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Abstract. The standard serial algorithm for strongly connected components has linear complex-
ity and is based on depth first search. Unfortunately, depth first search is difficult to parallelize. We
describe a divide-and—conquer algorithm for this problem which has significantly greater potential
for parallelization. We show the expected serial running time of our algorithm to be O(|E|log |V).
We also present a variant of our algorithm that has O(|E|log |V|) worst—case complexity.
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1. Introduction. A strongly connected component of a directed graph is a max-
imal subset of vertices containing a directed path from each vertex to all others in the
subset. The vertices of any directed graph can be partitioned into a set of disjoint
strongly connected components. This decomposition is a fundamental tool in graph
theory with applications in compiler analysis, data mining, scientific computing and
other areas.

The definitive serial algorithm for identifying strongly connected components is
due to Tarjan [17] and is built on a depth first search of the graph. For a graph with
n vertices and m edges, this algorithm runs in the optimal O(m)!, time, and is widely
used in textbooks as an example of the power of depth first search [7].

For large problems, a parallel algorithm for identifying strongly connected compo-
nents would be useful. One application of particular interest to us is discussed below.
Unfortunately, depth first search (DFS) seems to be difficult to parallelize. Reif shows
that a restricted version of the problem (lexicographical DFS) is P-Complete [16].
However, Aggarwal and Anderson, and Aggarwal et al. describe randomized NC al-
gorithms for finding a DFS of undirected and directed graphs, respectively [1, 2]. The
expected running time of this latter algorithm is O(log7 n) and it requires an impracti-
cal n2-376 processors. To our knowledge, the deterministic parallel complexity of DFS
for general, directed graphs is an open problem. Chaudhuri and Hagerup studied the
problem for acyclic [5], and planar graphs [11], respectively. More practically, DFS
is a difficult operation to parallelize and we are aware of no algorithms or implemen-
tations which perform well on large numbers of processors. Consequently, Tarjan’s
algorithm is not evidently parallelizable.

Alternatively, there exist several parallel algorithms for the strongly connected
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components problem (SCC) that avoid the use of depth first search. Gazit and Miller
devised an NC algorithm for SCC, which is based upon matrix—matrix multiplica-
tion [10]. This algorithm was improved by Cole and Vishkin [6], but still requires
n237 processors and O(log® n) time. Kao developed a more complicated NC algo-
rithm for planar graphs that requires O(log® n) time and n/ log n processors [12]. More
recently, Bader has an efficient parallel implementation of SCC for planar graphs [3]
which uses a clever packed—interval representation of the boundary of a planar graph.
When n is much larger than p the number of processors, Bader’s approach scales as
O(n/p). But Bader’s approach does not apply to general graphs.

Our interest in the SCC problem is motivated by the discrete ordinates method
for modeling radiation transport. Using this methodology, the object to be studied is
modeled as a union of polyhedral finite elements. Each element is a vertex in our graph
and an edge connects any pair of elements that share a face. The radiation equations
are approximated by an angular discretization. For each angle in the discretization,
the edges in the graph are directed to align with the angle. The computations asso-
ciated with an element can be performed if all its predecessors have been completed.
Thus, for each angle, the set of computations are sequenced as a topological sort of
the directed graph. A problem arises if the topological sort cannot be completed —
i.e. the graph has a cycle. If cycles exist, the numerical calculations need to be modi-
fied — typically by using old information along one of the edges in the cycle, thereby
removing the dependency. So identifying strongly connected components quickly is
essential. Since radiation transport calculations are computationally and memory in-
tensive, parallel implementations are necessary for large problems. Also, since the
geometry of the grid can change after each timestep for some applications, the SCC
problem must be solved in parallel.

Efficient parallel implementations of the topological sort step of the radiation
transport problem have been developed for structured grids, oriented grids that have
no cycles [4, 8]. Some initial attempts to generalize these techniques to unstructured
grids are showing promise [14, 15]. It is these latter efforts that motivated our interest
in the SCC problem.

In the next section we describe a simple divide-and-conquer algorithm for finding
strongly connected components. In §3 we show that this algorithm has an expected
serial complexity of O(mlogn). In §4 we present a modification of our algorithm and
show that it has worst case serial complexity of O(mlogn). Our approach has good
potential for parallelism for two reasons. First, the divide—and—conquer paradigm
generates a set of small problems which can be solved independently by separate
processors. Second, the basic step in our algorithm is a reachability analysis, which is
similar to topological sort in its parallelizability. So we expect the current techniques
for parallelizing radiation transport calculations to enable our algorithm to perform
well too. A preliminary version of this work can be found in [9].

2. A Divide—and—Conquer Algorithm. Before describing our algorithm, we
introduce some notation. Let G = (V, E) be a directed graph with vertices V' and
directed edges E. An edge (i,j) € E is directed from i to j. We denote the set of
strongly connected components of G by SCC(G). Thus SCC(G) is a partition of
V. We also use SCC(G,v) to denote the (unique) strongly connected component
containing vertex v. We denote by V' \ X the subset of vertices in V which are not in
a subset X. The size of vertex set X is denoted | X|.

A vertex v is reachable from a vertex u if there is a sequence of directed edges
(u, 1), (z1,%2), ..., (g, v) from u to v. We consider a vertex to be reachable from
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itsell. Given a vertex v € V, the descendants of v, Desc(G,v), is the subset of
vertices in G which are reachable from v. Similarly, the predecessors of v, Pred(G,v),
is the subset of vertices from which v is reachable. The set of vertices that is neither
reachable from v nor reach v is called the remainder, denoted by
Rem(G,v) =V \ (Desc(G,v) U Pred(G, v)).

Given a graph G = (V, E) and a subset of vertices V' C V, the induced subgraph
G' = (V', E') contains all edges of G connecting vertices of V', i.e. E' = {(u,v) € E :
u,v € V'}. We will use (V') = G’ = (V’, E') to denote the subgraph of G induced by
vertex set V'. The following lemma is an immediate consequence of the definitions.

LEmMA 2.1. Let G = (V, E) be a directed graph, with v € V o vertex in G. Then
Desc(G,v) N Pred(G,v) = SCC(G,v).

LEMMA 2.2. Let G be a graph with vertex v. Any strongly connected component
of G is a subset of Desc(G,v), a subset of Pred(G,v) or a subset of Rem(G,v).

Proof. Let u and w be two vertices of the same strongly connected component
in G. By definition, v and w are reachable from each other. The proof involves
establishing v € Desc(G,v) <= w € Desc(G,v) and u € Pred(G,v) <= w €
Pred(G,v), which then implies 4 € Rem(G,v) <= w € Rem(G,v). Since the proofs
of these two statements are symmetric, we give just the first: If u € Desc(G,v)
then v must be reachable from v. But then w must also be reachable from v, so
w € Desc(G,v). O

With this background, we can present our algorithm which we call DCSC (for
Divide—and—Conquer Strong Components). The algorithm is sketched in Fig. 2.1.
The basic idea is to select a random vertex v, which we will call a pivot vertex, and
find its descendant and predecessor sets. The intersection of these sets is SCC(G,v)
by Lemma 2.1. After this step, the remaining vertices are divided into three sets
Desc(G,v), Pred(G,v), and Rem(G,v). By Lemma 2.2, any additional strongly
connected component must be entirely contained within one of these three sets, so we
can divide the problem and recurse.

DCSC(G)
If G is empty then Return
Select v uniformly at random from V
SCC + Pred(G,v) N Desc(G,v)
Output SCC.
DCSC((Pred(G,v) \ SCC})
DCSC((Desc(G,v) \ SCCY)
DCSC({(Rem(G,v)))

Fi1g. 2.1. A divide—and-conguer algorithm for strongly connected components.

As mentioned above, this algorithm is amenable to practical parallelization on
two levels. First, the recursive invocations are completely independent and so can
execute independently. Second, the searches for predecessors and descendants allows
for much more parallelism than does a depth first search.

3. Serial Complexity of Algorithm DCSC. The cost of algorithm DCSC
can be described by four terms, one each from the three recursive invocations and a
fourth from the determination of predecessors and descendants. Let n(G) and m(G)
denote the number of vertices and edges in graph G, respectively. We will use n and
m to denote the number of vertices and edges in the original graph, when it is clear



4 Fleischer, Hendrickson and Pinar

from the context. Let T(G) be the run time of the algorithm on a graph G. For a
pivot vertex i, let P; = Pred(G,i) \ SCC(G,i), D; = Desc(G,i) \ SCC(G,i) and
R; = Rem(G,1) be the graphs for the recursive calls. The recursive expression for the
run time is

(3.1) T(G) =T(R:) +T(Di) + T(F;) + ©(m(G) — m(R;)).

Clearly, T(G) = Q(m+n), since we eventually must look at all vertices and edges.
Also, in the worst case T'(G) = O(mn), since each iteration takes at most linear time
in the number of edges and reduces the number of vertices by at least 1. We show
here that the expected behavior of T(G) is O((m + n) logn). We will accomplish this
by showing that each edge is visited O(logn) times on average. The expected case
analysis will require bounds on the sizes of the predecessor and descendant sets. The
following two results provide these bounds.

LEMMA 3.1. For a directed graph G, there is a numbering 7 of the vertices from
1 to n in which the following is true. For all v € V, all elements u € Pred(G,v) \
Desc(G,v) satisfy w(u) < w(v); and all elements u € Desc(G,v) \ Pred(G,v) satisfy
w(u) > 7(v).

Proof. If G is acyclic, then a topological sort provides a numbering with this
property. If G has cycles, then each strongly connected component can be contracted
into a single vertex, and the resulting acyclic graph can be numbered via topological
sort. Assume a strongly connected component with k vertices was assigned a number
j in this ordering. Assign the vertices within the component the numbers (4,...,5 +
k — 1) arbitrarily and increase all subsequent numbers by & — 1. O

It is important to note that we do not need to construct an ordering with this
property; we just need to know that it exists.

COROLLARY 3.2. Given a directed graph G and a vertex numbering © from
Lemma 3.1, then n(Pred(G,v)\SCC(G,v)) < w(v) and n(Desc(G,v)\SCC(G,v)) <
n(G) — w(v) for all vertices v.

THEOREM 3.3. Algorithm DCSC has expected time complexity O((m+n)logn).

Proof. We assume without loss of generality that n = O(m), since otherwise we
can analyze the algorithm separately for each connected component. We will bound
the expected number of visits to an edge by O(logn), and the theorem follows. Edges
in the predecessor set P and descendant set D are visited a constant ¢ times at each
recursive invocation of DCSC, and edges in R are not visited. Let X (G) be the average
number of times an edge is visited in algorithm DCSC. Then

32) X = %{mp(X(P) +¢) + ma(X(D) + ¢) + my X (R) + mac},

where m,,, mq and m,, respectively, are the number of edges in the predecessor, de-
scendant and remainder sets, and m is the number of edges in the strongly connected
component and edges between different components.

Since DCSC is a randomized algorithm, we will perform an expected case analysis
by summing the cost over all n possible pivot vertices and dividing by n. We will
show that the expected value of X(G), EX(G) < alogn for some constant a. As the
inductive hypothesis, we will assume this bound holds for all graphs with fewer than
n vertices.

EX@) =+ % %{mp(EX(Pi)+c)+md(EX(Di)+c)+mTEX(Ri)+msc}

1<i<n
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Using the inductive hypothesis and Corollary 3.2, we find that
1

EX(n)< = Z max{alogi + ¢,alog(n — i) + ¢,alogn}.
n 1<i<n
Using symmetry,
2
EX(n)=— Z max{alogi + ¢,alogn}.
n n/2<i<n
. . n 1
The first term dominates when 7 > 5% Let d = 5E"

2
EX(n)=—- Z max{alogi + ¢,alogn}
n n/2<i<n
2
=—( Z max{alogi + ¢,alogn} + Z max{alogi + ¢,alogn})

N ja<i<dn dn<i<n
2

3.3 = — 1 log

(3.3) n( Z alogn + Z alogi + ¢)

n/2<i<dn dn<i<n

To bound the second term, we will split the summation into three pieces, each of
span (1 —d)n/3.

2d+1 d+2
3 " 3 " n
Z alogi+c= Z (alogi+c) + Z (alogi+c) + Z(alogi+c)
dn<i<n dn 2441, 2,
2d+1 d+2
3 B3 "
2d+1 d+2
< Z(alog( 3 n)+c)+ Z(alog( 3 n) +c)
dn 2441,
3
n
+Z(alogn+c)
agz,
1-d 2d+1 1-d d+ 2
5%(alogn+alog * +c)+%(alogn+log +c)
1-d
+%(alogn+c)
1-d 2d+1 d+2 3
S(l—d)nalogn+( )an(log * + log * +_c)
3 3 3 a
2d+1 d+2 3
We want log ; + log ; +;c <0, or equivalently,

3 3 3
log —> +log -5 > €
Coy11 83122
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9
(2d +1)(d +2)
9 1
I
2d2 +3d+2 = d3
9d® > 2d*> + 3d + 2

> (2°)°

which holds for d = %. Setting a > @, we find that
8

(3.4) Z alogi+c < (1—-dnalogn
dn<i<n

Combining equations (3.3) and (3.4),

2
EX(n) < — 1 log i
(“)_n( Z alogn + Z alogi+c)

n/2<i<dn dn<i<n
2 (2d-1
< E{%alogn + (1 —d)nalogn}
=220
=alogn

=

4. A worst case O(mlogn) time algorithm. In this section, we modify the
algorithm from §2 to achieve a worst case O(m logn) time complexity. The basic idea
of the modification is to avoid completing long searches for predecessors and descen-
dants. Assume without loss of generality that the predecessor set has fewer edges
than the descendant set. If we knew this, we could first identify all the predecessors,
and then limit the successor search to only visit predecessor vertices. The intersection
of these two searches is a strongly connected component. Once this is done, we can
recurse by dividing the graph into two pieces. The first piece is the predecessor set
minus the strongly connected component. The second set is the full graph minus the
predecessors. By Lemma 2.2, there can be no strongly connected components which
cross between these two sets. In practice, we don’t know whether we should search
for predecessors or successors first. So instead, we will search for both simultaneously
and abandon the second search when the first one finishes. The resulting algorithm
is sketched in Fig. 4.1.

THEOREM 4.1. Algorithm WDCSC presented in Fig. 4.1 runs in worst case
O(m log n)-time.

Proof. Let R(m) be the run time of this algorithm on a graph with m edges. We
will use p; , d; and s; to denote the total number of edges adjacent to P;\ SCC(G, 1),
D;\ SCC(G,i) and SCC(G, 1), respectively. By symmetry, we can assume p; < d;.
Then R(m) can be expressed as

(4.1) R(m) < R(p;) + R(m — p; — 8;) + O(p; + ;)

since the amount of work in one iteration is proportional to the size of the minimum
of the predecessor set and the descendant set. That is, the amount of work is twice
p; + s; until the algorithm completes one search, and then is at most s;. Note that
by hypothesis p; < m/2.
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WDCSC(G)
If G is empty then Return
Select v uniformly at random from V
Simultaneously search for Pred(G,v) and Desc(G,v)
If Pred(G,v) finishes first
Search for Desc(G,v) only in Pred(G,v).
Else If Desc(G,v) finishes first
Search for Pred(G,v) only in Desc(G,v).
SCC <+ Pred(G,v) N Desc(G,v)
Output SCC.
If Pred(G,v) finished first
WDCSC((Pred(G,v) \ SCC))
WDCSC((V \ Pred(G,v)})
Else If Desc(G,v) finished first
WDCSC({(Desc(G,v) \ SCCY)
WDCSC((V \ Desc(G,v)))

Fia. 4.1. A worst case O(mlogn) time algorithm to find strongly connected components

We will show that R(m) = O(mlogm) by induction, considering two cases de-
pending on the size of p;. Since m = O(n?), this leads to our claimed bound.

Case 1: p; +s5; <m/2.
If p; + s; < m/2, then we can upper bound R(m) by substituting a = p; + s; in (4.1)
to get

R(m) < Ra(m,a) := R(a) + R(m — a) + O(a)

By our assumptions in this case, we have that 1 < a < m/2. We show that this
recursion is O(mlogm) by first showing that this holds for a € {1,m/2}, and then
showing that Ra, as a function of @ in the range [1,m — 1], is convex. Thus, its value
in an interval is bounded from above by its value at the endpoints of the interval.

We suppose, by induction, that R(r) = ¢;7 logr for an appropriate constant ¢; for
r < m, and that O(r) = car. For a = 1, we have that R(m) < R(m —1)+ ©(1), which
is O(mlogm) by the induction hypothesis. When a = m/2, the recursion becomes
R(m) < 2R(m/2) + ©(m), which is well-known to lead to R(m) = O(mlogm). The
first derivative of Ra(m,a) with respect to a is

¢1(loga —log(m — a)) + ca.

The second derivative is

1 1
Cl(—+
a m-—a

)s

which is positive for a € [1,m — 1]. Thus Rz(m,a) is convex for a € [1,m/2], and
hence R(m) = O(mlogm) in this case.

Case 2: p; +s; > m/2.
In this case, we can bound R(m) by

R(m) = R(p;) + R(m — p; — 8;) + O(p; + s;)
< 2R(m/2) + O(m)
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since p; < m/2. As before, we have a well-known recursion whose solution is R(m) =
O(mlogm).
O

5. Conclusions. The simple divide—and—conquer algorithm described in 2 has
recently been implemented by McLendon, et al. [13], and good parallel performance is
observed for problems arising from the radiation transport application described in §1.
Several open questions remain. Despite our conviction that our divide—and—conquer
approach is amenable to effective parallelization, we have not shown that it leads to
an improved NC algorithm. Specifically, the reachability analyses at the core of our
method can be solved in NC via Gazit and Miller’s matrix product approach [10], but
their technique can be used to find strongly connected components directly. Another
question of interest to us is the potential for a linear time algorithm for strongly
connected components that does not rely on depth first search. Any such algorithm
could be a candidate for an improved parallel approach.
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