
FeatureBoost: A Meta Learning Algorithm
that Improves Model Robustness

Joseph O’Sullivan JOSULLVN@CS.CMU.EDU

John Langford JCL@CS.CMU.EDU

Rich Caruana CARUANA@CS.CMU.EDU

Avrim Blum AVRIM@CS.CMU.EDU

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213

Abstract
Most machine learning algorithms are lazy: they
extract from the training set the minimum in-
formation needed to predict its labels. Unfortu-
nately, this often leads to models that are not ro-
bust when features are removed or obscured in
future test data. For example, a backprop net
trained to steer a car typically learns to recog-
nize the edges of the road, but does not learn
to recognize other features such as the stripes
painted on the road which could be useful when
road edges disappear in tunnels or are obscured
by passing trucks. The net learns the minimum
necessary to steer on the training set. In contrast,
human driving is remarkably robust as features
become obscured. Motivated by this, we propose
a framework for robust learning that biases in-
duction to learn many different models from the
same inputs. We present a meta algorithm for
robust learning called FeatureBoost, and demon-
strate it on several problems using backprop nets,
k-nearest neighbor, and decision trees.

1. Motivation

Consider a backprop net learning to steer a car. In the
ALVINN system (Pomerleau, 1993) the principal internal
features learned by ALVINN nets detect the left and right
edges of the road. Typically, ALVINN nets do not learn in-
ternal features that detect other road phenomena that could
be useful for steering such as road centerlines, roadway
signs, trees, other traffic, people, etc. This creates a prob-
lem when the left or right edges of the road are obstructed
by passing vehicles, or are missing as on bridges and in tun-
nels. Yet human steering is remarkably robust to the loss of
these features. Human drivers can fall back on a number of
alternate features as different subsets of road features come
in and out of view. Backprop nets can learn to steer better
if they learn to recognize other road features such as cen-
terlines (Caruana, 1997). How can we force backprop nets

to learn to use a variety of road features when learning to
steer?

A related problem arises in health care (Cooper et al.,
1997). Basic inputs such as age, gender, and blood pressure
are available for most patients before they enter the hospi-
tal. Other measurements such as RBC counts, oxygenation,
and Albumin become available after patients are hospital-
ized. As you would expect, models trained to predict pa-
tient risk from both the pre and in-hospital features usually
outperform models trained to predict risk from only the pre-
hospital inputs. But these models perform poorly on pa-
tients not yet admitted to the hospital when one marginal-
izes over the missing in-hospital features. Models that use
only the pre-hospital inputs are more accurate for patients
not yet admitted to the hospital than marginalized models
trained on all the features. How can we force learning to
learn models that make better predictions when some input
features (such as the in-hospital attributes) are missing for
some test cases?

If the edges of the road, or the in-hospital features are al-
ways available, models learned the usual way perform well.
In the ALVINN and health care problems above, the diffi-
culty arises when features are missing or obscured in the
test cases. Boosting algorithms such as AdaBoost are one
way to make learned models more robust to feature obscu-
ration. If the main features such as the edges of the road
are obscured or missing from a few training cases, boost-
ing places more emphasis on these cases because they are
predicted poorly. This emphasis forces the learning al-
gorithm to use other features such as road centerlines for
these cases. Unfortunately, boosting learns about center-
lines by strongly emphasizing the cases that are missing
road edges, even though centerlines may be visible in all
images. Boosting could learn about other features better
if it used all of the training data containing those features
to learn about them. How can we make boosting take full
advantage of all the redundant information in the training
set?

This paper introduces a general framework for induction

called robust learning, which is motivated by our desire to
model situations where features may be corrupted or miss-
ing in ways not adequately represented in the training set.
Guided by the framework, we devise a meta-learning algo-
rithm called FeatureBoost, that trains models to use differ-
ent subsets of features. Because the final prediction from
FeatureBoost combines the predictions of models that de-
pend on different (often overlapping) subsets of features, it
is more robust to missing or obscured features.

We develop the paper as follows:

1 Present a general framework for robust learning.

2 Examine a specialization of this framework that sug-
gests one way to improve robustness.

3 Develop a meta-learning algorithm (FeatureBoost) in-
spired by this model.

4 Test FeatureBoost on a variety of learning problems
and machine learning algorithms.

2. A Framework for Robust Learning

Our basic goal is to force an ordinary “base” learning algo-
rithm to extract all the information it can from the training
data, in order to learn prediction rules that are robust to the
possibility of missing or corrupted features in test cases. To
make this more precise, we begin with a theoretical model
that, while not perfect, is a useful way of thinking about the
problem, and motivates the algorithm given in Section 4.

As in the usual PAC model, we assume that our training
examples have � features and are given to us from some
fixed distribution

�
over the input space. We assume there

is some target concept � we wish to learn, and to do this we
have access to a “base” learning algorithm that chooses hy-
potheses from some hypothesis class � . For simplicity, we
will fix some arbitrary error cutoff � and say a hypothesis��� � is “good” if its error is �	� , and is “bad” otherwise.

We begin by formalizing the notion that the training data
contains useful redundant information. Specifically, we say
that a set of hypotheses ��
 is � -robust if, for any subset of
� of the � features, there is some

��� ��
 that remains good
even when those � features are corrupted. For the purposes
of this model, we do not need to pin down precisely what
“corrupted” means so long as “error” is well-defined, and
for any hypothesis

�
, its error is non-decreasing as addi-

tional features become corrupted. (I.e., error tends to in-
crease as more features become corrupted.) If

�
is a good

(low error) hypothesis when no features are corrupted but
becomes bad (high error) when a subset of features are
corrupted, we say that destroys

�
.

Given access to examples from
�

labeled according to � ,
the goal of our algorithm will be to produce a � -robust sub-
set ��
���� if one exists. That is, instead of producing
a single hypothesis, we want our algorithm to produce a
set of hypotheses such that no matter what � features are

corrupted, at least one of the hypotheses is still good. � To
achieve our goal, we assume that our base learning algo-
rithm � has the property that if we feed it labeled examples
from

�
with some subset of features corrupted, it will then

produce a good
��� � (with respect to the subset of fea-

tures corrupted) if one exists.

We can say several things about this setup. First, there is a
natural brute-force method that achieves our goal by mak-
ing � � � � calls to � : for each set of � features, feed data
into � in which those � features are corrupted, and add the
hypothesis produced by � into ��
 . If � ever fails to output
a good hypothesis, we know that � was not � -robust and
therefore no � -robust ��
���� exists.

The brute-force algorithm works but is impractical because
the powerset of features is exponential in the number of
features; ideally we want an algorithm whose running time
is polynomial in � . Unfortunately, if � is “perverse”, this
may not be possible. Consider, for instance, the case that
� contains � � � � hypotheses, each of which depends on a
different subset of ��� � features and each changes from
good to bad if even just one of those is corrupted. In this
case, the only � -robust subset of � is � itself.

On the other hand, there is a natural strategy for “non-
perverse” � which can be proved to make only polynomi-
ally many calls to � in certain special cases. The strategy
is as follows:

1 Initialize ��
���� .
2 While not done, do:

1 Find the smallest set of features that destroy all��� ��
 (initially !���). "
2 Run � on examples from

�
in which features in

 are corrupted, and place the hypothesis found
into ��
 . If � fails, then halt with failure.

We can make several statements about this algorithm.

Theorem 1 Suppose every good hypothesis
��� � has an

associated feature set $# such that
�

is good if and only if
at least one feature in $# remains uncorrupted. Then, this
algorithm makes at most � calls to � and runs in linear
time per iteration.

Proof: We start with %�&� and each time a new
�

is
added to ��
 , we let (')+*��# . By assumption, will
always be the smallest set of features that destroys all of
��
 . Each iteration increases the size of by at least 1, so
the number of iterations is at most � .,

Of course, ideally we would like a single - -robust rule, per-
haps a weighted vote among hypotheses in .�/ — and in fact, this
is our goal in the experimental section of the paper. However, this
goal appears to be trickier to model theoretically, so we consider
here the weaker goal of producing a - -robust set.0

Algorithmically, the way we find 1 would depend on the kind
of hypotheses we are considering, but in the worst case we could
use brute force to try all 1 of size 1, then of size 2 and so on.

Theorem 2 Suppose every good hypothesis
��� � has an

associated feature set $# such that
�

is good if and only if
at least two features in $# remains uncorrupted. Then, the
above algorithm makes at most

��� ��" � calls to � .

Proof: Consider a graph � with one node for each of the� features, in which there are initially no edges. At each
iteration of the algorithm, put an edge into � between every
pair of uncorrupted features in $# (unless the edge is there
already), where

�
is the new hypothesis produced. Notice

that the set produced in step 2(a) must, by assumption, be
a vertex cover (a set of vertices covering all the edges), and
every iteration adds at least one new edge into the graph.
Therefore, the algorithm is done when there is no longer a
vertex cover of size � � . The theorem follows from the
twin facts that (a) no node will reach degree greater than
����� (at that point it must be in the set), and (b) the
size of the minimum vertex cover is at most the size of the
maximum matching in the graph.

The algorithm we develop in Section 4 can be thought of as
a more practical version of this strategy, for real data and
for our real goal of producing a single robust hypothesis.

3. A Special Case of Robust Learning

We now consider a specialization of the robust learning
framework presented in the preceding section. In partic-
ular, we wish to motivate the idea of using a majority vote
to boost robustness.

As in the previous section, assume there exists some un-
known underlying distribution,

�
, from which 	 exam-

ples with � features,
���� �
 � � � �
 � � � are drawn. These
examples are labeled according to an unknown target func-
tion, � �(� �
�� .
Further assume that � disjoint subsets of the features can
predict the label, � � � � � � � �����	��� �

�
 � � � �
 � � ���� "
�
 � � � � � � �
 � � �!� � � � �&� �

�
 � � � � � � � � �
 � � . Co-
training makes the same assumption though with only 2
feature sets (Blum & Mitchell, 1998).

The learning algorithm is presented with 	 labeled exam-
ples,

�
 � � � , and asked to produce a hypothesis,
� � ����

, used for future predictions. The goal is to minimize the
error � � � �"!$# � �$�
��&%�(� �
�� � .
We wish to understand how the error changes with alter-
ation to the test distribution. Specifically, consider a test
distribution in which some percentage of the disjoint fea-
ture sets are corrupted uniform randomly. Corruption of a
feature set in an example,
 , is accomplished by picking
a second example, ' , from

�
and substituting the values

of the feature set from ' into
 . This approach leaves the
marginal distribution of feature set values unchanged by
corruption.

There are two extremes to consider. The first is an Occam’s

razor motivated learner such as a decision tree, which at-
tempts to find a small set of features that can predict the
label. In the extreme, if we assume a decision tree focuses
on a particular � of the � feature sets, then when � (of the
feature sets are corrupted, the decision tree is affected � (
of the time. If there are just two labels and the decision
tree outputs a random value when it relies on a corrupted
feature, this results in error linearly increasing from � � � to) * (as � increases from

* (to � * * (.

The second extreme occurs when the model uses all fea-
tures. It is difficult to state how this will effect accuracy
without making assumptions about the learning algorithm.
Assume that a decision tree is used on each disjoint fea-
ture set with the resulting tree outputs passed through a ma-
jority voting function and that errors by one decision tree
are independent of errors by all other decision trees. From
� �) * (� � * * (, the error will increase from � � � to

) * (
at a rate dependent on the value of � , the number of feature
sets. Each decision tree error can be viewed as flipping a
random coin with some bias. If enough coins come up with
the wrong label, they will overwhelm the good predictors
in the vote. The probability of error is distributed as the
cumulative distribution of a binomial tail.

The algorithm for the second extreme dominates the first
one, always doing at least as well under any � (feature set
corruption and often doing significantly better. This moti-
vates us to create a learning algorithm using a mixture of
experts with each expert focusing on a different set of fea-
tures.

4. FeatureBoost

The algorithm we present is a variant of boosting where
features are boosted rather than examples. In boosting, the
base learning algorithm LEARN is called multiple times.
Each time it is presented with a different distribution over
the training examples. After each step, this distribution is
altered so as to increase the probability of “harder” parts
of the space. At the end, the different hypotheses are com-
bined into a single hypothesis. AdaBoost and other boost-
ing algorithms alter the distribution by emphasizing par-
ticular training examples. Think of examples as a matrix
of inputs where each row is a case. Where AdaBoost em-
phasizes rows (examples) in the matrix, FeatureBoost em-
phasizes columns (features) in the matrix instead. Similar
work with k nearest neighbors has appeared (Bay, 1998),
though the goals and algorithms differ considerably.

The goal of FeatureBoost (see Table 1) is to search for alter-
nate hypotheses amongst the features. A distribution over
features is kept and updated: at each iteration + , this distri-
bution is altered and stored in , - . The distribution is up-
dated by conducting a sensitivity analysis on the features
used by the model learned in the current iteration. The dis-
tribution is used to increase the emphasis on unused fea-
tures in the next iteration in an attempt to produce different

Table 1. Pseudocode describing the FeatureBoost algorithm.

FEATUREBOOST
� �
 � �

�
 LEARN

� �
Input:

�
 � �
�

: � examples with � features
LEARN: Learning algorithm�

: Number of iterations
1 for � � � � � � � �! do � �� ' ��
2 for + � � � � � �

� do
3 , - '�� - � 	 ��
 � � -�
4

� �
 � �
�
 � � � '

DEEMPHASIZE
� �
 � �

�
 ,
-
 +
�

) * *
 � - � � - � �

5
� - ' LEARN

� � �
 � �
� �

6 � - ' IMPORTANCE
� �
 � �

�

� -
) * * �

7 � - ' 	 ��
 �
� � - �
 � � � � � �

8 � - ' 	��
 � � - � � � � � - � * � * � �
9 for � � � � � � � �! do � - � �� '�� -� + � -���

� � � � � � - �
Output:

� � � � � � 	��-
 �
� � � � �� � � � - � � ��� �" 	��-
 �

� � � �� �
sub-hypotheses. This is repeated, and the sub-hypotheses
are combined into a meta-hypothesis that should be more
robust. The intuition behind this combination is as for
AdaBoost (Freund & Schapire, 1995). The update fac-
tor � - decreases with � - , and in turn increases the weight� �$� � � � - � associated with the final hypothesis. Thus, more
accurate hypotheses have more influence on the final meta-
hypothesis.

We calculate the importance of individual features by re-
peatedly picking a random training example and assigning
a random value to the feature according to the distribution
of values for that feature in the training set. The error of the
hypothesis on this example is then calculated. After many
iterations (we use

) * *
), the change in the average error of

the hypothesis is detected. These error changes yield an
importance vector over features that is scaled to have en-
tries in

� *
 � � . Pseudocode for the importance calculation

is provided in Table 2.

We have experimented with several approaches to the
DEEMPHASIZE function for biasing LEARN by the distri-
bution over the features , - in Step 4 of Table 1. Options
range from “hard” (e.g., removing features) to “soft” (e.g.,
scaling or adding noise to individual features). In this pa-
per we use a “hard” method for progressive feature removal
that is applicable to any learning algorithm.

We calculate the current full marginalization error � � �
from

� - � before calling LEARN. � � � is defined as the
error when every feature is picked randomly. This gives
an upper bound on the error of

� - � . We then marginalize
features from the training data, weighted by the distribu-
tion over the features, until the marginalized performance
of
� - � is worse than

� � � � + � � � - � � + � � � � � �
�

. This

Table 2. Pseudocode describing importance calculation algorithm

IMPORTANCE
� �
 � �

�

�

� �

Input:
�
 � �

�
: � examples with � features�

: A hypothesis labeling examples�
: Number of iterations

1 for � � � � � � � �! do � � '
*

2 for � � � � � � � �! do
3 for + � � � � � �

� do
4
 � ' a random example from
 �
5 �' �$�
 � �
6
 " ' a random example from
 �
7
 � ! �#" '�
 " ! �#"
8 if

�$�
 � � %�� then
9 � � '�� � �"�

10 for � � � � � � � �! do � � ' � � � �

Output: � : the “importance” of each feature

process seeks a feature set with marginalized performance
worse than � - � , and approaching � � � . In practice, we ob-
serve that occasionally it is too easy or too hard to do worse
than this threshold, so we also require that at least 15% of
the features are removed, and at least 10% of the features
remain. The pseudocode for the DEEMPHASIZE algorithm
and the helper function MARGINALIZE are provided in Ta-
ble 4 and Table 3.

Table 3. Pseudocode describing marginalize algorithm

MARGINALIZE
� �
 � �

�
 , $ � �

Input:
�
 � �

�
: � examples with � features

, : A distribution over features
� : number of features to marginalize over
 : Total number of statistical iterations�

: previous hypothesis
1 � � '

*

2 for + � � � � � � do
3
 � ' random example from
 �
4 �' �$�
 � �
5 for � � � � � � � $ do
6 %�' draw feature without replacement from ,
7
 " ' random example from
 �
8
 � ! % " '
 " ! % "
9 if

�$�
 � � %�& then
10 � � '�� � � �
11 � � ' � � �

Output: � � : the marginalized error

Table 4. Pseudocode describing deemphasize algorithm

DEEMPHSIZE
� �
 � �

�
 , +

�
 �

� �
Input:

�
 � �
�

: � examples with � features
, : A distribution over features
+ : iteration number�

: Total number of featureboost iterations
 : Total number of statistical iterations
� : previous hypothesis error�

: previous hypothesis
1 � � � ' MARGINALIZE

� �
 � �
�
 , � � �

2 � � '��
3 $ ' *

4 while � � �
� � � + � � �$� + � � � � and

�� � * � � *
or
�� � * � �) do

5 $ ' $ �"�
6 � � ' MARGINALIZE

� �
 � �
�
 , $ � �

7
� �
 � �

� ' �
 � �
�

with $ features removed using ,

Output:
� �
 � �

�
 � � �

5. Empirical Results

We now demonstrate FeatureBoosting of artificial neural
nets (ANN), k-nearest neighbor (KNN), and decision trees
(DT). For DT we used IND (Buntine, 1992). For ANN we
use three layer backprop nets with 5 hidden units, conjugate
gradient descent, and early stopping with hold-out sets. For
KNN we use unweighted Euclidean distance with � ��� .
We will contrast FeatureBoost with the meta-learning al-
gorithms MIXTURE (a simple mixture of experts) and AD-
ABOOST (Freund & Schapire, 1995).

We test each meta-learning algorithm on three domains: the
UCI Vote domain, a real pneumonia problem, and a syn-
thetic problem we created to demonstrate FeatureBoosting.
The Vote domain consists of a congressman’s voting record
on 16 votes. The label is the party, democrat or republican,
which the congressman belongs to. In each trial, 100 ex-
amples were used for training, 335 for testing. The Pneu-
monia domain uses real patient data consisting of 30 pre-
hospital and 35 in-hospital features (Cooper et al., 1997).
The label is the risk of death. In each trial 1000 examples
were used for training, 2000 for testing. In the synthetic
domain, THRESHOLD, a threshold function is drawn uni-
formly from the interval ! �) �) " . Examples are drawn uni-
formly from ! * � * * " and example features are encoded in
several ways: with a Gray code, a “peaks” code, a binary
code, a unary code, and the value divided by � * * . Gray
code is a similar to binary code except that only one fea-
ture changes at a time when counting from

*
to � * * . Peaks

code consists of � * * features with values calculated by a
Gaussian centered on the example value (Caruana, 1997).

Unary code (“thermometer code”) outputs as many � ’s as
the example value, then fills in

*
’s to reach 100 features.

100 examples are used for training and 300 for testing.

Our experiments investigate how robust each learning al-
gorithm is to random uniform feature corruption of the test
data. For each case in the test set, a random � percent of the
features are corrupted. The features corrupted are choosen
independently from case to case.

The results in Figure 1 suggest that FeatureBoost domi-
nates AdaBoost and simple mixtures of experts when fea-
tures in the test set are corrupted. Simple mixtures of ex-
perts improve robustness because a mixture of experts typ-
ically uses more features than LEARN. The improvement
is less than FeatureBoost, however, because a simple mix-
ture of experts does not focus learning to use different sets
of features. The graphs also suggest that the benefit of
FeatureBoost is most pronounced for DT and least pro-
nounced for KNN. This is expected because DT is biased
to use few features, whereas KNN with unweighted Eu-
clidean distance uses all features.

The synthetic domain (THRESHOLD) allows us to corrupt
features in different ways. Here the input is encoded in sev-
eral redundant ways: with a Gray code, a “peaks” code, a
binary code, a unary code, and the value divided by � * * .
Thus there are multiple disjoint subsets of features that
can predict the target. Figure 2 shows the performance of
FeatureBoost on THRESHOLD using decision trees. The
graphs compare the error of (DT) to that of the voting al-
gorithms, and show how robust each method is to corrupted
test data. However, the test sets are now corrupted two dif-
ferent ways; The left hand graph is as before, when each
example has percentage � features selected at random for
corruption. In the right hand graph, each example has some
percentage � of the feature sets (e.g. grey code, binary
code, etc) corrupted. This feature set corruption simulates
clusters of features tending to be occluded or corrupted to-
gether, as when parts of an image are occluded, or when an
event such as not being admitted to the hospital causes an
entire set of features to be missing. Both the AdaBoost and
Mixture voting methods are hit hard by such grouped muti-
lation — FeatureBoost, while weakened, still demonstrates
its robustness.

6. Discussion

FeatureBoost addresses the problem of how to benefit from
redundancy in input features. Most machine learning meth-
ods are lazy and learn “abridged” models. Where there
is redundancy, a learning algorithm should be capable of
learning accurate models using any of a number of different
subsets of features. But most do not. Instead, they learn the
simplest models that are accurate on the training data. Be-
cause simple models often depend on fewer features, and
fail to exploit redundancy in the input features, they are
not very robust when when some features are missing, oc-

KNN ANN DT

P
N

E
U

M
O

N
IA

0

2

4

6

0 20 40 60 80 100

AdaBoost
Mixture

FeatureBoost

0

2

4

6

0 20 40 60 80 100

0

2

4

6

0 20 40 60 80 100

T
H

R
E

S
H

O
L

D

0

5

10

15

20

0 20 40 60 80 100

0

5

10

15

20

0 20 40 60 80 100

0

5

10

15

20

0 20 40 60 80 100

V
O

T
IN

G

0

5

10

15

0 20 40 60 80 100

0

5

10

15

0 20 40 60 80 100

0

5

10

15

0 20 40 60 80 100

Figure 1. Percent improvement over learning in three domains (PNEUMONIA, THRESHOLD, and VOTING) for three learners (KNN,
ANN and DT) and for three ways of generating experts. Results are presented with 95% confidence intervals from 100 or more trial
using 20 experts. The x axis is the percent random corruption of the individual features. The y axis is the percent difference between the
error of LEARN and the error of the other methods.

cluded, or corrupted.

FeatureBoost is a meta-learning algorithm that makes the
underlying learning algorithm less abridged by learning
multiple models that use different (possibly overlapping)
sets of features. The ultimate unabridged learning proce-
dure would be to train separate models on the power set of
the input features, and combine these models weighted by
their estimated accuracy. This approach is impractical, of
course, for problems having more than a few attributes as
the power set is too large.

Despite the success of FeatureBoost on the test problems,
there are difficulties using it. The optimal schedule for bi-
asing feature use depends on the learning algorithm and
target function. FeatureBoost can be considered a heuristic
search through the space of “ideal” subsets of features. The
goal of this search is to find diverse sets of explanations for
the output label. If, as with the synthetic threshold func-
tion, features are encoded with multiple redundant disjoint
subsets of inputs, we would not want use the same feature
in two different models. In real world problems this separa-

tion is rarely so clean and it may be best to use overlapping
subsets of features.

We presented a “hard” version of DEEMPHASIZE in Fea-
tureBoost. We can also conceive of “soft” versions. All
the learning algorithms we examined allow other ways of
deemphasizing features.

1 For Neural Nets, multiply the value of a feature by it’s
emphasis. While it is theoretically possible that this
alteration does not change the learned hypothesis, in
practice the hypothesis does vary.

2 For K nearest neighbor, use a weighted inner product.
3 For decision trees, multiply the information gain of a

feature by that features weight before comparing it to
other features.

The difference between corrupted features and missing fea-
tures is important. If values are missing, a technique similar
to “sleeping experts (Freund et al., 1997)” may be more ef-
fective. In this setting, there are many sub-hypotheses that
taken together are combined to form a more robust hypoth-

0

5

10

15

20

0 20 40 60 80 100

%
 c

ha
ng

e
in

 t
es

t
er

ro
r

% features mutilated

AdaBoost
Mixture

FeatureBoost

0

5

10

15

20

0 20 40 60 80 100
% feature sets mutilated

AdaBoost
Mixture

FeatureBoost

Figure 2. The improvement from boosting DT by FeatureBoost, Mixture Models, and AdaBoost on THRESHOLD. On the left, individual
features are randomly corrupted. On the right, corruption happens to entire sets of features. Results are presented with 95% confidence
intervals from 100 trials using 20 experts. The y axis is the percent difference between the error of LEARN and the error of other methods
(higher is better).

esis using weighted majority where only hypotheses with
no missing values vote. A softer form of this where sub-
hypotheses vote with strength proportional to their confi-
dence may work well in real world settings.

Just as there are several algorithms for boosting examples,
we believe there will be several algorithms for boosting
features. In fact, we can augment AdaBoost to make it
more robust. If we corrupt training examples before using
AdaBoost, AdaBoost eventually places emphasis on exam-
ples where the main features have been corrupted, and thus
learns models that depend on other features. We find that
AdaBoosting corrupted training sets performs well when
the corruption in the training set is identical to the corrup-
tion in the test set, but can perform poorly when the test
set is corrupted differently than the training set. Com-
bining AdaBoost with FeatureBoost may yield the best of
both methods. Note that while we have begun to develop
a theoretical framework for robust learning, we do not yet
have theoretical guarantees for FeatureBoost comparable to
those for AdaBoost.

7. Related Work

Pomerleau noted that ALVINN nets learned models that
failed when unexpected new features arose (guardrails) or
expected features were obscured (road edges):

“The appearance or disappearance of irrelevant
features can disrupt a network’s driving when the
network’s training did not demonstrate their ir-
relevance. . . While they may obscure or replace
features which appear on a ‘normal’ image, there
remain enough features in the image to at least
in theory make driving using the same network
possible. . . The reason that this type of transitory
disturbance causes trouble is that each network is

trained over a relatively short stretch of road (� �
miles). As a result, during training the network
is not exposed to all possible driving situations
it might encounter when driving autonomously”
(Pomerleau, 1993).

Clearly our motivation for robust learning is very similar
to Pomerleau’s. He devised a method called “structured
noise” that bears some resemblance to the process of cor-
rupting selected features with noise in FeatureBoost. His
structured noise method added or subtracted (occluded) lo-
calized 2D regions in road images in the training set as a
way of biasing the network to be more robust to transitory
feature inclusion and occlusion. Unlike the FeatureBoost
meta-algorithm, his goal was to train one network to be
more robust, not to train multiple models to use different
subsets of features. We suspect that FeatureBoost could
benefit from Pomerleau’s method of corrupting localized
2D regions in images when applying FeatureBoost to im-
age recognition problems.

Robust learning is related to the UAV (unspecified attribute
value) (Goldman et al., 1997) and RFA (restricted focus-
of-attention) (Ben-David & Dichterman, 1998) models of
learning studied in the Computational Learning Theory lit-
erature. The UAV model is a query model in which both
the training and test data may have missing features, and
given a partially-specified example, the goal is to answer
whether or not all completions of it have the same label
(and to output the correct label if they do). In RFA learn-
ing, the learning algorithm is only allowed to examine a
small number of features in each training example, and its
goal is to produce a hypothesis that has low PAC-style er-
ror over fully specified data. Our framework is similar to
the RFA setup, except the roles of training and test data are
reversed, and we do not assume that the learning algorithm
can choose which features are missing.

8. Future Work

The framework we present for robust learning does not en-
compass all ways in which input features might differ in
the train and test distributions. FeatureBoost assumes that
this difference can be modelled as random corruption and
elimination of selected features. While this is an effective
means of focussing the learner’s attention away from some
features, it probably is not an accurate model of how fea-
tures get corrupted in the real world. For example, features
in images tend to be corrupted in connected regions. In
medicine, procedures may return results for dozens of mea-
surements at a time. In both examples, features come or go
in clumps. The way in which corrupted features clump de-
pends on the domain. It may be useful to devise specialized
versions of robust learning where the data corruption model
better fits the processes that affect features in each domain.

An alternate approach to robust learning that we are ex-
amining uses feature selection to train models on compact
sets of features. It then removes the selected features, and
trains additional models on the remaining features. This ap-
proach may better model domains such as medicine where
features being missing is more common than features being
corrupted or occluded.

FeatureBoost, which is based on one model of robust learn-
ing, has limitations. One limitation is that the current ver-
sion of FeatureBoost is restricted to classification prob-
lems. This is why we were unable to test FeatureBoost on
the autonomous vehicle steering problem that initially mo-
tivated our investigation. We are currently developing an
extension to FeatureBoost that can handle regression prob-
lems.

We are not yet able to provide theoretical guarantees for
FeatureBoost similar to those available for boosting algo-
rithms such as AdaBoost. Part of the difficulty stems from
the fact that robust learning is most useful when the train
and test distribution differ in ways that may be difficult to
characterize. One of our goals is to find restricted (though
possibly less realistic) models of robust learning where we
will be able to make strong theoretical guarantees.

9. Summary

Most machine learning algorithms extract the minimum in-
formation from the training set they need to accurately pre-
dict the labels. Once they learn a model that performs well
on the training data, they stop learning. This laziness makes
the models they learn less robust on future test cases that
have missing or occluded features. Often there is redun-
dancy in the inputs that could have been exploited to learn
models more robust to the loss or corruption of some input
features. A learning algorithm that was less lazy would try
to learn as many different models from the available inputs
as possible.

Motivated by this, we introduced a general learning frame-
work called robust learning. We then presented a meta-
learning algorithm called FeatureBoost that makes the ma-
chine learning algorithm it is applied to more robust. We
demonstrated FeatureBoost with three different learning
methods: backprop nets, k-nearest neighbor, and decision
trees. The results suggest FeatureBoost can use these meth-
ods to learn models that are more robust to the loss of im-
portant features in the test data.

References

Bay, S. D. (1998). Combining nearest neighbor classifiers
through multiple feature subsets. Proceedings of the Fif-
teenth International Conference on Machine Learning
(pp. 37–45). San Francisco: Morgan Kaufmann.

Ben-David, S., & Dichterman, E. (1998). Learning with
restricted focus of attention. Journal of Computer and
System Science, 56, 277–298.

Blum, A., & Mitchell, T. (1998). Combining labeled and
unlabeled data with co-training. Proceedings of the 11th
Annual Conference on Computational Learning Theory
(pp. 92–100). New York, NY: ACM Press.

Buntine, W. (1992). Learning classification trees. Statistics
and Computing, 2, 63–73.

Caruana, R. (1997). Multitask learning. Doctoral disserta-
tion, School of Computer Science, Carnegie Mellon Uni-
versity.

Cooper, G. F., Aliferis, C. F., Ambrosino, R., Aronis, J.,
Buchanan, B. G., Caruana, R., Fine, M. J., Glymour, C.,
Gordon, G., Hanusa, B. H., Janosky, J. E., Meek, C.,
Mitchell, T., Richardson, T., & Spirtes, P. (1997). An
evaluation of machine learning methods for predicting
pneumonia mortality. Artificial Intelligence in Medicine
9, 107–138.

Freund, Y., & Schapire, R. E. (1995). A decision theo-
retic generalization of on-line learning and an applica-
tion to boosting. Proceedings of the Second European
Conference on Computational Learning Theory (pp. 23–
37). Springer-Verlag.

Freund, Y., Schapire, R. E., Singer, Y., & Warmuth, M. K.
(1997). Using and combining predictors that specialize.
Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on the Theory of Computing (pp. 334–343).

Goldman, S., Kwek, S., & Scott, S. (1997). Learning from
examples with unspecified attribute values. Proceedings
of the 10th Annual Conference on Computational Learn-
ing Theory (pp. 231–242). New York, NY: ACM Press.

Pomerleau, D. A. (1993). Neural network perception for
mobile robot guidance. Boston: Kluwer Academic Pub-
lishers.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

