Vary node will
have skinny AD-node children for a trivial amount of time.
Also, if many similar queries are made within a short space
of time, for example trying to find the ’best’ value for some
attribute while fixing other attributes, the situation is ap-
proximately the same. This implies that skinny AD-nodes
often have short lives, and the upper bound on the cumu-
lative size of all skinny AD-nodes can typically be made
small without a significant performance penalty. However,
row caches typically have longer useful lives, and the row
cache upper bound should be made larger. Commonly used
ratios between the skinny AD-node upper bound and the
row cache upper bound are 6:1 and 10:1.

The least-recently-used policy for managing the dynamic
AD-tree’s queues is not optimal. Sensible policies are de-
fined as any which increase the likelihood of skinny AD-
nodes and especially row caches, existing when and where
needed. To measure the need, one may consider how many
complete reads of the data set are avoided, or how few rows
of the data set need to be read as a result of skinny AD-node
or row cache existence.

2. Analysis

2.1 Algorithm Descriptions

The results of empirical tests are presented below, in which
dynamic AD-tree performance is contrasted with static
AD-tree performance. The tests were conducted using
two data sets, e29.fds and e46.fds. These data sets
come from the Sloan Digital Sky Survey (SDSS, 1998).
Both have 3 million rows, e29.fds has 29 attributes,
and e46.fds has 46 attributes. The first 29 attributes of
e46.fds are the same as those from e29.fds. All at-
tributes used in these tests have a small arity, typically two.
One should not take this to mean dynamic AD-trees cannot
handle larger arities. We have successfully used dynamic
AD-trees on a data set containing 3.5 million rows and 49
attributes, where queries were made on attributes with ar-
ities between two and more than two-hundred-thousand.
For this latter data set, we were unable to build a static AD-
tree within a two gigabyte memory limit.

Three learning algorithms were used: an exhaustive rule
learner, a decision tree learner, and a Bayes net structure
finder. These algorithms make many queries to the AD-
trees, each with a different query pattern. The various pat-
terns have performance implications for dynamic AD-trees
due to query-locality effects on skinny AD-nodes and row

caches. We give a brief description of each algorithm’s
query pattern below.

Algorithm Query Pattern
rules very many highly localized queries

to fixed depth, specializing previous
queries

decision tree less localized queries than rule
learner, still specializing previous
queries

Bayes net stochastic algorithm making
widely varying queries

For static AD-trees the main difference is the number of
queries made by the algorithm, and hence they are a good
baseline for judging dynamic AD-tree performance. De-
tails of the learning algorithms and their interaction with
dynamic AD-trees are presented in the following sections.
We also use algorithms accelerated by means of special-
ized data structures, as opposed to the general purpose AD-
trees, that read directly from the data set. These algorithms
are referred to below by the term standard.

For each learning algorithm, three learning problems were
chosen to demonstrate empirical behavior under reason-
able real-world use. We will categorize these problems as
small single, large single, and large multi. The prob-
lems with the tag single create a static AD-tree or grow
a dynamic AD-tree to solve a single problem. Those with
the tag multi consist of solving several subproblems of in-
creasing size. A single static AD-tree or dynamic AD-tree
is created for the smallest subproblem and reused for the
remaining subproblems. In the case of a dynamic AD-tree,
the tree grows to accommodate the needs of each subprob-
lem. The standard learners cannot perform multi runs.
Table 2 shows per-algorithm definitions of small and large
problems. The terms used in the table are defined later, in
sections which describe the learning algorithms in greater
detail.

Each single or multi problem is solved multiple times
using different memory constraints. The four constraints
used in this paper are 32 MB, 64 MB, 128 MB, and un-
limited. These constraints do not affect static AD-trees or
the standard learners, since we cannot limit their memory
use. In our current implementation of dynamic AD-trees,
only the skinny AD-node queue and row cache queue sizes
have upper bounds. There is no upper bound on the AD-
tree size. Therefore we save 30% of the available memory
for the tree, assigning 10% to the skinny AD-nodes and
60% to the row caches. Most often this is over-generous
for the tree.

Each run was given a maximum allowable time. For
single runs on the e29.fds data set, this was 1200 sec-
onds, and for single runs on the e46.fds data set it was

4500 seconds. For multi runs, the time limit for each sub-
problem was chosen as if it were a single run, and the
letters “DNF” indicate that the multi run did not finish be-
cause some subproblem was aborted.

As a final note, all times reported are system time plus user
time, not wall clock time. The machine used for the ex-
periments is a shared resource, and as such there are times
reported which show anomalies due to load.

2.1.1 EXHAUSTIVE RULE LEARNER

The exhaustive rule learner discovers good rules for the
data set, objects which might best be described as approx-
imate implications. Given an output attribute aoutput and
a legal value valoutput for aoutput, the rule learner searches
among conjunctive queries of the form

q � �
ai1

� vali1
� � � � �

ain
� valin �

to maximize the estimated value

P
�
aout put

� valout put
�
q � � C

�
aout put

� valout put
�

q �
C

�
q �

To avoid queries without significant support, we insist C(q),
the number of records matching query q, must be greater
than minsupport. Agrawal et al. (1996) and Clark and
Niblett (1989) describe examples of rule learners with spe-
cialized data structures.

In practice, when searching for the best rule we restrict
which attributes may appear on the left-hand-side using an
input list. Below, we will refer to the input list length as
subset. We place an upper bound, numatts, on the num-
ber of attributes in the left-hand-side of a rule.

In all rule learner experiments the AD-tree’s leaf list size
was 1000, minsupport was 100, and the output attribute
and value were fixed. We set subset to 16 and varied
numatts while making both single and multi runs. The
results of varying subset will be available in a longer ver-
sion of this paper. The values of numatts for the small and
large problems are shown in Table 2. Time and memory
results for these problems are shown in Tables 3 through 6.

2.1.2 DECISION-TREE INDUCTION

The decision tree learner finds a good decision tree for
predicting the value of an output attribute, using a greedy
C4.5-like strategy (Quinlan, 1993). The decision tree’s
nodes are restricted to those attributes present in an input
list, whose length is denoted subset. The number of nodes
in the decision tree must be no more than the value of pa-
rameter size.

To grow the decision tree, the decision learner must choose
at each point which attribute will be associated with a new

node. Our decision tree learner queries the data set to dis-
cover which attribute has the best information gain among
the possible attributes. The queries made are very simi-
lar to queries previously made when the parent of the new
node was created, but have one additional attribute-value
pair. When running on an AD-tree, this means that for
any new query made, the parent of the AD-node needed
to answer that query will already exist. Therefore we ex-
pect dynamic AD-trees to perform well when supporting
our decision tree learner.

In all decision tree learner experiments, the AD-tree’s leaf
list size was 1000 and the output attribute was fixed. We
varied the size parameter, making both single and multi
runs. The definitions of small and large problems may be
found in Table 2. The test results are shown in Tables 3
through 6. These results are discussed briefly in section 2.3

2.1.3 BAYES NET STRUCTURE FINDER

Given a data set, we search the space of Bayes net struc-
tures using a backtracking greedy algorithm with random
restarting (Pearl, 1996; Heckerman, 1991; Spirtes et al.,
1993). The number of random restarts is limited by the
iters parameter. Our structure finder searches for a Bayes
net which describes the entire data set, and is not restricted
to considering a subset of the data set attributes.

The structure finder moves greedily between Bayes net
structures by changing one dependency edge at a time, try-
ing to improve the current net’s score. When using dy-
namic AD-trees, the scoring function and random restarts
often require queries in disparate, long forgotten sections of
the AD-tree, allowing row caches and skinny AD-nodes to
lapse. We do not expect dynamic AD-trees to be an appro-
priate choice for the structure finder, since dynamic AD-
trees are designed for more localized query patterns and
contexts in which making the whole AD-tree is wasteful.

In all Bayes net structure finder experiments, the output at-
tribute was fixed. We varied the parameter iters, and con-
ducted both single and multi runs. The AD-tree’s leaf
list size was 1000. The definitions of small and large prob-
lems may be found in Table 2, and the test results are shown
in Tables 3 through 6. These results are discussed briefly in
section 2.3

2.2 Exhaustive Rule Learner Performance

2.2.1 UNLIMITED PHYSICAL MEMORY

Note in Table 5, which summarizes multi run perfor-
mance, that the times for dynamic AD-trees and static AD-
trees are similar. That dynamic AD-trees are this competi-
tive on multi-type runs can be explained by observing the
amount of memory used, also shown in Table 5. Though
not shown in Table 3, the cumulative time for a dynamic

Table 3. Performance of dynamic AD-trees and static AD-trees for single runs, when memory is unlimited. Note that static AD-trees
always use 55MB for the e29.fds data set and 489MB for the e46.fds data set, and the algorithms themselves use almost no memory.
In the table, STD refers to the standard learner.

TIME MEMORY

SMALL PROBLEM LARGE PROBLEM SMALL LARGE

ALGORITHM DATA SET DYN STAT STD DYN STAT STD DYN STD DYN STD

RULES E29.FDS 56S 469S 203S 216S 582S
�

1200S 84M 23M 137M NA
E46.FDS 55S 3529S 203S 209S 3688S

�
4500S 84M 23M 138M NA

DECISION TREE E29.FDS 38S 467S 135S 87S 468S 349S 67M 77M 134M 117M
E46.FDS 39S 2927S 136S 89S 2932S 340S 67M 77M 134M 117M

BAYES NETS E29.FDS 63S 465S 105S 449S 485S
�

1200S 100M 23M 715M NA
(STOCHASTIC) E46.FDS 70S 3021S 110S 1229S 3039S

�
4500S 86M 23M 1293M NA

Table 4. Performance of dynamic AD-trees for single runs, when memory is limited.

TIME

SMALL PROBLEM LARGE PROBLEM

ALGORITHM DATA SET DYN128 DYN64 DYN32 DYN128 DYN64 DYN32

RULES E29.FDS 99S 145S 154S 445S 983S
�

1200S
E46.FDS 94S 142S 153S 434S 1001S 1868S

DECISION TREE E29.FDS 38S 74S 119S 370S 611S 1181S
E46.FDS 39S 74S 119S 352S 568S 1176S

BAYES NETS E29.FDS 74S 143S 160S
�

1200S
�

1200S
�

1200S
(STOCHASTIC) E46.FDS 88S 132S 149S

�
4500S

�
4500S

�
4500S

Table 2. Parameter Descriptions for various problem types. Note
that subset is 16 for the exhaustive rule learner and decision tree
learner. The Bayes net structure finder always considers all at-
tributes of the data set.

Rules Deci. Trees Nets
numatts size iters

Small single 2 10 50
Large single 8 210 12800
Large multi 1 . . . 15 10 . . . 210, 50 . . . 12800,

size+=20 iters*=4

AD-tree to complete all subproblems of the large multi
run in single mode is nearly the same as the multi run
time. This indicates that dynamic AD-tree growth is very
efficient when driven by our rule learner, and a client can
perform single runs with almost no penalty. It is easy to
deduce that AD-trees are superior for multi runs compared
to the standard learner. Table 3 shows AD-trees outper-
forming the standard learner for single large problems,
and dynamic AD-trees as the fastest overall.

2.2.2 LIMITED MEMORY

The limited memory model was explained above. Detailed
analyses of dynamic AD-tree performance with the rule

�
� �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �

��	

�
� �

 � � � � � � � � � � � � ��� � � � � � � � � � � � � �

 � � � � � �
multi

! ! ! ! ! !

! � � � � � �
single

" " " " " "

" � � � � � �
single

#

#

#

#

#

#

#

Figure 3. Rule learner times by the size of the data set, which is
grown between runs.

learner will be presented in a longer version of this paper.
However, times for the three limited memory models are
available in Tables 4 and 6.

2.2.3 GROWING THE DATA SET USING E29.FDS

Figure 3 shows repeated rule learner runs while growing
the data set. The times shown are for running the rule
learner with numatts and subset fixed to 3 and 16. The
independent variable is the data set size, in thousands of
rows. The rule learner is run on the first n rows of e29.fds,
then n is increased and the run is repeated. This continues

Table 5. Performance of dynamic AD-trees and static AD-trees for multi runs, when memory is unlimited.

TIME, LARGE MULTIRUN MEMORY, LARGE MULTIRUN

ALGORITHM DATA SET DYN STAT DYN STAT

RULES E29.FDS 4069S 4142S 137M 55M
E46.FDS 3983S 7200S 138M 489M

DECISION TREE E29.FDS 104S 489S 133M 55M
E46.FDS 107S 3455S 133M 489M

BAYES NETS E29.FDS 472S 490S 707M 55M
(STOCHASTIC) E46.FDS 1163S 3826S 1285M 489M

Table 6. Performance of dynamic AD-trees for multi runs, when memory is limited. The entry “DNF” means that one subproblem of
the multi run was aborted after the preset maximum time.

TIME, LARGE MULTI RUN

ALGORITHM DATA SET DYN128 DYN64 DYN32

RULES E29.FDS 4338S 4956S 5733S
E46.FDS 4169S 4806S 5629S

DECISION TREE E29.FDS 389S 628S 1201S
E46.FDS 373S 603S 1197S

BAYES NETS E29.FDS DNF DNF DNF
(STOCHASTIC) E46.FDS DNF DNF DNF

until n � 3000000. The static AD-tree times include re-
building the tree for each run since this is unavoidable, and
hence the curve represents a series of single runs. There
are two curves for dynamic AD-trees. The slower curve
represents a collection of single runs, and the faster curve
represents dynamic AD-trees’ ability to make a multi run
in this context.

From figure 3, one may conclude that dynamic AD-trees
are the best choice when data sets are periodically updated
and amortized complexity is important. Similar results for
the decision tree learner and Bayes net structure finder have
been obtained.

2.2.4 RULE LEARNER SUMMARY

Dynamic AD-trees perform competitively with static AD-
trees, and frequently are substantially faster. In multi
problems, both AD-trees thoroughly outperform optimized
conventional code. Furthermore, static AD-trees and dy-
namic AD-trees surpass the standard learner on larger
problems here and in Moore and Lee (1998), with dynamic
AD-trees reporting the fastest times for any single run.

2.3 Decision-Tree Learner and Bayes Net Structure
Finder Performance

Detailed analyses of dynamic AD-tree performance with
the decision tree learner and Bayes net structure finder will
be presented in a longer version of this paper. However,

time and memory use for all the learners are available in
Tables 3 through 6.

Though not presented in this paper, finding a good decision
tree on a few hundred nodes is trivial using AD-trees. With
dynamic AD-trees, only the necessary parts of the AD-tree
are built, saving a vast amount of time over static AD-trees.
As seen in the tables, dynamic AD-trees may be both faster
and smaller than the specialized standard decision tree
learner.

On the other hand, the Bayes net structure finder does not
benefit from dynamic AD-trees as much as the other learn-
ers. It reveals critical weaknesses in dynamic AD-trees,
causing them to use large amounts of memory as reported
in Tables 3 through 6. That said, the scaling behavior of
dynamic AD-trees allows them to take over where static
AD-trees falter, also shown in these tables. As before, the
standard learners are unable to handle large problems. Fi-
nally, note that dynamic AD-trees can be used to provide
better performance than static AD-trees and conventional
optimized code, when memory is plentiful.

3. Future Work

It may be useful to support the dynamic addition of at-
tributes to the underlying data set, as well as dynamic re-
ordering of existing attributes. Both of these features are
easily implemented using dynamic AD-trees in a manner
which amortizes the possibly exponential complexity.

Currently AD-trees only allow attributes to have discrete
values, which clouds their statistical usefulness for many
real-world applications. One solution is to dynamically add
artificial attributes, representing inequality tests, to more
finely discriminate between real values in data set rows
when needed. Another solution uses dynamic attribute res-
olution, whereby an existing attribute’s arity can be dynam-
ically increased. An attribute’s new values would repre-
sent additional decimal places of accuracy as requested by
a query. Both of these may be implemented simply using
dynamic AD-trees.

It may be desirable to allow some parameters to vary within
the tree, such as leaf list size. More interesting is to locally
vary which attributes appear, and which values they take,
within an AD-tree. For instance both ideas above for han-
dling real values may lead to an undesirable explosion of at-
tributes or attribute arities in an AD-tree, unless local varia-
tion of attributes and attribute arity is allowed. This feature
could also reduce the size of purely symbolic AD-trees, if
a client conditionally discriminates on an attribute’s values.
Dynamic AD-trees are particularly suited to local variation
because inadequate or excessive specialization can be au-
tomatically and transparently repaired later.

Initial work for transparently compressing leaf lists has
commenced, and indicates that an approximate compres-
sion of 2:1 is possible without significant performance
degradation.

A further extension of dynamic AD-trees would allow
pruning. This pruning could be managed by a client, or
handled internally. For instance, if an algorithm knew it
was finished using a specific subtree, it could instruct the
dynamic AD-tree to remove it. The subtree would be re-
grown automatically if it were needed later. Internally, a
dynamic AD-tree could use a priority queue to prune infre-
quently used AD-nodes. Such a mechanism would obviate
skinny AD-nodes.

4. Conclusion and Acknowledgements

The AD-tree structure has proven itself useful for acceler-
ating conjunctive counting queries, here and in Moore and
Lee (1998). It derives its advantage over traditional spe-
cialized data structures by caching the query results, thus
reducing the number of data set passes. In effect, AD-tree
performance is largely unaffected by the number of rows
in the data set. The dynamic AD-tree’s client-driven na-
ture implies that its performance is virtually independent
of the number of attributes in the data set. This allows dy-
namic AD-trees to scale up to larger data sets than static
AD-trees can handle, and scale down to provide strong per-
formance for clients which make few or very specialized
queries. The extra state maintained by dynamic AD-trees

provides greater flexibility as well, allowing new rows to be
added to the data set between queries. For many learning
problems, these properties make dynamic AD-trees the pre-
ferred choice over both existing specialized data structures
and static AD-trees. These problems include rule learn-
ing, decision-tree induction, and discovering good Bayes
net structures on large data sets.

This work was sponsored by an NSF KDI grant to Andrew
Moore. The award number is DMS-9873442.

References

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., &
Verkamo, A. I. (1996). Fast discovery of association
rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth
and R. Uthurusamy (Eds.), Advances in Knowledge Dis-
covery and Data Mining. AAAI Press.

Anderson, B., & Moore, A. W. (1998). AD-trees for fast
counting and rule learning. Proceedings of the Fourth In-
ternational Conference on Knowledge Discovery in Data
Mining (pp. 134–138). AAAI Press.

Clark, P., & Niblett, R. (1989). The CN2 induction algo-
rithm. Machine Learning, 3, 261–284.

Heckerman, D. (1991). Probabilistic similarity networks.
MIT Press.

Moore, A. W., & Lee, M. S. (1998). Cached suffi-
cient statistics for efficient machine learning with large
datasets. Journal of Artificial Intelligence Research, 8.

Pearl, J. (1996). Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. San Mateo: Mor-
gan Kaufmann.

Quinlan, J. R. (1993). C4.5: Programs for machine learn-
ing. San Mateo: Morgan Kaufmann.

SDSS (1998). The Sloan digital sky survey.
www.sdss.org.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation,
prediction, and search. New York: Springer-Verlag.

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

