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Abstract

A common approach to parallelizing simulated annealing to generate several perturbations

to the current solution simultaneously, requiring synchronization to guarantee correct evaluation

of the cost function. The cost of this synchronization may be reduced by allowing inaccuracies

in the cost calculations. We provide a framework for understanding the theoretical implications

of this approach based on a model of processor interaction under reduced synchronization that

demonstrates how errors in cost calculations occur and how to estimate them. We show how

bounds on error in the cost calculations in a simulated annealing algorithm can be translated

into worst-case bounds on perturbations in the parameters which describe the behavior of the

algorithm.
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Simulated annealing (SA) is an iterative method for �nding approximate solutions to intractable
combinatorial optimization problems. For parallel implementations of SA based on simultaneous
moves, synchronization is a bottleneck because it reduces the amount of available parallelism and
increases the overhead. Synchronization costs can be reduced by allowing processors to use out-of-
date state information to evaluate the quality of intermediate solutions at the expense of introducing
errors into the evaluation function. This approach assumes that SA will still generate a good
solution if the size of the errors is controlled.

Since 1986, parallel implementations of SA using simultaneous moves have been reported in
the literature, using many di�erent heuristics to control the size of the error. However, to our
knowledge, very little has been published that analyzes the nature and impact of these errors
theoretically. In this paper, we model the error that occurs on multiprocessors and analyze this
error using techniques from statistical physics. First, a formal model of parallel simulated annealing
(PSA) based on simultaneous moves with reduced synchronization is introduced. We describe how
error in the change in energy occurs in this model and discuss implementation issues that a�ect its
size. The e�ect of such error on the behavior of SA can be understood through its impact on the
frequency with which the algorithm visits states in the solution space. We prove a theorem that
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relates bounds on errors in the change in energy to bounds on the error in the associated probability
distribution of states of a system at equilibrium. These bounds on the probability distribution allow
us to derive bounds on macroscopic quantities such as the average energy in the presence of error.
Finally, we show that this theorem can be applied to any type of error in the change in energy,
not just errors which result from asynchrony in parallelism. These results provide a framework for
understanding the tradeo� between speed and accuracy in PSA implementations by modeling the
nature and consequences of permitting cost function error in order to reduce synchronization costs.

The rest of the paper proceeds as follows. In Section 1, serial simulated annealing is described
in more detail. Parallel simulated annealing is introduced in Section 2 and a brief survey of related
work is presented. In Section 3, a model of processor interaction in PSA is introduced. The roles
of synchronization and error are discussed in the context of this model. Results are presented that
relate the behavior of ordinary SA and PSA when errors in the change in energy are allowed. We
discuss the limitations of this and ideas for future work.

1 Serial Simulated Annealing

Simulated annealing [5, 20] is a heuristic for solving prohibitively large instances of discrete com-
binatorial optimization problems. Let the state space, S = fsg, be the set of all possible solutions
of a given combinatorial optimization problem. The move set, fmg, is the set of all operations
that generate one solution from another by moving a component of the solution. The probability
of generating state s from state t is qst. If state t can be generated from state s in one move, then
qst > 0, otherwise qst = 0. We require that the state space be connected; that is, every state can
be reached from every other state in a �nite number of moves. Let the distance �(s; t), between
two states, s and t, be the minimum number of transitions needed to reach t from s (or vice versa).
Then the diameter, d = maxs;t2Sf�(s; t)g, of a state space, S, is the maximum distance between
any pair of states, taken over all possible pairs of states in S. To determine the optimal solution to
our problem, we de�ne a function, Es = E(s), that speci�es the cost of every state. The optimal
solutions are then those states which minimize E.

We illustrate these ideas using a speci�c problem, graph partitioning. Although there are
specialized algorithms that solve this problem more e�ciently than SA, we use graph partitioning
as an example because it is extremely simple to describe and reason about and yet has many of
the properties of VLSI layout, a real world problem which SA is frequently used to solve. In graph
partitioning, the object is to separate the N vertices of an undirected graph, G = (V; E), into two
subsets of equal size, V1 and V2, with a minimum number of edges crossing the boundary between
the two subsets (the cutset.) S is the set of all possible assignments of vertices to V1 or V2. A
new state is obtained from the current by reassigning a vertex from its current subset to the other.
Thus, qst > 0 if states s and t di�er by the assignment of one vertex. Clearly, the state space is
connected since any state can be obtained from any other state by a series of vertex moves. The
most distant pairs of states are those where every vertex is assigned to a di�erent subset in the two
states, requiring N vertex moves to get from one state to the other. Thus, the diameter of this
space is N . In order to keep the partition from becoming too unbalanced, the cost is de�ned to be
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the sum of the cutset size and a term which discourages unbalanced partitions:

E = jf(w1; w2)jw1 2 V1 ^ w2 2 V2 ^ (w1; w2) 2 Egj+ � � (jV1j � jV2j)
2 , (1)

where � is a constant which controls the relative importance of the cutset and the partition imbal-
ance. If a heuristic used to solve this problem yields an unbalanced partition as its �nal solution,
a greedy algorithm can be used to rebalance the subsets.

Notice that it is not generally true that every move may be applied to every state. The domain
a move, the set of states on which it is de�ned, may be a proper subset of S. In the move set for
graph partitioning described above, for example, every move may be applied to every state. An
alternate move set for this problem is to select a vertex from each subset and exchange them. In
this case, the domain of the move \swap w1 and w2" is the set of states such that w1 2 V1^w2 2 V2,
or vice versa. This move cannot be applied to states that have w1 and w2 in the same subset.

Iterative heuristics seek an optimal solution to a combinatorial optimization problem by starting
with an initial solution, often chosen at random, and improving it by making stepwise changes. If
only changes that decrease the cost (\downhill moves") are allowed, the iterative method will get
stuck in local minima. Simulated annealing exploits a physical analogy to escape these local minima
by making moves that increase the cost (\uphill moves") in a controlled way.

Physical annealing is the process of slowly cooling an ensemble of molecules to obtain the most
ordered or lowest energy arrangement of the molecules (typically, a crystal). When the ensemble
is at equilibrium at a �xed temperature, the probability, P (s), that the system will be in state s
with energy Es is described by the Boltzmann distribution,

P (s) =
e�Es=TP
t e

�Et=T
, (2)

where T is a parameter proportional to the temperature [23]. \Slow cooling" means lowering the
temperature slowly enough so that the system always stays close to this equilibrium distribution.
In the analogy, the combinatorial optimization problem corresponds to a system of molecules and
the cost function to the energy of the system. The optimal solution (the \crystal") is obtained by
simulating slow cooling; that is, by sampling the state space according to the Boltzmann distri-
bution. A parameter analogous to the temperature, T , is decreased as the algorithm progresses.
Simulated annealing approximates the Boltzmann distribution using the Metropolis algorithm to
sample states in S. Metropolis et al. [22] proved that the Boltzmann distribution could be sim-
ulated by repeatedly generating a new state, t, from the current state, s, and including the new
state in the sample with probability Pst = min(1; e��Est=T ), where �E = Et�Es. In other words,
the Metropolis algorithm accepts all downhill moves. Uphill moves are accepted with probability
e��Est=T , so that the increases in energy that may be accepted decrease as T decreases. The
expected cost of solutions sampled by the algorithm decreases also. If T is decreased su�ciently
slowly, the algorithm will converge convergence in probability to the globally minimum energy
states [25]. Final solution quality depends on the annealing schedule, the initial temperature and
the rate at which the temperature is reduced. Thus, the behavior and convergence of simulated
annealing is characterized by the probability distribution of sampled states at each stage of the
algorithm. Theoretical analyses of simulated annealing, whether based on statistical physics and
on Markov chains, rely on this observation [25].
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2 Parallel Simulated Annealing with Simultaneous Moves

In order to improve SA performance, many parallel versions of SA have been developed(see [1,
7, 13] for surveys). An approach that is application independent and allows the exploitation of
a reasonable amount of parallelism is to generate and evaluate several moves simultaneously [2,
3, 4, 6, 14, 18, 19, 21, 24, 26]. Since computing �E requires global state information, processors
manipulating the state simultaneously may interfere with each other. For example, in the graph
partitioning problem, when a vertex is moved from one subset to the other, the resulting change
in the cutset will depend on which side of the partition all of the adjacent vertices are currently
located. If one of those neighboring vertices is reassigned, the energy calculation will be a�ected.

Interactions between processors can be prevented by guaranteeing that moves that are scheduled
simultaneously do not share any state information, either by locking all components of the state that
contribute to the calculation of the change in energy or by partitioning the state into independent
subsets. Unfortunately, many approaches that prevent processor interaction were characterized
by poor performance because of high synchronization overhead and a limited amount of available
parallelism [6, 8, 21].

An alternative is to allow processors to compute �E using out-of-date information but to limit
the size of the error that can occur as a result. When each processor manipulates a di�erent part
of a single, global state description, errors in the change in energy are due only to the simultaneous
actions of other processors. This error is temporary because the state description does not accu-
mulate out-of-date information. Experimental results show that temporary error has little impact
on �nal solution quality [3, 4, 26]. On distributed memory architectures, the state description is
typically replicated. The state is partitioned and each processor is constrained to attempt moves
within its own subset. However, every processor has a description of the entire state in order to
calculate �E. The replicated copies become increasingly out-of-date as the processors propose and
accept moves and must be periodically updated.

This cumulative error has a noticeable impact on �nal solution quality. The experimental liter-
ature (see [7] for a survey) suggests that cumulative error increases with the number of processors
and the number of accepted moves between updates and is sensitive to the network architecture and
the communication protocol used. A number of experimental studies explored the tradeo� between
communication costs and �nal solution quality, seeking the minimum synchronization required to
obtain acceptable results. Given this observed relationship between reduced synchronization and
solution quality, exactly how is error occurring and how does it a�ect algorithm behavior?

Some early attempts to answer this question [2, 3, 17, 19] have estimated average accumulated
error over a series of parallel moves experimentally by comparing the actual change in energy, the
change in global energy between two updates, with the perceived change in energy, the sum of the
values of �E associated with all accepted moves between those updates. Such estimates of the
accumulated error have been used to select the number of moves between updates adaptively [2, 17].
However, because this approach does not focus on error in individual accept/reject decisions, it can
not be used to study the impact of error in �E on transition probabilities. Yet, it is the change in
transition probabilities that perturbs the probability distribution of states and hence, changes the
convergence properties of the algorithm.
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Gelfand and Mitter [11] present a Markov approach that does relate error in �E to convergence.
However, they assume that the errors have a Gaussian distribution. Since this assumption is not
supported by a model relating processor interaction to properties of the error in �E, it is not clear
under what conditions their analysis can be used to model actual PSA programs or to examine the
tradeo� between speed and accuracy.

Grover [15, 16] presents a serial annealing algorithm for standard cell placement where error
occurs because �E is computed using a faster, approximate method. In an analysis that inuenced
our approach, Grover uses a statistical mechanical model to study the impact of errors in E on
equilibrium properties of the system but does not relate errors in �E to algorithmic behavior. PSA
algorithms are usually inuenced by errors in �E, not E, so his results are not directly applicable
to our problem.

3 Impact of Error

Previous studies of error in PSA with simultaneous moves have either failed to relate errors in the
change of energy to a model of parallel execution or have not shown how error a�ects the acceptance
of individual moves and, hence, the equilibrium distribution of states at �xed temperature. In the
current paper, we present a model of processor interaction and use it to demonstrate how errors
arise in individual moves. We then relate these errors to perturbations in the equilibrium behavior
of the algorithm.

In [8, 10], we discussed the minimum synchronization required in a PSA algorithm based on
simultaneous moves. A set of formal criteria for specifying which moves may be scheduled simul-
taneously under these conditions was presented. A move scheduling strategy that conforms to our
criteria guarantees that the state description will never become corrupted. A PSA algorithm that
uses such a strategy operates on the same set of states as SA and the energies of the states are
not perturbed by error. Errors in calculating �E will occur, however, although these errors can be
reduced through additional synchronization constraints.

In the current paper, we show how error in �E occurs in PSA algorithms adhering to our
minimum synchronization criteria. The upper bound on this error depends on the application and
the parallel architecture. We give an example of how the worst case error might be estimated using
graph partitioning. Given an upper bound on the error in �E, proofs of worst-case bounds on the
transition probability and the distribution of states are given. Since the behavior of SA depends on
simulating equilibrium at all temperatures, the worst-case bounds on the probability distribution
show that the e�ect of error on the behavior of perturbed SA will also be bounded. Finally, bounds
on macroscopic properties such as the average energy at a given temperature are derived from the
bounds on the probability distribution of states.

All previous PSA work surveyed here, has tacitly assumed that PSA, like SA, can be modeled
as an irreducible, aperiodic Markov chain with a stationary equilibrium probability distribution
at �xed temperature. In the following analysis, we make the same assumptions. We also assume
that PSA algorithms schedule simultaneous moves that conform to our minimum synchronization
criteria.
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3.1 Errors Caused By Simultaneous Moves

As a result of executing several moves simultaneously, the state may change between the time
a move is proposed and the time the move is accepted. For example, Figure 1 shows a processor
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Figure 1: State Changes Due to Lack of Synchronization

considering movem from state s to state t. Between the beginning of the move and the accept/reject
decision, moves m1; : : : ;m� have been accepted by other processors, changing the state to u. As
a result the processor will accept or reject the move from u to v based on the di�erence in energy
between s and t1. This leads to an error in the change in energy:

�E0
uv = �Est = �Euv + �msu ,

where, �E0
uv is the erroneous change in energy between u and v. The processor is actually causing

a change �Euv, which di�ers from the perceived change in energy �E0
uv = �Est by an error

�msu = �Est ��Euv . (3)

The size of the largest �msu seen in a particular algorithm depends on the distance, �, between
s and u. The largest possible error in �E is

�m = maxfj�msujg ,

where the maximum is taken over all triples m; s; u such that s and u are in the domain of m and
u is at most � steps away from s. For the types of application problems simulated annealing is
typically used to solve, the greater the value of �, the greater the value of �m. First of all, as �
increases, so does the set of triples over which the maximum is taken, increasing the chances that
a large one will be seen. In addition, in \real world" problems, the greater the distance between
the true state and the perceived state, the greater the number of components required to compute
E which have been displaced. The distance, �, between s and u depends on the acceptance rate
and the data distribution and update strategies. In general, error will occur more often at high
temperature where the acceptance rate is higher.

1In [8, 10], we showed that if m1 and m2 may be scheduled simultaneously according to our minimum synchro-
nization criteria and s is in the domain of m1 then t = m2(s) is also in the domain of m1. Therefor, if s is in the
domain of m, u is also in the domain of m. The activities of other processors will not change the state to one that is
not in the domain of m.
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3.2 Estimating worst case error

Since error is application and implementation dependent, a speci�c upper bound on the error, �m,
must be estimated for each SA implementation. In general, the size of �m will depend on the
number of processors, the acceptance rate and the update frequency. As an example, we estimate
�m for the graph partitioning problem. A processor is evaluating a move, m, that reassigns vertex
w, changing the current state, s, to t = m(s). Other processors are simultaneously considering the
changing the state by reassigning other vertices. The size of the error that results when calculating
�E will depend on n, the net number of neighbors of w that change sides. Given the cost function
de�ned in Equation 1, the change in energy can be shown to be

�E = (dI � dO) + 4�(jVOj � jVI j+ 1) , (4)

where VI is the current subset of w, VO is the new subset of w if the move is accepted, dI is the
number of neighbors of w in VI when the processor begins the move and dO is the number of
neighbors in VO. The perceived change in energy, �Est, is given by Equation 4. The true change
in energy is

�Euv = ((dI � n)� (dO + n)) + 4�((jVOj+ n)� (jVI j � n) + 1) ,

where u is the state which results from the actions of other processors and v = m(u). The error
that occurs is �msu = �Est ��Euv = 2n� 8�n.

The upper bound on this error depends on the properties of the graph and the properties of
the implementation. The maximum error occurs when n is maximum. Clearly, n is never greater
than the maximum degree of G, Dm. This upper bound can only be reached when w is the highest
degree vertex, s is a state where all neighbors of w are in VI and u is a state where all neighbors of
w are in VO (or vice versa). The upper bound on n is also limited by the maximum number of state
changes that can occur during a move, �m. In the shared state model, �m = (p� 1) � a, where p is
the number of processors and a is the number of moves that can be accepted by another processor
during one move. In the replicated model, �m = (p� 1) � a � l, where l is the number of attempted
moves between updates. Combining the two limits on the maximum net number of vertices crossing
the partition yields nm = min(�m;Dm). The minimum error in the cutset calculations in the graph
partitioning problem is

�m = j(2� 8 � �) � nmaxj .

3.3 The E�ect of Error on Transition Probabilities

The error in the change in energy will also lead to an error in the transition probability, the
probability of accepting a move from u to v:

Puv = min(1; e��Euv=T ) , (5)

where v = m(u). The transition probability in the presence of error, P 0
uv, is the weighted average

over all the possible errors which can occur. An error occurs whenever the system was in a state
other than u when the processor begins its move. Every state, s, which is in the domain of m
contributes to the error. For each of these states, s, let �um(s) be the probability that a processor
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will consider changing the state from u to v using �Est, where v = m(u) and t = m(s). �um(s)
depends on how easily the other processors can change the state from s to u. The perturbed
transition probability is the summation of each erroneous transition probability, Pst, weighted by
the probability that a transition was made from s to u:

P 0
uv =

X
s

�um(s) � Pst , (6)

where v = m(u) and t = m(s).

Theorem 1 The probability of making a transition from state u to state v at temperature, T , at
equilibrium in the perturbed system is related to the unperturbed transition probability by:

e��m=T � Puv � P 0
uv � e+�m=T � Puv .

Proof : An error in the change in energy, �E, does not necessarily lead to error in the decision
to accept or reject the move. The e�ect of error on Puv depends not only on the magnitude of the
error but also on the signs of �Euv and �E0

uv. For example, if both �Euv and �E0
uv are less than

zero, then the correct action, accepting the move, will be taken even if the value of �E is incorrect.
Considering all the possible combinations of the signs for �Euv and �E0

uv, yields four di�erent
cases. Let s, t, u and v be four states as shown in Figure 1, where t = m(s), v = m(u) and u and s
are in the domain of m. We will show that the erroneous transition probability, Pst, is bounded by

e��m=T � Puv � Pst � e+�m=T � Puv . (7)

for each of the four cases. Then by substituting these bounds into the right hand side of Equation
6, bounds on P 0

uv are derived.
The �rst case, shown in Figure 2(a), occurs when �Euv > 0 and �E0

uv = �Est > 0. In this
case, both the actual move and the intended move are uphill moves. The error in the accept/reject
decision comes from the di�erence in the accept probabilities Puv = e��Euv=T and P 0

uv = Pst =
e��Est=T . By Equation 3, we know that �Est = �Euv + �msu, so Pst = e��

m
su=T � Puv. Since �m is

the maximum possible error, e��m=T � e��
m
su=T � e+�m=T and therefore e��m=T � Puv � Pst �

e+�m=T � Puv.
In the second case (Figure 2(b)), �Euv > 0 and �E0

uv = �Est � 0. In this case, cost function
error will cause the algorithm to always accept the move whereas the move should only be accepted
with probability e��Euv=T . The perturbed transition probability di�ers from the true transition
probability by Pst = 1 = e+�Euv=T �e��Euv=T = e+�Euv=T �Puv. Since �Euv and �Est have di�erent
signs, it will always be true that j�msuj � �Euv. Since �m � j�msuj, ��m � �Euv � +�m and
therefore Equation 7 holds when �Euv > 0 and �Est < 0. The third case (�Euv � 0, �Est > 0),
shown in Figure 3(a), is analogous to the second case.

In the fourth case, shown in Figure 3(b), both �Est and �Euv represent downhill moves. Thus
Pst = Puv = 1 and there is no error in the transition probabilities. Therefore the bounds on Pst
given in Equation 7 apply trivially here.
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Now that the upper and lower bounds in Equation 7 have been proved for all four cases, those
bounds can be substituted into Equation 6:X

s

�um(s) � e
��m=T � Puv � P 0

uv �
X
s

�um(s) � e
+�m=T � Puv .

Since e��m=T and e+�m=T are independent of s and
P

s�um(s) = 1, e��m=T �Puv � P 0
uv � e+�m=T �

Puv 2

3.4 Bounds on the Probability of Occupying a State

The error in the transition probability will change the frequency with which states are visited. Using
the bounds on the transition probability, P 0

st, proved in Theorem 1, we show below that there are
also bounds on P 0(s), the probability, in the presence of error, that the system is in state s.T he
size of the impact that error in �E has on the �nal solution quality is related to how much the
perturbed probability distribution, P 0(s), di�ers from the original probability distribution, P (s).

Theorem 2 Let SA be a simulated annealing algorithm and PSA be the associated perturbed an-

nealing algorithm. Let �m be the maximum possible error. SA will have a state probability distribu-

tion, P (s), in equilibrium at �xed temperature and PSA will have a probability distribution, P 0(s),
in equilibrium at �xed temperature. Then P 0(s) will be related to P (s) by:

e�2d�m=T � P (s) � P 0(s) � e+2d�m=T � P (s) , (8)

where d is the diameter of the state space.

Proof : To prove this assertion we use an argument similar to that of Metropolis et al. [22],
based on the same initial assumptions: the function for generating new states is symmetric (qst =
qts); any state can be reached from any other state by a �nite sequence of moves and at equilibrium,
P (s) � Pst = P (t) � Pts, 8(s; t). Imagine an ensemble in which many identical problems are being
solved simultaneously by the same error-prone SA algorithm. The probability of being in state s
is then equivalent to the fraction of systems in the ensemble in state s. Let �s be the number of
systems in s and Pst is the probability of accepting a move from s to t as de�ned in Equation 5.
Similarly, � 0s is the number of systems in state s0 in using the error-prone algorithm and P 0

st is the
perturbed transition probability. Then, the probability of being in state s is:

P 0
s =

� 0sP
t �

0
t

. (9)

In an ensemble of systems at equilibrium, the number of systems going from s to t is equal to
the number of systems going from t to s. Therefore, in an ensemble with error at equilibrium
� 0s � qst � P

0
st = � 0t � qts � P

0
ts, for any two adjacent states. Since qst = qts,

� 0t =
P 0
st

P 0
ts

� 0s . (10)
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If s and t are not adjacent, then there exists a sequence of intermediate states such that a path
exists from s to t, since the state space is connected. Let x1; � � � ; xn be such a sequence of minimum
length. In this case,

� 0t =
P 0
xnt

P 0
txn

� � �
P 0
x1x2

P 0
x2x1

�
P 0
sx1

P 0
x1s

� 0s . (11)

Using the bounds on the transition probability given in Theorem 1, we can show that any fraction

of the form
P 0
xixi+1

P 0
xi+1xi

, where xi and xi+1 are adjacent states, is bounded by

e��m=T Pxixi+1
e+�m=T Pxi+1xi

�
P 0
xixi+1

P 0
xi+1xi

�
e+�m=T Pxixi+1
e��m=T Pxi+1xi

,

e�2�m=T Pxixi+1
Pxi+1xi

�
P 0
xixi+1

P 0
xi+1xi

� e+2�m=T Pxixi+1
Pxi+1xi

. (12)

By substituting the upper bound given in Equation 12 for each ratio on the right hand side of
Equation 11, we get an upper bound on � 0t in terms of Pst and Pts:

� 0t =
P 0
xnt

P 0
txn

� � �
P 0
x1x2

P 0
x2x1

P 0
sx1

P 0
x1s

� 0s ,

� e+2�m=T Pxnt
Ptxn

� � � e+2�m=T Px1x2
Px2x1

e+2�m=T Psx1
Px1s

� 0s ,

� e+2(n+1)�m=T Pxnt
Ptxn

� � �
Px1x2
Px2x1

Psx1
Px1s

� 0s . (13)

Using tedious but straightforward algebra, it is easy to show that

Pxnt
Ptxn

� � �
Px1x2
Px2x1

�
Psx1
Px1s

=
Pst
Pts

. (14)

Notice that this is not the case for perturbed transition probabilities. The perturbed transition
probabilities associated with intermediate states do not, in general, cancel out because the error
associated with a transition from xi to xj is not necessarily the same as an error associated with
a transition from xj to xi. This is why Equation 11 does not reduce to Equation 10. Substituting
the right hand side of Equation 14 for the product in Equation 13 gives us an upper bound which
is independent of intermediate states:

� 0t � e+2(n+1)�m=T Pst
Pts

� 0s .

Furthermore, since n+ 1 is the minimum number of transitions required to get from s to t, n+ 1
is never greater than the diameter, d, of the space. Hence, we can generalize the upper bound to
apply to any pair of states, s and t, in the space:

�t � e+2d�m=T Pst
Pts

� 0s .
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A similar analysis gives a lower bound on � 0t, yielding

e�2d�m=T Pst
Pts

� 0s � � 0t � e+2d�m=T Pst
Pts

� 0s . (15)

Substituting the upper bound of Equation 15 for � 0t in Equation 9, gives

P 0
s �

� 0sP
t e

�2d�m=T Pst
Pts

� 0s
= e+2d�m=T

 X
t

Pst
Pts

!�1
. (16)

Since Pst = 1 if Es > Et and e��Est=T if Es � Et, we split the sum in Equation 16 into two parts;
those states t for which Pst = 1 and those states t for which Pts = 1. Thus,

 X
t

Pst
Pts

!�1
=

0
@ X
t3Es>Et

1

e�(Es�Et)=T
+

X
t3Es�Et

e�(Et�Es)=T

1

1
A
�1

=

 P
t e

�Et=T

e�Es=T

!�1
= P (s) .

By substituting P (s) for the inverse sum in Equation 16, we get an upper bound on the per-
turbed probability distribution P 0(s) � e+2d�m=TPs. Similarly, we can show a lower bound of
e�2d�m=TP (s) � P 0(s), yielding the �nal result of the theorem. 2

Since SA uses the Metropolis algorithm to approximate the equilibrium distribution at all
temperatures, Theorem 2 relates the behavior of SA algorithms which allow error in �E to that
of error-free SA algorithms. This work has been presented as an analysis of error in �E resulting
from processor interaction. It is also possible to apply the theorem to serial algorithms where the
error in �E comes from other sources, such as an approximate calculation of �E, as described
in [8, 10]. Preliminary versions of our results [8, 9, 10] erroneously do not include the diameter of
the state space in the bounds on the probability distribution. The original work did not take into
account the fact that error can accumulate as the algorithm progresses through the state space,
as expressed by Inequality 13. An analysis by Greening [12] also fails to address this problem of
accumulated error.

Since all macroscopic properties of a system can be derived from the distribution of states, The-
orem 2 also gives bounds on average quantities such as the average energy at a given temperature:

Corollary 1 Errors in the expectation value

< ~F >=
X
s

FsP
0(s)

of any macroscopic property, F , of the system are bounded.

For example, the average energy in the presence of error as a function of temperature,

< ~E(T )>=
X
s

P 0(s) �Es(T )

is bounded by
e�2d�m=T <E(T )>�< ~E(T )>� e+2d�m=T <E(T )> .
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3.5 Discussion

For a given application problem and a given parallel implementation, an upper bound on the error
in �E can be derived that depends on the number of processors and the number of moves between
updates. This can be translated into bounds on P (s) and < ~E(T )> that also depend on architec-
tural parameters. Given a performance model based on these same parameters, implementation
choices can be linked to both the execution time and equilibrium values, providing a theoretical
framework for examining the tradeo� between speed and accuracy.

This framework could pro�tably be extended in several ways. As with all work to date in this
�eld, our results only apply to equilibrium conditions. They do not address the impact of error
on the cooling schedule. Convergence proofs for both serial and parallel simulated annealing, of
which we are aware, prove convergence to a global optimum given restrictions on the annealing
schedule such that the simulated annealing algorithm will require in�nitely long to complete. Yet,
in practice, simulated annealing is used to obtain near-optimal solutions in �nite time. Until we
have a theoretical model of the �nite time behavior of simulated annealing, we will not have a full
understanding of its behavior in practice.

Second, an average case analysis would provide a more accurate assessment of the impact of
error on simulated annealing. The bounds presented in this section show that worst-case error
can be very large. One reason is that the bounds on P 0(s) become large as T approaches zero.
This is because the worst error, �m, is independent of temperature. In implementations of \real
world" problems, the acceptance rate decreases with T and the probability that other processors
will change state during the current move also decreases. We expect that the average error <�>
will decrease with T with the result that the ratio <�> =T will not become unbounded as the T
approaches zero.

A second problem is that the bounds are not tight. First, since this is a worst case analysis,
our model assumes that the worst error occurs at every move. Therefore, e��m=T is not a tight
lower bound on perturbation in the acceptance probability, e��

m
su=T . Second, an error in �E does

not necessarily lead to a wrong decision in the accept/reject decision. For example, if �E and �E0

are both negative, no error will occur since the move will be accepted whether error is present or
not. However, only if a wrong decision is made do errors in �E contribute to a perturbation in the
equilibrium distribution of states. An average case analysis would address these problems also.

4 Conclusion

We have presented results concerning the e�cient implementation of simulated annealing on parallel
architectures. In parallel simulated annealing algorithms based on executing several moves in the
state space simultaneously, a tradeo� between accuracy and e�ciency occurs. The e�ciency of these
algorithms can be improved at the expense of accuracy by relaxing synchronization constraints.
This approach has been studied experimentally, but was not well understood theoretically.

In this paper, we �rst introduced a formal model of parallel simulated annealing algorithms
in which error occurs because some moves are scheduled simultaneously without synchronization.
The error in the change in energy, �E, caused by these moves was expressed formally in terms of
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changes in state due to the actions of other processors. Second, we proved a theorem concerning the
e�ect of errors in �E on systems which are brought to equilibrium using the Metropolis algorithm.
These errors in the cost calculations may derive from parallelism or from other sources such as an
approximate cost function. The theorem relates bounds on errors in �E to bounds on the resulting
change in the distribution of states. Our bounds on the equilibrium state distribution can be used to
compute bounds on macroscopic properties of the system, such as the average energy in the presence
of error. Since simulated annealing depends on the system always being close to equilibrium, by
showing how the distribution of states at equilibrium at a given temperature is a�ected by error in
�E, we express the impact of error on the behavior of the simulated annealing algorithm. Finally,
we discuss how our results, given a particular architecture and combinatorial optimization problem,
could be used to examine how speed and accuracy are related through implementation choices. We
conclude by discussing the limitations of worst-case analysis and point out how an average-case
analysis would correct them.
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