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Abstract

Given a graph G = (V, E) and a set of & pairs of vertices in V', we are interested in
finding for each pair (a;, b;), a path connecting a; to b;, such that the set of x paths so
found is edge-disjoint. (For arbitrary graphs the problem is N"P-complete, although it is
in P if & is fixed.)

We present a polynomial time randomized algorithm for finding the optimal number
of edge disjoint paths (up to constant factors) in the random regular graph G, ,, for
r sufficiently large. (The graph is chosen first, then an adversary chooses the pairs of
endpoints.)

1 Introduction

Given a graph G = (V, E) with n vertices, and a set of « pairs of vertices in V', we are interested
in finding for each pair (a;, b;), a path connecting a; to b;, such that the set of £ paths so found
is edge-disjoint.

For arbitrary graphs the related decision problem is A'P-complete, although it is in P if &
is fixed — Robertson and Seymour [23]. Nevertheless, this negative result can be circumvented
for certain classes of graphs. Peleg and Upfal [22] presented a polynomial time algorithm for
the case where G is a (sufficiently strong) bounded degree expander graph, and « < n® for
a small constant e that depends on the expansion property of the graph. (A precise upper
bound for € was not computed, but it is clearly less that 1/3). This result has been improved
and extended by Broder, Frieze, and Upfal [10, 11|, Frieze [13], Leighton and Rao [18] and
Leighton, Rao and Srinivasan [19, 20]: G still has to be a (sufficiently strong) bounded degree
expander but & can now grow as fast as n/(Inn)?, where 6 depends only on the expansion
properties of the input graph, but is at least 2.

In random graphs Shamir and Upfal have shown in [24] that any set of up to O(y/n) pairs
can be connected via vertex-disjoint paths; similar results using efficient flow techniques were
also obtained by Hochbaum [15]. These results were proved for graphs with m > Knlogn
random edges, where K is a sufficiently large constant. In these two papers the pairs are chosen
first and then the graph is randomly generated. Thus they do not deal with the problem of
satisfying all sets of k pairs.

Let D be the median distance between pairs of vertices in G. Clearly it is not possible to
connect more than O(m/D) pairs of vertices by edge-disjoint paths, for all choices of pairs,
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since some choice would require more edges than all the edges available. In the case of bounded
degree expanders, this absolute upper bound on & is O(n/logn). The results mentioned so
far use only a vanishing fraction of the set of edges of the graph, thus are far from reaching
this upper bound. Broder, Frieze, Suen and Upfal [8] have proved that for the model of
random graphs, Gy, 4,,, the absolute upper bound is achievable to within a constant factor, but
only if the average degree is at least Inn. In this work, we show that this result holds when
the minimum degree is a large enough constant. Without significant loss of generality, we
consider random regular graphs and present an algorithm that constructs the required paths
in polynomial time.

As usual, let Gy, p denote a random graph with vertex set {1,2,...,n} = [n] in which each
possible edge is included independently with probability p, and let G, 5, denote a random graph
also with vertex set [n] and exactly m edges, all sets of m edges having equal probability. Let
Gpr denote a random graph again with vertex set [n] which is chosen uniformly at random
from all possible r-regular graphs.

Our main result is formulated in the following theorem.

Theorem 1 Let r be a sufficiently large constant. Then, as n — oo, the graph Gy, has the
following property whp: there exist positive absolute constants o, 3 such that for all sets of
pairs of vertices {(a;,b;) | i =1,...,k} satisfying:

(i) &= [arn/log, n],
(i1) for each vertex v, |{i:a; =v}| + |[{¢: b =v}| < pr,

there exist edge-disjoint paths in G, joining a; to b;, for each i = 1,2,..., k. Furthermore,
there is an O(n3) time randomized algorithm for constructing these paths.

This result is the best possible up to constant factors. The median distance between pairs
of vertices in G is Q(log, n). The need for 8 < 1 is discussed in [8].
The analogous problem of finding vertex disjoint paths in random graphs is dealt with in

[9]-

2 Preliminaries

The paper contains a few unspecified absolute constants of which « above is the first. Exact
values could be given but it is easier for us and the reader if we simply give the relations between
them. New constants will be introduced as Cy, ... without further comment. Furthermore,
specific constants have been chosen for convenience. We made no attempt to optimize themn,
and, in general, we only claim that inequalities dependent on 7 or 7 hold for n or r sufficiently
large.

For a graph G = (V, E) and v € V we let dg(v) denote the degree of v in G. We use §(G)
and A(G) to denote the smallest and largest degrees respectively. For a set S C V we let
S =V \ S and define its neighbor set, Ng(S), as

Ng(S) ={v € S: Jw € S such that {v,w} € E}.

For S, T C V we let eg(S,T) denote the number of edges with one end in S and one end in
T. For S CV, we use G[S] to denote the subgraph of G induced by S.



The Chernoff bounds on the tails of the Binomial Bin(n,#) that we use are

e—e2n0/2’ (1)
e—e2n0/3’ (2)

Pr(Bin(n, 6)
Pr(Bin(n, 6)

valid for 0 <e < 1.

3 Overview of the algorithm

Our algorithm divides naturally into the four phases sketched below.

Phase 0: Partition G into six edge-disjoint graphs G; = (V;, E;), 1 <i < 6. Phase 1 will
use only the graph G1; Phase 2 will use only the graphs G2, G3, G4 and G5; and Phase 3 will
use only the graph Gg. The partition is such that Vi = V but Vo = --- = V5 C V with
|Va| > n — en, where € = €(r) is a small constant.

Phase 1: Choose a random set Z = {z1,..., 29} of 2k points in V5. Connect the endpoints
{(a;,b;) | i = 1,...,} to the newly chosen points in an arbitrary manner via edge-disjoint
paths in G using a flow algorithm. Let a; (resp. EZ) be the vertex connected to a; (resp. b;).
The original problem is now reduced to finding edge-disjoint paths from a; to b; for each i.
(This randomization was used in [10] and has its roots in Valiant’s routing algorithm [26].)

Phase 2: We split this into parts (a),(b).
(a) For each z;, 1<i<2k, we do a random walk of length

70 = [10log, n]. (3)

starting at z; in G9. The terminating endpoint of this walk will be denoted by a; if z; = a;
and by b; if z; = b;. Ater we complete a walk we remove the edges from the corresponding
graph.

(b) For each 4 in turn, we first do a random walk starting at b; and terminating at b} in Gy.
Then we repeatedly do a certain type of random walk in G3 starting from &, until one of these
walks ends at b;. We keep the last walk as our path from a; to b] and remove all edges seen
in these walks from G3 and G4 respectively.

Most pairs (@, b;) will be successfully connected in this phase. For such a pair, the final
path from a; to b; is the concatenation of the paths (after removing cycles if necessary.) from
a; to @; and from b; to b; found in Phase 1, the paths from &; to a;, from @; to b}, from b; to
i)i and from l~)z~ to i)i which are found in this stage. It is important in our analysis to ensure
that random walks are done on graphs of high minimum degree. We use G5 as a backup for
ensuring that this is done.

Phase 3: At the end of Phase 2, whp, there will be at most n/(Inn)° pairs (&i,l;i) which
have not been joined by paths. We use the algorithm of [10] to join them by edge disjoint
paths, using only the edges of G, and then construct the final paths from a; to b; as above.

To prove Theorem 1 it suffices to show that for almost every Gy, ;-

e Phases 0 and 1 will succeed for all choices of aq,...,b; and almost every choice of
Rlyees3R2-

e Phases 2 and 3 are successful for almost every choice of z1,..., 22 and any bijection
{&1,...,&K,b1,...,bk} — {21,...,2’2K}



Note that to prove these facts we have to consider only one experiment, namely choose Gy, ,

at random, choose ay,...,b, arbitrarily and then zi,..., 29, at random. From this we can
deduce that almost every Gy, , is such that for all choices of a1, ..., b, and almost every choice
of 21,..., %2, we can find edge-disjoint paths a; — a; —a; — by —b; —b; — b; for 1 < i <.

4 Detailed description of the algorithm

The input to our algorithm is a random graph G, , and a set of pairs of vertices {(a;, b;) | i =
1,...,x} satisfying the premises of Theorem 1. The output is a set of x edge-disjoint paths,
Py, ..., P, such that P; connects a; to b;.

4.1 Phase 0.

We start by partitioning G into six edge-disjoint graphs G; = (V;, E;), for 1 <4 < 6. Phase
1 will use only G1; Phase 2 will use only G»,G3, G4 and G5; Phase 3 will use only Gg. The
partition is such that Vi =V but Vo =--- = V5 C V with |Vo| > n — en, where € = €(r) is a
small constant.

In this construction, we use the notion of a k-core. The k-core of a collection of graphs
Hy, Ho, ... H; on the same vertex set V is the largest subset of V' which induces a subgraph
of minimum degree at least & in each of Hy, Ho,..., H;. It is unique and can be found by
repeatedly removing vertices which have degree less than & in one of the [ induced graphs.
This continues until there are no vertices left or minimum degree k is achieved.

The algorithm below starts by constructing preliminary versions of these graphs, denoted
G; for 1 < i < 6. Then edges and vertices are deleted from G5, ...,Gg in order to achieve
certain minimum degree properties.

1. Algorithm SpLIT

2. begin

3. Divide E into E], 1 <4 < 6 by placing each edge of E independently
with probability 1/6 into each of E] for 1 <7 <6.

4. for 1 <i <6 set G + (V,E])

5. K + [r/7]—core of G

6. for 2 <i <6 set G; + G|[K]

7. K + [r/7]—core of Go,...,Gs.

8. for 2<i<6 GZ:(‘/Z,EZ)(—GZ[K]

9. end SPLIT

We will show later (Lemma 4) that whp this algorithm terminates with |K| > n — en
where € is small. Note that SPLIT ensures that

e The final graphs G;, i = 2,...,6 have the same vertex set K.

e Every v € K has degree at least [r/7] in each G;, 1 < i < 6.

e Every v € K has degree at most 2r/7 in each G;, 2 <i <6.
IfveV\K thendg, (v) =dg(v) =r.



4.2 Phase 1.

Choose z1,29,...,20; € Vo uniformly and randomly without replacement. Let Z denote the
set {z1,22,...,%2}. We are going to replace the problem of finding paths from a; to b; by
that of finding paths from &; to b;, where {a1, by, dg, bo, ..., a4, E,Q} = Z. Let A denote the set
{0,1, bl, as, b2, cee g Qgy bm}

We connect A to Z via edge-disjoint paths in the graph G using network flow techniques.
We construct a network as follows

e Fach undirected edge of G gets capacity 1.
e Each v € V becomes a source of capacity |{i : a; = v or b; = v}| and each member of Z
becomes a sink of capacity 1.

Then we find a flow from A to Z that satisfies all demands. Since the maximum flow has
integer values, it decomposes naturally into |A| edge-disjoint paths (together perhaps with
some cycles). If a path joins a; to z € Z, then we let a; = 2. Similarly, if a path joins b; to
z € Z, then we let b = 2.

Thus Phase 1 finds edge-disjoint paths Wi(l) from a; to a; and Wi(6) from Ei to b;, 1 <
1 < K, where the vertices a1, 51, as, 52, R E,Q € V5 are chosen uniformly at random without
replacement. On the other hand there may be some difficult conditioning involved in the

pairing of &; with b;, 1 < ¢ < k. We deal with this in Phase 2(a).

4.3 Phase 2.
4.3.1 Algorithm GENPATHS.

We construct edge-disjoint paths connecting @i, b; for 1 <4 < k in this phase using random
walks. A random walk on an undirected graph (or multigraph) G = (V, E) is a Markov
chain {X;} on V associated with a particle that moves from vertex to vertex according to the
following rule: The probability of a transition from vertex v, of degree d, to a vertex w is
1/dy if {v,w} € E and 0 otherwise. (For multigraphs, each edge out of a vertex is an equally
likely exit; loops are counted as two exits.) Its stationary distribution, denoted by 7 or 7(G),
is given by

dy
Ty = .
° 2l
A trajectory W of length 7 is a sequence of vertices [wg, w1, ..., w;] such that {ws, w1} € E

for 1 <t < 7. The Markov chain induces a probability distribution on trajectories in the usual
way. We use Prg) (a,b) to denote the probability that a random walk in G of length 7 starting
at a terminates at b.

There is some possible conditioning involved in the pairing of &; with bi. To break this
we first do random walks Wi(2), Wi(5) starting from a;, bi,1 <i<kin graph I';. Here I'; =
(K;,E;),j = 2,...,5 denotes G; after the deletion of some vertices and edges. We do these
in the order zy,zs9,...,29. The walks are sufficiently long that their endpoints ai, b; are
essentially independent of a; and b;i. The edges of each such a walk are deleted before the next

walk starts. This keeps the walks edge-disjoint. This constitutes Phase 2(a).
Then for i=1,...,k we do the following: We construct a random walk Wi(4) starting at

b; in T'y of length 79, the endpoint is denoted by b;. (This might seem unnecessary and we
explain why we do it later.) Then in Step 20, we execute the subroutine WALK to generate a



set of random walks W1,..., W, starting at d; in I's. The last walk W, will end at by and be

accepted as Wi(?’). Finally, we delete W, ..., W, from G5 and delete Wi(4) from Gs.

It is important for the above analysis to ensure that our random walks take place on graphs
with sufficiently high minimum degree. The obvious reason for this is that we do not wish to
isolate any vertex that needs to be an endpoint of a walk. We also require that the walks take
place on graphs which are strong expanders. For us, this requires a high minimum degree.
In general we ensure that graphs supporting the random walks have minimum degree at least
r/10. We manage this by the simple artifact of removing vertices of low degree until the graph
has none left. (We could empty a graph this way, but we show later that this does not often
happen.)

If the proposed start vertex v of a walk is of low degree then we try to connect it back to
vertices of large degree (those in K;) by a path in G5. The terminal endpoint of this walk is
denoted by v’. (Note that this paths is not of length 7y, we expect it to be much shorter). We
use a subroutine CONNECTBACK for this purpose. We do not expect to succeed all the time
and our failures are kept in a set L for later consideration.

The walk from a; to b; is then the catenation of walks Wi(t), t=1,...,6. These walks may
each include a short walk W p at the beginning provided by CONNECTBACK.

For z € Z we use the notation ¢(z) = i to indicate z € {a;, b;}-



1. Algorithm GENPATHS

2. begin

3. for i =1 to 2k do

4. Ky + [r/10]-core of Ga, 'y + G2[Ka].

5. if z; ¢ Ko then

6. Execute CONNECTBACK(Ky, z;, 2}, #(zi), Wep) fi

7. if j = ¢(z;) ¢ L then

8. Let 0 =2ifz; =a; and 0 =5 if z; = Ej. Construct
random walk Wj(e) starting at z; in I's. The terminal
endpoint is a; if z; = a; and b; otherwise.

9. W Wep, W), Ga + G2\ EW")

10. fi

11. od

12. for i=1to x do

13. K3 = Ky < [r/10]-core of G3,G4, I'; < G;[K;], j =3,4.

14. if 4; € K3 then

15. Execute CONNECTBACK (K3, &;, d;, 1, ng) fi

16. if b; ¢ K, then

17. Execute CONNECTBACK (Ky, b;, b, i, W) fi

18. if i ¢ L then

19. Construct random walk Wi(4) starting at b, in T'y, the
endpoint is denoted by b;.

20. Execute WALK(d), b}, b, T's, Ty), W « W,

21. Gs + Gs\ E(W;),j =1,...,1; G4 + G4\ EW)

22. w — wEw), wi « Wil w).

23. fi

24. od

25.  end GENPATHS

4.3.2 Subroutine CONNECTBACK.

The purpose of CONNECTBACK is to connect a vertex z to vertices of large degree. All walks
are done on vertices of large degree and in Steps 3—6 we check that the start point = has large
degree in I's. (['s is initially G5 but loses vertices and edges as the algorithm proceeds). If not,
we put it into L for later. We do an edge avoiding random walk W g from z until a vertex z’
of K is reached. Later we replace z by /. By edge avoiding, we mean that one is not allowed
to use the same edge more than once. We do this for technical reasons, but it does not seem
unreasonable anyway. This is done in Steps 7-10.



subroutine CONNECTBACK(K, z,’',i, Wep)
begin
I's < [r/10]-core of G5
if x ¢ I's then
L+ Lu{i}
exit
fi

Construct an edge avoiding random walk Wep starting at z in I's until
Wcp visits some vertex z' in K

9. (This is a trivial walk if z € K).
10. Gs + G5\ Wep
11. end CONNECTBACK

© N S Otk w

4.3.3 Subroutine WALK.

To connect &; and b; after Phase 2(a) we first connect them (if necessary) to the [r/10]-core

of G3,G4. We then do a random walk Wi(4) in I'y starting at l;; and ending at b;. We then try
to join &} to b.

To join &} and b}, the reader might expect us to choose a random walk from those with
endpoints a;, bf. The main problem with this is that the distribution of b} may be significantly
different from the steady state distribution of a walk from &; in I's. If we choose a walk in
this manner then deleting it will condition the graph in a way which is complex to analyze,
especially as we have to repeat the procedure x times.

We overcome this by choosing a set of random walks and use rejection sampling to make
the final walk have the correct distribution. There is still the complication that the b}
are chosen before we do the walks. This leads to the subroutine WALK described next.
WALK (&}, B, b, T'3,T4) generates a series of random walks of length 7y in T's starting from
a;. The last walk generated ends at b which has the distribution

Dy = Pl'(‘ZO)(B;a U)'

[There is the question as to why we do not try to construct a walk from &; to b;. We need
in WALK to generate an endpoint from the same distribution as the target. This will not be
so easy if b; has dropped out of the [r/10]-core.]

The somewhat strange method used to generate these walks will be further explained in
Section 8.



1. subroutine WALK(a;, l;;, b, T'3,T'4)

2. begin

3. Py Pé;o)(dg,v) for v € K3

4. Py + P (8l,v) for v € Ky (the distribution of b.)

5. Pmin ¢ min{p, : v € K3}

6. Pmax — max{p, : v € K4}

7. Choose [ from the geometric distribution with probability of success

s = pmin/ Prax

8. for k from 1 to [ — 1 do

9. Choose zj, according to Pr(zy = v) = (py — PuPmin/Pmax)/(1 — 3)

10. od

11. Ty bf

12. for k£ from 1 to [ do

13. Pick a walk W}, of length 7y in I's according to the distribution
on trajectories, conditioned on start point = & and
end point = x,

14. od

15. output WI,WQ,...,WZ

16. end WALK

The distributions p, and p, can be computed in O(nm7y) time by computing powers of the
transition matrix, after which a random walk can be found in O(n7p) time. (For details see
[10].) The analysis will show that in the range of interest, whp, s is bounded away from zero
by a constant, hence the expected total running time of WALK is O(nmy).

4.4 Phase 3.

There is still the set L of pairs which have not been connected by paths. We will show later
that whp |L| is at most n/(logn)“°. As such, these pairs can be dealt with by the algorithm
of [10], using graph Gé.

5 Configuration model

5.1 Model.

We first show (Lemma 2 below) that the graphs G;, ¢ = 2,...,6 are random given their degree
sequences.

The simplest model for graphs with a fixed degree sequence is the configuration model
of Bollobés [4] which is a probabilistic interpretation of the counting formula of Bender and
Canfield [2]. Let d = {di,do,...,d,} denote a degree sequence, block D; = {1,...,d;} x {i}
for 1 <4 <wvand D = U/,D; be the set of points. Let Q = Q(D) be the set of partitions
of D into pairs. Such partitions are called configurations. If F € € then the multigraph
M(F) is defined as follows: V(M) = [v] and there is an edge {%,j} for every pair in F of the
form {(z,%),(y,7)} (for some z and y). Assume F is chosen randomly from 2. The salient
properties of M = M(F) (see [4]) are:



Lemma 1 (a) If M is simple, then it is equally likely to be any simple graph with degree
sequence d.

(b) Pr(M is simple) = exp{—0(u?/v?)} where u = |D|/2 is the number of edges in M -
hence 2u /v is the average degree of M.

It therefore suffices to replace Gy, by a random configuration multigraph G = M (F') where
d = (r,r,...,r). The corresponding random partition is denoted by Fy. Any property that
holds whp in this model, holds whp in Gy, , since exp{—O(u?/v?)} = e~%). In what follows
the graphs Go, ..., Gg are multigraphs associated with configurations Fs, ..., Fg.

5.2 Random walks on configurations.

To analyse random walks on the graphs G;, we need to be sure they have the correct distri-
bution.

Lemma 2 For each i = 2,...,6 the configuration F; produced by algorithm SPLIT is random
given its degree sequence i.e. conditional on having degree sequence d, F; is equally likely to
be any pairing of the corresponding > d; points.

Proof: Let F' be obtained from F by including each pair of F with probability 1/6. We first
show that F' is a random configuration given its degree sequence. Notice that

Pr(F') _ Y Pr(F | F)
Pr(d) Q[ Pr(d)

and Pr(F' | F) = (1/6)(Zd")/2(5/6)(m—2 4)/2 if F' ¢ F and 0 otherwise. Suppose F; and
F, are two configurations with the same degree sequence d, and let 7, = {F | F; C F}
and Fo = {F | F» C F}. It suffices to show that |Fi| = |Fa|. Let Ey be the set of pairs
F\ @ Fy, = (F1 \ F») U (F» \ F1). Define mapping f : F1 — F» as follows: Given F € Fy, let
f(F) =[F\ (EyN F)]U (Ey N F). It’s easy to see that f(F) € Fo and f~!: Fp — Fi is
well-defined as f~}(F) = [F \ (Ey N F2)] U (Ey N Fy). Hence f is a bijection and |F;| = |Fa|.

Thus (in an obvious notation) Fi,..., F{ are all random configurations. Deleting a set
D; and all ¢ pairs containing a member of D; from F] preserves randomness since every
derived configuration arises from the same number of possible configurations F]. So the final
configurations Fs, ..., Fg are random, given their degree sequences. O

Pr(F'|d) =

We need to show that removing the edges of a random walk does not condition the pairings
of the remaining points. We now consider the construction of a random configuration F. It is
useful to think of F as being constructed sequentially.

1 Algorithm CONSTRUCT

2 begin

3 Fy+ 0; Ry + W

4 for t =1 to |W|/2 do

5. Choose us € R;_1 arbitrarily

6 Choose v; randomly from Ry \ {u:}

7 Fy +— Fioy U{{ug,ve}}s Re < Re1 \ {ug, ve}
8 od

9 output F

10. end CONSTRUCT

10



It is important to observe that for any ¢t > 0, F'\ F}; is a random member of Q(R;).

An important consequence of the above observation is that if we start with M = M(F),
then the multigraph obtained by removing from M the edges of a random walk W remains
unconditioned. Indeed, we may imagine CONSTRUCT as performed in parallel with our walk
W. Suppose our walk makes a transition from a vertex z and the current value of R; in
CONSTRUCT is R. The transition from z is equivalent to choosing a random member v = u; of
D,. If u € R, then we perform one step of CONSTRUCT and pair u with a point v = v; € R\{u}.
If ve D, for some y, then the walk makes a transition from z to y. If u ¢ R then v is the point
already paired with u. Thus, since F' \ F; is random, we see that removing from M the edges
of a random walk results in a multigraph from a random configuration. The same argument
can be applied to the edge avoiding walk of CONNECTBACK. In the latter case we do not need
to consider the case u ¢ R;.

In summary, we can conduct our analysis of Phase 3 always assuming that the graphs Go
— G5 are random configuration multigraphs, given their degree sequences.

6 Analysis of Phase 1

We begin with some discussion of G:

Lemma 3 Whp every subgraph H of G which is induced by a set of vertices S, |S| < ng =
27n/(8€%r3), has at most 3|S|/2 edges.

Proof: Let Dg = U;cg D; = {wy, wo,. .. ,wT|S|}. Let us randomly pair up w1, ws, ... . At any

stage, if w; has not been paired with any of wi,wo,..., w;_1, and given the pairings of these
points, the probability that w; is paired with something in Dg is at most |S|/n. Hence

. no n rs s 3s/2
PI‘(EIS: |S| = 8 S 19, S contalns 38/2 edgeS) S sgl ( > (33/2) (E)

3
20, ne\* [2ers)35/?

< g it

Tz (8) (3n)
s=4

io: (865T3S> 5/2
] 27n

= 0(n™?).

|

The next lemma concerns the size of K at the end of SPLIT.

Lemma 4 If K is as defined in algorithm SPLIT then whp
K| > (1—e /80,

Proof: Fix 1 < ¢ < 6 and consider G} immediately after Step 4. If v € V then de: (v) has
distribution Bin(r,1/6) and hence at this point (1) implies

Pr(dg: (v) < [r/7]) < & = e77/%%.

Soif Vi={veV: dg(v) > |r/7]|} then E(|V;|) > (1 — €;)n. Now the random variable |V}|
is determined by the outcome of rn/2 random choices. Also, changing one such choice results

11



in changing |V;| by at most 2. Applying the Azuma-Hoeffding martingale tail inequality ([5],
[21]) we obtain
Pr(|Vi| <B(Vi) — ) <e /™.

Putting t = €;n we see that whp
Vil > (1 — 2¢1)n, 1<4{<6. (4)

Now consider K at the end of Step 5. Let Wy = V'\ V; and define a sequence wy, wo, . .., wg
as follows: Suppose W; = Wy U {wi,wo,...,w;} and w;4; is an arbitrary vertex not in W
but which has at least 2 neighbours in W;. The sequence stops at index k when every vertex
not in Wy, has at most one neighbour in Wj. Now every vertex not in Wy has dg (v) > |r/7]
and hence has degree at least |r/7| in V' \ Wj. Thus |K| > n — |Wy|. We now show that whp
k < 6e1n. If not then

® Wee,n has at most 8e¢;n vertices.
o Wee,n contains at least 12e;n edges.

For sufficiently large r, this contradicts the conclusion of Lemma 3. Thus whp, at the end of
Step 5,

|K| > (1 — 8e1)n. ()
Now consider the execution of Step 7. One can see that the value for K at the termination
of this step is independent of the order in which vertices are deleted by the k-core algorithm.
So assume that we start by deleting US_o(V \ V;). (4) and (5) imply that whp after this
|K| > (1 — 18¢1)n. We then argue, similarly to above, that no more than 72¢;n more vertices
will be deleted by the k-core algorithm. The lemma follows for sufficiently large r. O

7 Analysis of Phase 2

In this section we show that if our input graph G = (V, E) is G, then whp, after we run

SPLIT, we can find in G edge-disjoint paths from a; to a;, and b; to Ei, for 1 < ¢ <k, for any

choice of a1, ..., b, consistent with the premises of Theorem 1, and every choice for a4, ... ,l;,Q.
Let A and Z be as defined in Section 4.2. For § C V, let

a(S) =|{i: a; or b; € S} and &£(S) =|SnN Z|.

For sets S,T C V, let e, (S,T) denote the number of edges of G; with an endpoint in S and
the other endpoint in T'. It suffices to prove that

ex; (Sa 5') > 6(5') - a(g)a VSCV. (6)

We can then apply a theorem of Gale [14] (see Bondy and Murty [7], Theorem 11.8) to deduce
the existence of the required flow in GG for the successful run of Phase 2.

Lemma 5 Whp eg, (S,5) > r|S|/288 for all S C V, |S| < n/2.
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Proof: Assume first that |S| < ng. From Lemma 3, we obtain
ec(S,5) > (6(G1) = 3)[8] > ([r/7] - 3)|S|.

So now assume |S| > ngy and first consider eg(S,S). We claim that in the configuration
model this stochastically dominates Bin(r|S|/4, 1/3). Apply algorithm CONSTRUCT, always
choosing u; € Dy, v € S whenever possible. This is definitely possible in the first r|S|/4
choices. For each such choice, the probability that v; € D,, w € S is at least 1/3, since
|R;_1 NS| <r|S| <rn/2 and |R;_1 N S| > rn/4. But by (1) with e = 1/2,

r|S| 1) 7“|S|) —r|S|/96
< — 1 < .
Pr(B (4 '3) =91 ) =°

Thus

(EIS no < |S| < n/2 and eg(S,S) < T2|’Z'|) Z (n) o—78/96

for r sufficiently large. ) )
Assume then that eq(S,S) > r|S|/24 for ny < |S| < n/2. Given this, eg, (S, S) stochasti-
cally dominates Bin(r|S|/24,1/6). Applying (1) again with e = 1/2,

n/2
r (351 no < |S) < n/2 and eg(S,S) < T|S|) Z <n>e—m/1152

— 288 oo \ S
n/2
Z (ne —r/1152)
N $=no
=o(1)
for r sufficiently large. O
Now B
a(S) =2k — afS) > 2k — pr|S|
and so

£(S) —a(S) < |1ZN S| -2k + Br|S| < pr|S|.
Thus Lemma 5 verifies (6) for |S| < n/2 provided we choose 8 < 1/288. For |S| > n/2 we use

e, (S,8) = e, (5,8) > r|5|/288 > ZN 8| > |Z N 5| — 26 + a(S) = £(5) — ()

and so Phase 2 succeeds whp.

13



8 Analysis of Phase 3

8.1 Construction of VVZ@), I/I/i(5)

For v € K, let d;, denote its degree in I'j,j = 2,3,4 and let 7, = djo/ > yex djw be
the steady state distribution of a random walk on I';. These values change as the algorithm
progresses, but immediately prior to any random walk in a I'; we ensure that

T 2r
10 <djy < IR (7)

Hence v € K implies

L (8)

K| — T K|
Let () denote T’y immediately prior to constructing the random walk starting at z; and let
K be its vertex set, the current value of K. Let P() denote the transition probability matrix
of a random walk on I'®. Let A be the second largest eigenvalue of P®). Tt is well known
that the second eigenvalue determines the rate of convergence of a Markov chain to its steady
state. An explicit form of this result was obtained by Jerrum and Sinclair [25]: if Plg(z)( v)
denotes the probability that a random walk of length ¢ in I'(® which starts at v will end at v,
then

(i) @yt [
[P0 (w,0) —m] < (AD) o (9)

We will argue later that whp throughout the algorithm
|K| > (1 —ex)n, (10)

where
ex = BeT/250000_

We will argue that as long as K is this large, vertices are being removed at a sufficiently
slow rate so that the overall loss from K is less than exn whp. Thus the specific assumption
at each stage is that (10) holds at the present time. We do not in this way ”condition on the
future”.

We argued in Section 5.2 that I'9) is random, given its degree sequence. According to
Theorem 2 of [8], (which is adapted from [16]) the second largest eigenvalue A\ is with
probability 1 — O(|K|~%) = 1 — O(n~?) bounded by -y/+/r, where v depends only on a and a
bound on the ratio of the maximum and the minimum degrees of ', which we can take to
be 3 by (7). Taking a = 4 we have that -y is a constant independent of 7. Using this in (9) we
obtain that conditional on an event of probability 1 — O(n™%)

i 37"
B w,0) = D] < S5 (1)

So from (3) we see that for large r we have

|Prfg (u,v) — 7P| <n% (12)

Let £® be the intersection of the high probability events described in Lemmas 3, 4 and 5 plus
(10), (12) for 7MW, ... T®. We prove by induction on i that

Pr(£0+D | €0y > 1 - 0(n73). (13)
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This is clearly true for ¢ = 0 and all we need to show is that (10) holds with the correct
probability.

Fix 1 <i<k,let s=100Inn and Vg be the set of vertices in GGo which are incident with
at least /30 edges of Wy,...,W;. For § C KO of size s, let Bg be the event that S C Va.
We first show that for all such S,

PI‘(BS | E(Z)) < 26_”/250000. (14)

Let S = {v1,...,v5} C K. Let P = P(S) be the event that there exist w € KU\ §
and t = r/2000 distinct paths Py, Ps,...,P; from w to S of length < ky = (log, n)/10. If
such paths exist then the graph induced by w, S, P, P»,..., P; contains s + u vertices and
> s+ u+t—1 edges for some 1 < u < (kg — 1)t + 1. This is because the addition of each new
path to S, w adds at least one more new edge than vertex. Thus,

o i1 /) 2r(s+u)/7 3(s +w)) ettt
Pr(P) < <s+u> <s+u+t— 1) (T) (15)

< ( ne )s+u (T(s+u)e)s+u+t_1
- s+u n

(ko—1)t+1 (7“62)s+u+t(8 +u)t—1

— nt—l
< 2(T62)s+k0t+1(3 +k0t)t_1
— nt—l
< p—T/2500
— e—rs/250000 (16)

Explanation of (15): working within the configuration model we choose the s + u vertices
in at most (,1',) ways. The corresponding blocks contain at most 2r(s + u)/7 points X. We

then choose the set of lowest indices I of the s+ u + ¢ — 1 pairs in at most (ﬂﬂ;)_/f ) ways.

The last factor is an upper bound on the probability that each point in I chooses a partner in
X.

Assume P does not occur. Let W; denote the walk Wi(2). Let Z; s denote the number of edges
incident with vertices in S that are used by W; and let N; ¢ be the number of visits to S by
W;. Comnsider pg, the probability that a random walk W from u € S returns to S within 7
steps.

Lemma 6 If P does not occur then ps < 1/20.

Proof: Let dist(v,S) denote the length of a shortest path in T'®) from v to S. Define S; =
{ve KO\ S : dist(v,S) =5} forj=1,....kg—1and S, = {v € KO\ S : dist(v,S) > ko}.

We define a random walk Xy, X1,..., where Xg = 0 and X; = 5 iff W is at a vertex v € §;
after ¢ steps (Sy = S). Then given P and that the minimum degree in T is /10, for a
random walk W,

Pr(X, =j+1| X, = j) > 199,200, j=1,...k—1 (17)
Pr(Xep1 = ko | X¢ = ko) > 199/200. (18)
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Now define another random walk X =0, X1, ..., where

199
Y s5=1
200 d

1 §=-1X%,>0, or
200 §=0 X;=0

PI‘(XH_l = Xt + 5) =

Now for u > 0 we have

u N2 e
Pr(X, =0) < (Wﬂ) (ﬁ) < 50-Tu/2]

since if X, = 0 at least [u/2] of the first 4 moves must be to the left i.e. § <0. So,
oC oC
Pr(Ju>0:X,=0) <Y 50142 <23 507 =

Tt follows from (17) and (18) that X; < X; in distribution up to the first time ugy that X, = ko.

S
° 2
Pr(30<u<wugp: Xu:O)g—g. (19)

Next observe that for any v > 0

Pr (X kg < _0 | X > kO) S 2k0/10200—k0/20 — 5O—k0/20
u+71o 2
. . k ko
since in order that X &, there must be at least — moves to the left.
utys T2 20

Putting u; = ug + i’li% we see that

(Elz 1<i<10: X <k2)<10><50 ko/20,

k
Then observe that if X,, = 0 for some ug < u < 73 then we must have u; < 70 for some
1 <7 < 10. This together with (19) completes the proof of the lemma. O

Let gy = Pr(N; s =k | £9) for k > 1. We claim that given Wy, Wa, ..., W;_y,

1000s 1
g < (%) 90~ (k—1) (20)

To prove (20) for k = 1, fix T and let h,(t) be the probability that the walk is at v after
t steps. For t = 0, we have two cases.

Case 1: Subroutine CONNECTBACK is not executed. In this case W; starts from z; which is
a vertex chosen uniformly at random from V5 \ {z1,29,...,2_1}. Notice that the execution of
Phase 2 does not depend on the paths created in Phase 1. Therefore we can analyse Phase
2 without reference to Phase 1 and it is legitimate to consider z; as chosen randomly in this
way, independent of the state of (). So

hy(0) < % < 107®. (21)
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Case 2: Subroutine CONNECTBACK is executed. In this case W; starts from z; which is the
end point of a random walk in I'3. The random walks in I's only use unexposed edges. The
endpoint is chosen randomly from K® with probability at most 27rz(,i), see Section 8.3.
So in either case h,(0) < 107r1(,i). We can now inductively show that h,(t) < 107r1(,i) for all
t > 0. Using the stationarity equations, we have
2
hot+1) = fuw (1) <10 Y @ = 107" < 100

(i)

0 (22)
WENF(i) (U) dw wENF(,-) (U) dw

n

The last inequality follows from (8) and (10). Hence, if §; denotes the probability that N7 g > 1

then T
0
1< 1000slog, n

For k£ > 2, (20) follows from
ax < pl a1
We prove next that whp the size of V5 is small. First (20) implies that

1000s1
k>1
1
<14 Geslogrn (24)
n

Clearly Z; s < 2N; 5. Thus for any ¢ > 0,

g
Pr (Z Zjs > st

j=1

D, 75) (25)

> (exp{zi: Njs} ‘ 5“),75)

j=1
Coslog,.n U .
< e‘st/2(1 + 22050 )E(exp{z Nj,S} ‘ 5(z)’75)
n 5
j=1
-1 ) _ (i-1) P
< e 2 exp{ 702810g?n}E(exp{ N,S} ‘ g0-1) 'P) Pr(e™ . P)
n j=1 ( ,P)
st Chslog,.n 1
< _Z _
_exp{ 5 + - }Pr(é’(i),P)
n
< 2exp{s(—t/2 + 2arCs)} (26)

Take t = /30 and o < (240C;)~! so that —t + 2aCar < —r/120. Therefore
Pr(S C Vy | €D, P) < 2e77/120,

Thus,
Pr(SC Vs | EDY < Pr(P | EN+Pr(SC W | £ P) < 2¢=5/250000
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proving (14).

So if €9 = e 7/250000 they it follows easily that whp |I72| < 3ean. Indeed

o((%)e) ()
8 8
< <
3eam
8

<2(e/3)* = 0(n™?). (27)

Suppose that besides V5, we also delete vy, va, . .., v, from Ks in Step 4 of GENPATHS. We

claim that £ < ean. To see this note that v; must have at least [r/7] — /30 — /10 > /200
neighbours in Vo U {v1,...,vi—1}. Thus Vo U {v1,...,v;—1} has at least #r/200 edges. This
contradicts Lemma 3 for £ > ean and r sufficiently large, which proves that |K| > n(1 — 4e2)
whp for the duration of Phase 2(a).

8.2 Construction of I/Vi(4) and Analysis of WALK

The arguments we gave above apply to constructing and deleting Wi(4) in I'y and we will focus
on discussing the subroutine WALK. Consider a modification of WALK defined as follows:

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.

14.
15.

subroutine WALK1(al, b, b, '3, T'y)

17 713 T

begin

Py — Plgzo)(dg,v) for v € K3
Py + P (8l,v) for v € Ky (the distribution of b.)
Pmin ¢ min{p, : v € K3}
Pmax  max{p, : v € Ky}
{0
forever do
l—1i+1
Pick a walk V_Vé of length 7y in K3 according to the distribution
on trajectories, conditioned on start point = &;
Let &; be the terminal vertex of W;
With probability Hz,pmin/(Pz,Pmax) accept W; and exitloop
od
output Wi, Wa,..., W;

end WALK1

Lemma 7 In WALKL, &; is chosen according to the distribution p.

Proof: The probability s that a walk is accepted at the last step in the loop is given by

s= Y p,epmn _ Duin, (28)
vEKs DyPmax Pmax
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(Observe that pmax > 1/|K4| = 1/|K3| > pmin-) Thus

o ~ .
Pr(d; =v) = >_(1—5)'p, o = . (29)
k=0 DyPmax

O
Hence W; is a random walk to a vertex chosen with distribution p. Furthermore, by (8),

1
s>0=— (30)
9
and therefore the expected number of walks generated is constant.
There is a minor problem in that we want to choose the endpoints before we do the walks.

This leads to the algorithm WALK described before. We now turn to its analysis.

Lemma 8 Suppose that b} is chosen from Kj with distribution p. Then the walks W1, ..., V_Vé
in WALK1 (@}, b, b5, s, Ts), and the walks W1, ..., Wy in WALK(&,, b}, b%, T'3,T'y) have the same

2 I 19 Y17 V1
distribution.

Proof: Note first from the proof of Lemma 7 that £ and £ have the same truncated geometric
distribution. Also, we have from Lemma 7 that £; and z; = b; have the same distribution.
Consider next that for vy, va,...,v; € K3,

Pr(#; =vi,..., 3 = v; and£>i)

% ~ i ~
Dy; Pmin Dy; Pmin
—I1{ (1- 222 ) p, ) =TT (pos - 222
j=1 (( pvjpmax> UJ) ]1;[1 K Pmax
i - -
; Du; _pv-pmin/pmax
— 1_ ) J J
(1o T (PPl )

j=1

=Pr(zy =v1,...,2; = v; and £ > 7).
Thus £1, %9, ...,%; and 1, T2, . . ., 74 have the same distribution. Finally, the lemma follows

from the fact that the distribution of W; conditional on 2; = v is clearly equal to that of W;
conditional on z; =v. O

Now we need to show that there are not many vertices in G3 having degrees less that r/10
after the £ walks are deleted. We shall refer to these walks as the ith bundle, B;. We shall
closely follow the line of proof used in the analysis in Section 8.1, with all the events now
referring to T's rather than I'y. As before, the proof reduces to showing that given & () after
the removal of the bundles By, ..., B; from Gs, the size of V3 (the set of vertices which are
incident with at least r/30 edges of By,..., B;) is small.

Again, let S be a fixed vertex set of size 1001Inn and ¢; be the probability that S is visited
by bundles By,..., B; exactly k times. We now evaluate the number of visits to S. Assume
first that a; € S. In this case this we will distinguish between free visits and start visits. S
undergoes £ visits, as the start point of all the walks in the bundle. All other visits to S are
free visits. For k& > 2, the k — £ free visits to S can be distributed among the £ walks in at
most (5~1) ways. We have

100s <X [k —1 C.
Pr(k visits and a; € S) < ns Z (E B 1) o1 — o)1 < 748(1 — o+ ps)F!
=1
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The term % is arrived at as in (22).

Now consider the case a; ¢ S. Here we distinguish between first visits and free visits. A
first visit is the first visit to S in a walk. Now we argue that there will be at least & — ¢ free
visits and the probability of actually visiting S at least once in £ walks it at most IOOOSfLIOg .
We obtain

> 1 1 -1 1
Pr(k visits and 4;¢5) <y 1000s¢log, n [k tla(l—o)! < Css 8r™ (1 _ g4 pg)tL.
-1 n {—1 n

So putting £ = (0 — ps)/2 > 1/20 we see that

B((L+§Ms <143 BB _ gy
k>1 n

<14 Cgslogrn.

n

Arguing as from (25) to (26) we then obtain that

Pr (Z Zjs > st| 5(1)"ﬁ) <21+ 6)5(—15/2-1'20"”06).

j=1
We then take ¢t = r/30 as before and obtain
Pr(S C Vs | €D, P) < 2(1 4 £)7"/120 < 2¢,.

We then argue, as before, that whp |Vg| < 3e9n and then use Lemma 3 to show that the
[r/10]-core of G3,G4 is of size at least n — exn.

8.3 Analysis of CONNECTBACK

We use the subroutine CONNECTBACK to connect vertices which are not in K back to K.
In this subroutine we construct random walks using only uncovered edges. This effectively
removes the possibility of long walks which go back and forward over the same edges.

Recall the configuration model of Section 5.1. Assuming (10) and

[V (Ts)| > n—ne /80 — o(n) (31)

at each step of one of the random walks in CONNECTBACK, the probability that the next
vertex of the walk is not in K is at most 3ex. The degrees of I's satisfy (7) and these walks
model CONSTRUCT. (31) is justified by Lemma 4 and the fact that whp the [r/10]-core
of I's contains all but o(n) vertices of G5 — see the argument preceding (33) below. The
main algorithm GENPATHS will call the subroutine CONNECTBACK at most 4« times, so that
the total number of random walks executed by CONNECTBACK is at most 4x. Let W; be
the ith walk executed by CONNECTBACK. As before, fix v and let N;, be the number of
visits to v € G5 by the walk W;, Z;, be the number of edges incident with v which are
traversed by W; and let ¢; be the length of W;. It is clear from the previous paragraph that
Pr(¢; > (Inn)?) = O(n~4) for any constant A > 0. We can therefore consider a modified
algorithm which terminates in failure if ever we find £; > (Inn)2.
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Note now that the probability that W; starts at v is at most 10/n since either v is chosen
uniformly from K(® (Step 6 in GENPATHS) or it is the endpoint of a long random walk (Steps
15, 17). Then

(In n)2
Pr(Niy=k)= » Pr(Niy=k{; =4
=k

(In n)2 / 10 k
< S Ber) (1 - 3ex) (—) (32)
s k n
(36K)k_ 1 (E) k
~ (1-3ex)* \ n
L1
In (32) we have (3ex)? (1 — 3ex) as a bound for the probability that #; = £. Then there are
(£) positions on the walk for the visits to v. Then 10/n bounds the probability that the walk
makes the move to v at this point.
Note that if v € K then N;, < 1. Also, the upper bound we have calculated is valid,
conditional on the previous history of the algorithm.
Suppose that there are k1 < 4k walks generated by CONNECTBACK overall. Then, for any
t>0
K1 K1 10 £;
Pr Y mo—t)< X II(5)
j=1

14t by =t j=1
- <f<a+t— 1) (E)t
- i n
< <4f<a+t— 1) (E)t
- i n
(40ear)t
<
~ \log, n
Let Vi be the set of vertices of G5 which are incident with at least /30 edges of W1,..., W;.
Then

K
Pr(v € V5) < Pr (Z Njy > 7“/30)

=1
2r/7 K 30
40ear\"/
< ¥ e[S -] <o)
> log, n
t=r/30 Jj=1
4 r/40
Soifp=mn ( Oear) then, by the Markov inequality,
log,. n

40eqr\ /120
) — 0.

Pr(|Vs| > p) <
r(1V5] > ) < (=%

If V5 is this small then Lemma 3 implies that the [r/10]-core T's contains all but 2p vertices
of G5 (see the argument following (27)).
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Thus

|L| < 2p whp (33)

asL§G5\I‘5.

9 Analysis of Phase 4

We join the pairs in L using the algorithm of [10]. The algorithm is capable of joining
Q(n/(Inn)¢) distinct pairs for some constant ¢ > 0, provided the graph has sufficent edge-
expansion. Notice that a;, b; are chosen as distinct vertices. For large r, Gg will whp have
ample expansion and 2p will be small enough for the algorithm.
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