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Abstract

A capacitatedcovering IP is an integer program of the form
min{cz|Uz > d,0 < z < b,z € Z*}, whereall entriesof ¢, U,
andd arenonn@ative. Givensuchaformulation,theratio between
the optimal integer solutionandthe optimal solutionto the linear
programrelaxationcanbe asbadas||d||«, evenwhenU consists
of asinglerow. We shaw thatby addingadditionalinequalitiesthis
ratio canbeimproved significantly In the generalcase we shav
that the improved ratio is boundedby the maximum numberof
non-zeracoeficientsin arow of U, andprovide a polynomial-time
approximationalgorithmto achieve this bound. This improvesthe
previoushbestapproximatioralgorithmwhich guaranteed solution
within the maximumrow sumtimesoptimum.

We alsoshaw thatfor particularinstanceof capacitatedtov-
ering problemsjncluding the minimumknapsackproblemandthe
capacitatechetwork designproblem,theseadditionalinequalities
yield even strongerimprovementsn the IP/LP ratio. For the mini-
mumknapsackye shav thatthis improvedratiois at most2. This
is thefirst non-trivial IP/LP ratio for this basicproblem.

Capacitatedetwork designgeneralizeshe classicalnetwork
designproblem by introducingcapacitieson the edges,whereas
previous work only considersthe casewhen all capacitiesequal
1. For capacitatechetwork designproblems,we shav that this
improved ratio dependon a parametef the graph,andwe also
provide polynomial-timeapproximationalgorithmsto matchthis
bound. This improves on the best previous m-approximation,
wherem is the numberof edgesn thegraph. We alsodiscussm-
provementsfor someotherspecialcapacitatedovering problems,
including the fixed chage network flow problem. Finally, for the
capacitatechetwork designproblem,we give somestrongermesults
andalgorithmsfor seriesparallelgraphsandstrengtherthesefur-
therfor outerplanagraphs.

Most of our approximationalgorithmsrely on solving a sin-
gle LP. Whenthe original LP (beforeaddingour strengtheningn-
equalities)hasa polynomialnumberof constraintswe describea
combinatoriaFPTAS for the LP with our (exponentially-mam) in-
equalitiesadded.Ourcontritution hereis to describeanappropriate
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separatioralgorithmto work in the settingof the FPTAS of Garg
andKodnemann. For exactly solving the LP usingthe ellipsoid
method we describesimplerseparatiomoutines.

1 Intr oduction

The US governmenthasidentified7 areasof critical infras-
tructure, setsof serviceswhosefunctioningis essentiafor
thecurrentoperatiorof thecountry Mostof thesenfrastruc-
turesarephysicalnetworkssuchastelecommunicationsya-
ter, naturalgas,andtransportation.The importanceof net-
work designis further evident from the wealth of literature
onthe subject[11]. The researchin this paperis motivated
by a capacitatedhetwork designproblemarisingin network
security However, thetoolswe have devisedto understand
this problemare applicablenot only to building networks,
but alsoto both more specificproblems,suchasthe mini-
mum knapsackproblem,and more generalproblems,such
asgenerakapacitateadoveringproblems.

The capacitatednetworkdesignproblemis definedon
amultigraphG = (V, E) with costvectorc : E — RT,
capacityvectoru : E — R, andsymmetricdemandmatrix
D e NIV, where D;; is the connectiity requirement
betweervertices: andj. Thegoalis to selecta minimum-
costsubsebf edgest' C E sothatthetotal capacityof ary
cutsetC of (V, F') is at leastthe maximumdemandamong
all pairs of verticesthat are disconnectedn (V, F\C). In
this paper we alsoconsiderthe generalizatiorwhereedgee
maybeselectedipto b(e) times.

The capacitateshetwork designproblemarisesasa net-
work reinforcementproblem Herewe aregivenan existing
network, andfor eachlink (edge)in the network, severalre-
inforcementoptions.A reinforcements a protectionlevel of
aparticularstrengththatcanbe addedto anedgeata certain
cost. In addition, for eachpair of verticesin the network,
thereis a specifiedevel of protectiondemandedTheobjec-
tiveis to selecta minimum-costsetof reinforcementgor all
theedgessothatanadwersarywith strengtHessthanthepro-
tectionlevel of aparticularpair of verticescannotdisconnect
thesevertices.

For example, supposewne have a communicationset-
work andeachedgehasaweight(capacity)correspondingo
the costan attacler incursto eavesdropon thatedge. There
arecommunicationgrotocols(e.g.[9]) wheremessageare



brokeninto multiple packetsandpacletsaresentalongmary
different paths. In orderfor an eavesdroppeto gleanany
information from the messagehe mustinterceptall pack-
ets,andthereforemusthave compromised cutbetweerthe
senderandrecever. By interpretingstrengthandprotection
levels ascapacitiesthis problemis easilyreinterpretecasa
capacitatedhetwork designproblem.

Capacitatednetwork designis one generalizationof
the minimum knapsackproblem. The minimumknapsak
problemis definedby a set of objects, eachwith a cost
anda value,and a specifieddemand. The goal is to select
a minimum cost set of edgeswith total value at leastthe
demand. This is equivalentto capacitatechetwork design
on a graphconsistingof 1 vertex pair with multiple parallel
edges.

One generalizationof capacitatednetwork designis
capacitatedovering. A capacitateccoveringlP is aninteger
program(IP) of the form min{cz|Uz > d,0 < z < b,z €
Z*}, whereall entriesof ¢, U, andd arenonnejative. To see
thatthisis ageneralizationye write the capacitatechetwork
designproblemas a capacitatectovering IP belov. Here
z(e) is thenumberof copiesof edgee we select( is theset
of all cutsetsand D¢ is the maximumof D;; over all pairs
of verticesi andj disconnectedby theremoval of C.

min Yecrcle)z(e)
(IP1) vC e C: %:Cu(e)x(e) > D¢
Vec E: z(e) e {0,1}.

Sincethe minimum knapsackproblemis NP-hard[22],
all of the aborementionegroblemsare NP-hardproblems.
In this paperwe focuson obtainingimprovedapproximation
algorithmsfor theseproblems A p-approximationalgorithm
is a polynomial-timealgorithmthat returnsa solution with
cost at most p times the cost of the optimal solution. A
fully polynomial-timeapproximationscheme(FPTAS)is an
algorithmthat,givene < 1, returnsasolutionof costat most
1+ € timestheoptimalsolutionin time polynomialin thesize
of theproblem,and1/e. Onespecialcaseof the capacitated
network designproblemis the Steinertree problem,which
is known to be MAXSNP-hard[4]. Thuswe cannothopeto
find anFPTAS for this problem.

Most of our approximation algorithms depend on
strengtheninghe LP relaxationof the givenIP. (The LP re-
laxationis the problemobtainedby removing the integral-
ity constrainton the variables.) An LP relaxationof anin-
teger programcan be strengthenedby addinginequalities
that are satisfiedby all integer solutions. Theseinequali-
ties are called valid. Given a probleminstanceP, we de-
noteits optimal solutionby OPT(P).For an IP, andits re-
laxationLP, we referto the ratio of their optimal solutions,
OPT(IP)/OPT(LP)astheIP/LP ratio.

1.1 Previous Work. The bestprevious approximational-
gorithm for the capacitatechetwork designproblemis the
algorithmthatgreedilyremovesthe unnecessargdgesn or-
der of decreasingost. This finds a solutionwithin a factor
of m := | E| of theoptimum[12].

Many of the approximationalgorithmsfor network de-
signproblemghatachiezeapproximatiorguaranteethatare
betterthanlinearconsiderthe uncapacitatechetworkdesign
problem whereu(e) = 1 for all edges, andmultiple copies
of eachedgeare allowed (althoughsomedo handleupper
boundson the numberof copiesof eachedge). In particu-
lar, Jain[21] describesa 2-approximatiorfor preciselythis
problem.Before[21], thebestapproximatiorguaranteesb-
tainedby polynomial-timealgorithmsfor the uncapacitated

network designproblemwereall logarithmicin n := |V|.
For referencesanda suney of relatedwork, seefor exam-
ple[13].

When all edge costs are also uniform, the problem
remainsNP-hard,evenwhenall demandsarealsouniform.
Thebestknown approximatiorin this caseis 2 — 1/ when
connectvity requirementis A [23]. If, in addition, the
underlyinggraphis the completegraphand multiple edges
are allowed, then the problemis solvable in polynomial
time[8, 28].

Otherresearcherbave considerechpproximatioralgo-
rithmsfor the capacitateshetwork designproblemwhenthe
objectie is to designa network with enoughcapacityto
routeall demandsimultaneouslywithoutary restrictionon
thenumberof copiesof edgesallowed|[1, 6, 26, 31].

There has also beensignificant researchon develop-
ing the techniquesof integer programmingand polyhe-
dral combinatoricsto attacktheseproblems. For example,
se€[3, 7, 25].

The knapsack problem has been studied exten-
sively [27], andis one of the original NP-completeprob-
lems[22]. While the knapsackproblemandthe minimum
knapsackproblemsare equivalent if an exact solution is
sought,they are not equivalentfor approximationpurposes
in that a p-approximationalgorithm for one problemdoes
not imply the existenceof a comparableguarantedor the
secondTheFPTAS for knapsack24, 19] canbeeasilymod-
ified to work for min knapsack.However, the boundon the
IP/LP ratiosfor the two problemsis vastly different: 2 for
knapsackrersusD for minimumknapsack.

1.2 Our results. Almost all of the known approximation
algorithmsfor network designproblems,and mary cover-
ing problems considera standardnteger programming(IP)
formulation of the problemand the optimal solution value
obtainedfrom the correspondindinear programming(LP)
relaxation[13]. Thesealgorithmsthenconstructan integer
solutionand prove its approximationguarantedy compar
ing it with the valueof the LP relaxation. Onedifficulty in



approximatingthe capacitatechetwork designproblemlies

in the factthatthe ratio of the optimal IP solutionto the op-

timal LP solutioncanbeasbadas Dy ax := max; jev2 Djj.

This holds alsofor the minimum knapsackproblem. Thus
one cannothopeto obtainimproved approximationguaran-
teesby comparinganintegersolutionobtainedoy ary means
to theoptimal LP value.

We add a classof simple inequalities,which we call
knapsak cover (KC) inequalities that provably strengthen
the standardinear programmingrelaxation. For the mini-
mum knapsackproblem,we show that the improved IP/LP
ratio with theseinequalitiesis 2. This improveson the best
previousboundof D,,.,. For capacitatedoveringproblems,
we add this classof inequalitiesfor eachconstraintin the
original IP formulation. We shav that the resulting IP/LP
ratiois strengthenetb beboundedy themaximumnumber
of nonzeracoeficientsin arow of the constraintmatrix. For
capacitatechetwork designproblemswe shov animproved
ratiothatequalsg(G) + 1, whereS(G), definedbelow, is a
parametepf thegraphd thatis oftensignificantlylessthan
m, andnever greater

DEFINITION 1.1. A bond is a minimal cardinality set of
edgeswhoseremoval disconnects: pair of verticeswith pos-
itive demand.For a multigraph G, 8(G) is the cadinality
of the maximum-cadiinality bondin the underlyingsimple
graph. For example in Figure 1, 8(G) = 5.

4‘{(/ Y

=

maxbond
Figurel: A bond

Series-paallel graphsare definedinductively. Each
series-parallegraph hasa sourcenode s and a sink node
t, called the definingnodes A single edge (s,t) is the
simplestseries-parallegraph. New series-parallegraphs
are built by composingtwo series-parallegraphshaving
sourcess; and s, andsinkst; andt, respectiely. In a
seriescompositionthe sources, andsink¢; areunified. In
aparallel compositionthe sourcess; andss areunifiedand
thesinkst; andte areunified. We canrepresenthe series
andparallelstepausedto produceagraphin adecomposition
tree For series-parallejjraphswe shav thatthe IP/LP ratio
canbe improvedto |8(G)/2]| + 2, andthat this boundis
almosttight for the LP with KC inequalities.

We alsodescribepolynomial-timeapproximationalgo-
rithmsthatmeetthesebounds.Thus,for thecapacitatedov-
eringproblem,our resultimprovesthe bestpreviousapprox-
imation guaranteef the maximumrow sumof A [5]. For
capacitatechetwork design,our algorithmsimprove the best
previousapproximatiorguarante®f m [12].

We describesomeadditionalcapacitateaoveringprob-
lems for which KC inequalitiescan be usedto obtainim-
provedapproximatiorguaranteesthesdancludegeneralized
vertex cover, multicolor network design,and fixed chaige
network flow. Thevertex cover problemis to selecta mini-
mumweightsetof verticessothateachedgeis incidentto at
leastoneselectedrertex. Thereareseveral2-approximations
known for this problem. In the multiple-choicevertex cover
problem eachvertex is actually a clusterof weightedver-
tices.An edgefrom clusteri to clusterj is coveredif asubset
of verticesfrom clusterg andj areselectedvith totalweight
atleastthedemandf theedge.Theobjectveis againto se-
lect a minimum weight subsetof verticesso thatall edges
arecovered.Our algorithmsyield a 3-approximatiorfor this
problem. If the graphis bipartite, the problemis still NP-
hard, sinceit generalizesnin knapsack. We describea 2-
approximation.

The multi-color networkdesignproblem In this prob-
lem, eachedgehasa constanhumberof differenttypes(col-
ors) of capacitiesDemandpairscomewith a specifiedtype
andamountof capacitydemand.The objective is to build a
minimum costnetwork to satisfyall demands.Givenp ca-
pacity typesu;, ¢ = 1,...,p suchthatu;(e) > u;(e’) =
u;j(e) > u;(e’) for all edges andall capacitytypesi andj,
we obtaina 8(G) + 1 approximatiorfor this problem.

The fixed charge flow problemhasa fixed costassoci-
atedwith eacharc, in additionto a perunit-flow cost. The
objectieis to build a network with enoughcapacityto route
givendemandbetweenwo nodesto minimize the total cost
of building the network andsendingheflow. For the2-node
problem,we give a 2-approximationbasedon introducing
inequalitiesto tightenthe LP relaxation.We alsoshav how
to modelthis problemasa capacitatedhetwork designprob-
lem, yielding a 8(G) + 1 + ¢ approximationguaranteen
generalgraphs.

Our approximatioralgorithmsdependon solvinga sin-
gle LP with an exponentialnumberof constraints.Givena
polynomial-timeseparatiororacle,this canbe donein poly-
nomialtime usingtheellipsoid method[15]. Whentheorig-
inal LP (beforeaddingour exponentially-mag KC inequal-
ities) hasa polynomial numberof constraintswe describe
acombinatorialFPTAS for solvingthe strengthened P. We
dothis by describinganappropriateseparatioralgorithmre-
quiredby the FPTAS for positive packingandcoveringde-
scribedby Garg and Kobnemann10]. For solving the LP
usingthe ellipsoid method,or simplex method,we describe
simplerseparatiomoutines.



When there is only one demandpair, Schwarz and
Krumke [32] describean FPTAS on seriesparallel graphs,
if this demandpair correspondso the definingnodesof the
seriegarallelgraph.An outerplanargraphis aplanargraph
that canbe embeddedso that all verticeslie on the outside
face. Frequentlypipeline infrastructurenetworks (natural
gas,water)areouterplanaat the highestdistribution levels.
We describean FPTAS for this problem on outerplanar
graphswithout restrictingthe locationof the demandair.

2 Strengtheningthe LP

In this sectionwe describénequalitiego strengtherthelin-
ear programmingrelaxationfor capacitatedcovering prob-
lemsandshown how they canbe usedto obtainimprovedap-
proximationalgorithms.

2.1 TheMinimum KnapsackProblemand KC Inequal-

ities. In this sectionwe restrictour attentionto the capaci-
tatednetwork designproblemwith demandD on two-node
graphswith mary parallelarcs E. This is the minimum

knapsackoroblem. The IP/LP ratio for the minimum knap-
sackproblem,andhencelP1, canbe aslarge asthe demand
D. Considera setwith just 2 elementse; andey, andde-
mandD. Letu(e;) = D —1,¢(e1) = 0, u(ee) = D, and
c(e2) = 1, whereu is the vectorof valuesof the elements.
Any feasibleinteger solutionmustincludeelemente, for a

costof 1, while the optimal LP solutionsetsz(e;) = 1 and
z(e2) = 1/D foracostof 1/D.

We introduce inequalities to strengthenthe linear
programmingelaxationfor this problem.In generalgraphs,
theseinequalitiesare defined on subsetsof edgescorre-
spondingto cutsets.In capacitatectovering IP’s, thesein-
equalitiesaredefinedfor eachinequalityof thelP.

Considera setof edgesA suchthatu(A) < D, andlet
D(A) = D — u(A) betheunmetdemandafter selectingall
edgesin A. We call D(A4) theresidualdemand Thenary
feasiblesolution to the minimum knapsackproblemwhen
restrictedto £ \ A mustalsobe feasiblefor the minimum
knapsaclkproblemon E \ A with demandD(4). As with
ary minimum-knapsackproblem, we can assumethat the
capacityof eachedgeis no more than the demand. Let
ua(e) := min{u(e), D(A)}. Thesubproblenconstraintis
enforcedby aknapsak cover (KC) inequality.

Z ua(e)z(e) > D(A).

e€E\A

(2.1)

Under certainconditions,theseinequalitiesare facetdefin-
ing, see[33] for example.

Previous researchers[2, 17, 33] have consideredan
uncapacitatedorm of inequality(2.1) thatforcesthe choice
of at leastone edgein E/A. We canshow thatif only
thesewealer constraintsare addedto 1P1, the IP/LP ratio
canstill beasbadas+/m/2. Theseresearcherssedlifting

procedureso strengthernthesebasicinequalities but do not
specificallyconsideiknapsaclcoverinequalities.

The strengthenednteger programfor minimum knap-
sackis:

min Yecrcle)z(e)
VA C Ewithu(4) < D :

(P2 Seemaua@ele) = D)
Ve€ E : o(e) € {0,1}.

The knapsackcover inequalities(2.1) significantly re-
ducetheIP/LP ratio for the minimumknapsackproblem.

THEOREM 2.1. ThelP/LP ratio of IP2 is at most2.

Proof. Let z be ary feasible solution to the linear
programmingelaxationof IP2. We shav that2z dominates
a convex combinationof integer knapsackcovers. Thatis,
we shav thereexist0 < ai, ... ,ar < 1with 370 a; =1
andr feasiblesolutionsto IP2 (), () ... | z(") suchthat
>0y a;zt) < 2z (componentwise) Hence,the cheapest
knapsackcover in this sethascostno more thantwice the
costof z.

Let A = {e € E | z(e) > 1/2}. Selectingthe
edgesin set A costsat most twice their contribution to
the LP solution. We must now meetthe residualdemand
D(A) = D — u(A) with theremainingedges.

Let r betheleastcommonmultiple of denominator®f
z. We creater partialintegersolutionsusingedgesn F\ A
sothateachintegersolutionhascapacityatleastD(A4). Each
partialsolution,togethemwith A, thengivesasolutionfor the
original problem.

For eachedgee € E \ A, we createa(e) = 2r z(e)
copiesof e. We partition thesecopiesinto r buckets so
that eachbucket hastotal capacity> D(A4) andno bucket
containsmorethanone copy of eachedgee. Thuseachis
feasiblefor thereducedoroblem.The bucketingproceedss
follows: Reinde the edgesin E\ A by decreasingriginal
capacitiessothatu(e;) > u(e;) for all i < j. Putthea(e:)
copiesof the first edgee; into the first a(e;) buckets, the
a(e2) copiesof edgee, into the next a(ez) bucketsmodulo
r andsoon.

Sincewe consideronly edgesin thesetE\A = {e €
E | z(e) < 1/2},therearelessthanr copiesof ary oneedge,
andhenceno edgeappearsnorethanoncein ary bucket.

Thedifferencein u4 capacitybetweenthe bucket with
themostcapacity(thefirst bucket) andtheleastcapacity(the
last bucket) is at most D(A): In the worst case,the first
bucket b; containsone more edgethanthe last bucket b,..
Pair theit* edgeaddedto b, with thei + 15* edgeaddedto
bi. By constructionjn eachpair the edgein b, hasat least
asmuchcapacityasits matein b;. Sinceif u(e;) > u(es)
thenu4(e1) > ua(es) for any choiceof A, this alsoholds
whencomparingu 4 capacities.Hencethe differencein v 4



capacitiesof the two bucketsis at mostthe u 4-capacityof
the highestcapacityedge whichis atmostD(A).

If one of the buckets correspondgo an infeasibleso-
lution, it hascapacity< D(A). Assumethe last (lowest-
capacity)bucket hascapacitylessthan D(A). Thisimplies
that the first bucket hasu 4-capacitylessthan2D(A4), and
thetotalu 4-capacityin all bucketsis lessthan2r D(A4). This
thenimpliesthat2r > g\ 4 ua(e)z(e) < 2rD(A), which
contradictsthe fact that z satisfiesthe knapsackcover in-
equalityfor set A. Henceall bucketshave capacityat least
D(A). |

This proof actually shavs we do not needto satisfy
all knapsackcover inequalitiesfor the theoremto hold: as
long as a fractional solution satisfiesthe demand,and the
knapsackcover inequalityholdsfor A = {e € E|z(e) >
1/2}, then the value of this solutionis within 1/2 of the
integer optimal. We call a fractionalsolutionz thatsatisfies
the demandand the knapsackcover inequality for 4, =
{e € E|z(e) > v} a~y-integer-valuedsolution Usingthe
ellipsoidmethodn theframework of [15], andtheseparation
algorithmthat checksthe KC inequality for this single set
A, we canfind a ~y-integervaluedsolutionin polynomial
time. (Note that the problemof finding a ~v-integervalued
solution is not a linear program, nor even necessarilya
corvex programandyettheresultsin [15] imply thatwe can
still find sucha solutionin polynomialtime.) In Section3,
we describeacombinatoriaFPTAS for theLP, thusavoiding
useof theellipsoid method.

Given a fractional solution that meetsthe demandand
satisfiesthe KC inequalityfor A, we canrecover a feasible
integer solution within twice its valuein polynomialtime.
Thekey obsenationis thatalthoughthe bucketingalgorithm
conceptuallyusesr buckets,the actualnumberof different
integersolutionsis at mostm + 1, wherem is thenumberof
paralleledges.

THEOREM 2.2. Thee is a polynomial-time 2-
approximation algorithm for the minimum knapsa&
problembasedon roundingthelinear programrelaxationof
IP2.

Proof. We mustidentify the bucket with the cheapesteasi-
ble solution. We prove by inductionthat afteraddingcopies
of k edgesto the buckets, we have createdat mostk + 1
differentinteger solutions,andbucketscontainingthe same
integer solutionare consecutie. Adding copiesof the first
edgee; to thefirst a(e;) buckets createsat most2 differ-
ent partial integer solutions,and identical integer solutions
areconsecutre. After addingthe copiesof theit* edge we
have by inductionz + 1 differentpartial solutions,andiden-
tical integer solutionsareconsecutre. We adda copy of the
i + 1% edgeto the bucketimmediatelyafterthe bucket con-
taining the last copy of the i** edge,and continuewith the

remainingcopies. We needonly checksolutionsthat were
the samebeforeaddingedgei + 1 but are differentafter

ward. The first bucket to which we addedgei + 1 already
differs from its earlier neighborin thatit doesnot contain
edgei, sothatwe donotcreateaneaw distinctionhere.How-

ever, the last bucket to which we addedgei + 1 may have
beenidenticalto its successorThuswe createat mostone
new distinctintegersolution.

We keeptrackof distinctintegersolutionsby notingthe
< m + 1 differentendpointsof intervals of lengtha(e;) on
amodularclock of sizer. Thistakeslineartime. A simple
m? algorithmchecksthe costof eachsolutionandpicksthe
cheapest. |

Theminimumknapsackroblemcanbesolvedin pseu-
dopolynomiakime usingdynamicprogrammingvhichread-
ily suggestanFPTAS [24, 19]. However, unliketheFPTAS,
our resultsarereadily applicableto more generalproblems
for which no strongapproximatiorresultsexist.

The following example shavs that Theorem2.2 is al-
mosttight. Considerthe problemwith m edgesgachof ca-
pacitym — 1 andcostl, anddemandm. The optimal IP
solutionpicksary two edgedor acostof 2. Theoptimal LP
solutionassignsavalueof 1/(m — 1) to eachedge for atotal
costof m/(m — 1). Thustheratio of IP to LP solutionsis
2- 2,

m

2.2 Generalupper boundsonvariables.All of theresults
in this paperextendto the settingwhereedgee may be se-
lectedup to b(e) times. We canassume(e) is boundedoy

[Dmax/u(e)]. The knapsackcover inequalities(2.1) re-

mainvalid with a modifieddefinition of edge-setapacities:
u(A) =3, 4 u(e)b(e). For theminimumknapsackrob-
lem, it is now sufficientto satisfythesemodifiedKC inequal-
itiesfor A := {e € E|z(e) > b(e)/2}. Whenbucketing,we

createa(e) := 2rz(e) copiesof e. Since2z(e) < b(e), no

morethanb(e) copiesof edgee occurin arny bucket. The
earlieragumentsshaw thateachbucketis feasible.Thisim-

pliesCorollary2.3.

COROLLARY 2.3. Thee is a polynomial-time 2-
appoximationalgorithmfor theminimunmknapsa& problem
with geneml upperboundsusinglinear-programmingtech-
nigues.

The sametechniqueworks for all problemsdiscussed
in this paper since all our approximationguaranteesare
insensitveto multiple edges Hencewhile ourproofsdiscuss
the0/1 problem thetheoremsholdfor generalipperbounds.

2.3 Cyclic multi-graphs and multicommodity demands.
In this sectionwe shov how knapsackcover inequalities
strengtherthe LP relaxationof more generalinstancesof

capacitatechetwork design. In generalgraphs,knapsack



cover inequalitieshold for ary cut that separateslemand
pairs. Such a cut can be consideredin isolation as a
minimum knapsackproblemwith the cutsetasthe element

The IP/LP ratio for the cyclic multigraph improves
whenthereis only one pair of nodeswith demandthough
algorithmically we would prefer the FPTAS of [32] for

setandthedemandequalto themaximumdemandseparated series-parallegraphs.

by thecut.
A cyclicmultigraphis amultigraphfor whichtheunder
lying simplegraphis acycle.

THEOREM 2.4. ThelP/LP ratio of IP1 with knapsak& cover
inequalitieson a cyclic multigraphis < 3.

Proof. Let z be a feasibleLP solution. We shov that 3z
dominatesa corvex combinationof feasibleinteger solu-
tions. Givenz, we run thebucketingalgorithmon eachmul-
tiedgeseparatelyfor thesetof edges{e € E | z(e) < 1/3},
andthentake then setsof » buckets(wheren, thenumberof
nodesin thegraph,is alsothe numberof edgesn theunder
lying simplecycle), and memge thesen setsin ary orderto
obtainr solutions.Eachintegersolutioncontainsexactlyone
bucketfrom eachof then sets.Consideraparticularcutset”'
definedby two multiedgeswith maximumdemandD sepa-
ratedby theimplied cut. Let A = {e € E | z(e) > 1/3},
Ao = AN C andconsiderthe bucketsfor eitheroneof the
multiedgesheforethe memge. As shawvn in the proof of The-
oremz2.1,thedifferencen u 4-capacitybetweerthe highest-
capacitybucket andthe lowestis at most D(A¢). Hence,
oncethe bucketsare merged, the differencein the total ca-
pacity acrossthis cut betweenthe highestcapacitysolution
andthelowestis atmost2D(A¢). Thus,amongall integer
solutions,if the onewith the lowestcapacityacrosshis cut
hascapacitylessthan D(A¢), thenthe highesthascapac-
ity lessthan3D(A¢), andthis contradictsthe factthat the
knapsaclcoverinequalityfor A acrosghecutC is satisfied.
|

Thebestpreviousapproximatiorboundfor thisproblem
was m [12]. Using Theorem2.4, we can significantly
improvethis bound:

COROLLARY 2.5. Thee exists a polynomial-time 3-
appoximationalgorithmfor the capacitatechetworkdesign
problemon cyclic multigraphs.

Proof. Cyclic multigraphshave only (g) minimal cutsets
in the underlying simple graph. We canthus find a 1/3-

integervaluedsolutionin polynomialtime using the ellip-

soid methodandcheckingthe knapsaclcoverinequalityfor

theset{e € ENC | z(e) > 1/3} for eachcutsetC. In

Section3, we show how to obtainane-approximatesolution
to our LP usingcombinatoriaimethodsin polynomialtime.

This givesusafully combinatoriapolynomial-timeapprox-
imationalgorithmwith comparableyuarantee.

We notethatthe bucketingalgorithmagainproducesat
mostm + 1 integer solutions. Merging two setsof m + 1
bucketspairwisedoesnotcreateany new buckets(solutions).

|

COROLLARY 2.6. ThelP/LP ratio for the(s, t) capacitated
networkdesignproblemon cyclic multigraphsis at most2.

Proof. Performthe bucketing separatelfor eachmultiedge
asdescribedn Theorem?2.4 exceptinclude all edgeswith

z(e) < 1/2. Theunderlyingcycle hasexactly two disjoint
pathsbetweens and¢. Let R be the setof multiedges
correspondingo onesuchpathandlet L = E — R. All

multiedgesn R meme their i*” bucket into the it* integral
solution. All multiedgesin L memge their it* bucket into

ther — i** integral solution. Considera cutsetC implied
by a simple cut separatings and¢ so C' containsexactly
one memberof R and one memberof L. Let A
{e € C | z(e) > 1/2}. The largestdifferencein w4-

capacitiesamongthe bucketsfor eithermultiedgeis D(A).

When we meme the buckets for thesetwo multiedgesas
describedabove, we createa new setof r bucketssuchthat
the differencein capacitybetweenary 2 bucketsis still at
most.D(A). Supposehat beforememging bucket i for the
multiedgein R hasgreatercapacitythan bucket j. Then,
for the multiedgein L, bucket will have capacityno larger
thanbucket j. Thusmelging the two setsof bucketscannot
increasethe maximumdifference. The previous aguments
yield theboundof 2. |

2.4 General graphs. In this section,we extendthe ideas
in the proofsof Theorem<2.1 and2.4to obtainnen bounds
for generalgraphs. We also describehow to separatehe
knapsackcover inequalitiesfor generalgraphs, since in
generaltherewill be exponentially-maw interestingcuts.
Recallthemaxbond8(G) of Definition 1.1.

THEOREM 2.7. ThelP/LP ratio of IP1 with knapsak cover
inequalitiesfor a generl graph( is at most3(G) + 1.

Proof. Canbe obtainedfrom the proof of Theorem2.4, by
replacing2 with 3(G) and 3 with 8(G) + 1. For a cut
with 3(G) multiedgesthe maximumdifferencein capacity
betweentwo buckets (integer solutions)is 3(G) timesthe
residualdemand.

As before, it is sufficient to check that the knapsack
inequalityfor A := {e € Cl|z(e) > W} is satisfied
for all cutsetsC separatingdemandpairs. However, now
theremay be an exponentialnumberof suchcutsetssothis
doesnot lead to a polynomial-time separationalgorithm.
Insteadwe usethebucketingprocedureo identify aviolated
knapsackinequality ~Given a fractional solution z, we
build the setof candidateinteger solutions. We needonly



checkthe lowest-capacityinteger solution (last bucket) for
feasibility. This canbe doneby usingthe polynomial-time
Gomory-Hu algorithm [14] to determinethe value of the
minimumcutseparatingachpair of verticesandcomparing
thesevalueswith the demandvalues. If somecut C' has
insufficient capacitytheset{e € C|z(e) > ﬂ(GIT} yields
aviolatedknapsaclkcoverinequality

Our algorithmasstateduses3(G) explicitly; but com-
puting 3(G) is NP-hard. We don't actually needto know
theexactvalueof 5(G). Insteadwe caneasilydeterminea
lower boundon 8, andrun the algorithmwith this value. If
thealgorithmcreatesninfeasibleintegersolution,we check
the associatecknapsackcover inequality If it is not vio-
lated,then g is too small. We canusebinary searchto find
the smallestg which yields feasibleinteger solutions. This
givesa 8 + l-approximatesolutionfor someg < 8(G).

2.5 Series-Rarallel graphs. Thespeciaktructureof series-
parallelgraphsreduceghe IP/LP ratio. The FPTAS of [32]
doesnot applybecauseve have multicommoditydemands.

THEOREM 2.8. ThelP/LP ratio of IP1 with KC inequalities
for a series-paallel graph@ is at mostL@J + 2.

Proof Hint: As in the proof of Corollary 2.6, order
the bucketsof multiedgesn eitherincreasingor decreasing
order By usingthe series-paralletlecompositiortree, we
canchoosean orientationfor eachmultiedgesuchthateach
bondhashalf its multiedgesorientedin eachdirection. B

Thisboundfor thelP/LP ratiois nearlytight, sincethere
is aseries-parallebxamplewith ratio | 3(G)/2] + 1.

2.6 The Capacitated Covering Problem. Recall, a
capacitatedcovering IP is an integer programof the form

min{ez|Uz > d,0 < z < b,z € ZT}, whereall entriesof

¢, U, andd arenonngatie. Let p bethe maximumnumber
of nonzeroentriesin arow of U andlet ¢ be the maximum
row sumof U. If U isa0 — 1 matrix,p = ¢, butin general
p < ¢. Hall andHochbaum[16] give a p-approximation
for U a 0-1 matrix. Bertsimasand Vohra[5] extend this
to give a g-approximationfor the generalproblem. In

this section, we describea p-approximationfor general,
nonngative matricesl/, improving the bestpreviousbound.
We obtainour guarantedy strengtheninghe LP relaxation
usingknapsackcoverinequalities.

By the discussionin Section2.2, we can restrict our
discussiorto the casewhenb = 1. We treateachconstraint
as a minimum knapsackproblem and introduce knapsack
coverinequalitiesof thefollowing form. Let E denotetheset
of all variables.Define D;(A) := max{0,d; — >_;c 4 Ui,;}
andu(i,j) = min{U; ;, D;(A)}. TheKC inequalitiesfor
thei®* constrain@rey_ ;¢ j 4 ua(i, j)z; > Di(4).

THEOREM 2.9. ThelP/LP ratio for the capacitatedcover-
ing problemwith KC inequalitiesis < p.

Proof. Let z* bea solutionto the LP with KC inequalities,
andlet A = {j|=} > 1/p}. Definetheintegersolutiony by
y; =1if 5 € A, elsey; =0. Sincey < pz*,c-y < pc-z*.
It remaingo shaw y is afeasiblesolution.If y is notfeasible,
it violatessomeconstraint:U; - z > d;; thatis, D;(4) > 0.

Define B := {j € E\A | ua(i,j) > 0}. Since
ua(i,j) < D(A),forallj € B,ua(i,j)-z*(j) < Di(A4)/p.
But thereareat mostp elementsn B, implying

3 uali,ie*(§) < Di(4)

JEE\A

which contradictse* satisfyingall KC inequalities. |

As with previous problems,it suffices hereto find a
1/p-integervalued solution (a solution satisfying the KC
inequalitiesfor the setA = {j|z} > 1/p}), which can
be donein polynomial time. We can also obtain an e-
approximatesolutionto the LP via a combinatorialFPTAS
asdescribedn Section3.

2.7 Generalized Vertex Cover. Using knapsackcover
inequalitiesfor eachconstraintcorrespondingo an edge
in the generalizedvertex cover problem,we show that the
IP/LP ratio for this formulation is at most 3, and if the
graphis bipartite, this ratio is at most2. Polynomial-time
approximatioralgorithmsfollow usingpreviousarguments.
The3-approximations apparenfrom thefactthatevery
constraintin the integer programmingformulation of this
problem involves node variablesfrom only 2 groups of
nodes.A groupof nodesfor this IP is analogougo a group
of paralleledgesfor the cyclic multigraphproblem. Thus,
Theorem2.4 implies a 3-approximationfor this problem.
If G is bipartite, we obtain a 2-approximationby using
argumentssimilar to thosein the proof of Corollary2.6

2.8 Fixed ChargeNetwork Flow.

We startby consideringhe two nodegraphwith multi-
ple arcsbetweernthe nodes. Eacharc hasa fixed coste(e)
andaperunit flow costf(e). We wishto selecta setof arcs
with sufficient capacityto routedemandD to minimize the
fixedcostof thearcs,plusthecostof routing D unitsof flow
onthesearcs.

This 2-node fixed chage network flow problem can
be modelled as an MIP, given belon. As with the min
knapsackproblem, the integrality gap for (MIP1) can be
quite large. We introducea modificationof the knapsack
cover inequalitiesfor this problem and shav that adding
theseto (MIP1) reduceshe integrality gapto 2. We then
shav how to obtaina 2-approximatioralgorithm usingthe
ideasin this proof. The 2-nodeMIP canbe generalizedo
arbitrarygraphsandpairwisedemandssin IP1.



min 3 [e(e)z(e) + fe)y(e)]
ecl
(MIP1) > fle)yle) 2 D
ecl
Vee E: 0 < yle) < u(e)z(e)
Veec E: z(e) € {0,1}.

Let A be anedgesetsuchthatD — u(4) > 0. Then
for every partition { E1, Ex } of the edgeset, the following
inequalitieswhich we call flow coverinequalitiesarevalid.

2.2 ye)+ Y. uale)z(e) > D —u(4),

€€E1\A eEEQ\A
VD—U(A) >0, FEiUE, =V.

A differentform of flow cover inequalitieswereintroduced
in a polyhedralstudy of fixed chage problems[29]. They
presentedhem as packing, not covering, inequalities;and
they did notconsidetheireffectattighteningthelP/LP ratio.

THEOREM 2.10. The integrality gap for 2-node fixed-
charge networkflow with flow coverinequalitiesis 2.

Proof. Let z,y be the optimal solutionto the LP with flow
cover inequalities. We will show that 2z, 2y dominatesa
corvex combinationof feasiblesolutions. Thus the mini-
mumcostsolutionin this combinatiorhascostatmosttwice
theLP value. Let A := {e|y(e) > u(e)/2}. We includeall
e € Ain all integersolutions,andsettheflow valueon such
e equalto u(e). This at mostdoublesthe contritution of A
to theobjective function.

Supposehereis anedgee € E\ A with z(e) > 1/2 and
y(e) > uale)/2 = D(A)/2 (sincey(e) > u(e)/2 would
imply e € A). Thensettingz(e) = 1 andy(e) = ual(e)
togetherwith the set A yields a feasibleinteger solution of
costat mosttwice the LP value,andwe are done. In the
remainingproof, we assumehisis notthecase.

To distribute the remainingedges,we partition E into
two sets.Let By := {e|y(e) < ua(e)z(e)}, B2 := E\E;.
Letr betheleastcommonmultiple of denominatorsf z and
y/ua. We creater feasiblesolutions.For edges € E;\A
we create2ry(e)/ua(e) copies. For edgese € E,\A we
create2rz(e) copies. The total numberof copiesof ary
edgedoesnot exceedr. For this to hold, edgesin E;\ A
musthave y(e)/ua(e) < 1/2. Supposehisis notthe case.
Thenby the assumptiorabove, z(e) < 1/2 andwe have
y(e)/uale) < z(e) by the definition of edgeset E;\ A.
Usingasimilar agumentwe have z(e) < 1/2 for all edges
in E2\A. Orderthe edgesby nonincreasingaluesof u(e)
andperformthebucketingalgorithm.If edgee is placedin a
bucket, we associatevith this edgethe correspondingalues
z'(e) = 1, y'(e) = uale). Thetotal costof all r solutions

obtainedn this manneiis

ZEEEl\A [2ry(e)/uale)
+ Deem\al2re(e)] )
2r(Y eemna(f(e)y(e) + cle)z

< ()
+ 2eem\alf(e)y(e) + cle)z(e))]
< 2r Y emalf(e)yle) + cle)z(e))

whichis atmost2r timesthecontributionof edgesn E\ A to
the LP solutionvalue. Hence at leastoneof ther solutions
hascostat mosttwice the LP value.

We must now shov all solutions are feasible. Let
v(e) := min{y’(e),ua(e)z'(e)}. In words,y(e) is thecon-
tribution of edgee to the flow cover inequality correspond-
ing to Ey, E5, and A. Notethaty(e) = ua(e). Ourfirst
obsenationis thatthedifferencen ~(e)-capacityof ary two
bucketsis atmostD — u(A). This holds,asbefore,by the
orderingof the edgesin the bucketing algorithm,andsince
uler) > u(eq) impliesua(er) > ua(es). If somebucket
hasvy(e) capacitylessthanD — u(A), thenthelastbucket
does, since this hasthe leasty(e)-capacity If the v(e)-
capacityof the last bucket is lessthan D — u(A), thenall
bucketshave~(e)-capacitylessthan2(D —u(A)). Summing
over the~(e)-capacityof all copiesof edgesputin buckets,
this thenimpliesthefollowing inequality:

Z 2ry(e) + Z 2rua(e)z(e) < 2r(D — u(A))

eEEl\A EEEQ\A

This contradicts(z, y) asolutionto the LP with flow cover
inequalities Henceall bucketscontainfeasiblesolutions. l

To obtaina 2-approximatioralgorithm, we needto be
able to separateheseinequalities. Notice that the proof
of Theorem2.10reliesonly on the factthatthe flow cover
inequalityis satisfiedfor thesetA = {e|y(e) > u(e)/2}.
Thuswe canperformseparationn the samemanneraswith
theknapsaclcoverinequalities. Similarly, we canalsoeasily
obtaina approximatesolutionin polynomialtime.

For generalgraphswith onedemandoair, we canmodel
the fixed chage network flow problem as a capacitated
network designproblem. We introducemultiple copiesof
edgespnefor eachflow amount.This greatlyincreaseshe
sizeof thegraph.Sincewe canonly hopefor anapproximate
solutionanyway, we cancontrolthe sizeof this increaseby
addingedgedor flow quantitieshatareapowerof (1+¢) for
€ > (0. Thenour approximationalgorithmsfor capacitated
network designappliedto this problemyield approximation
guaranteethatincreaseyy afactorof e.

3 Solvingthe LP Efficiently

In this sectionwe shav how to find goodsolutionsto capac-
itatedcoveringLP’sin polynomialtime without usingtheel-
lipsoid method providedtheinitial formulation(withoutKC



inequalities)containsapolynomialnumberof constraintsin
the capacitatechetwork designsetting,this correspondgo
graphswith a polynomialnumberof interestingcuts.

To solve LPswith mary constraintsasis the casehere,
it may be more efficient to use a fast approximational-
gorithm insteadof the simplex method, ellipsoid method,
or otherseparation-base@xact solution procedure. There
exist polynomial-time,combinatorialmethodsfor approxi-
mately solving LPs with specialstructureusing separation
oracles. For example, Plotkin, Shmgs, and Tardos[30]
describesucha methodfor linear programswith all coefi-
cientsnon-neyative, and all inequalities< (a packingLP),
or all inequalities> (a covering LP). Recently Garg and
Kodnemann[10] describea similar, but simpler procedure.
This finds e-approximatesolutionsto both the primal and
dualproblemsandreliesonanoracleto find amostviolated
inequality or an e-approximatemostviolatedinequality of
thecoveringproblem.For the system

min{cz|Az > d,z > 0}

and a vector £, a most violated inequality is the row ¢
minimizing A,/ d,.

We first considerthe minimumknapsackproblem. The
argumentsextendto moregenerakapacitatedoveringprob-
lemsby examiningthe setof KC inequalitiesfor eachorigi-
nal coveringconstraint.

For LP2, the LP relaxationof 1P2, we mustfind an
inequality minimizing ZeeE\A %x(e) over all choices
of A with D(A) > 0. TheKC inequalitiescorresponding
to A := {e € E|z(e) > 1/2}, which we usedpreviously,
arenotin generathemostviolatedKC inequalities.Indeed,
it is not hardto constructexamplesfor which using them
in the Gag-Kdnemannalgorithm insteadof most violated
inequalitieswill notleadto e-approximate._P solutions.

To find a most-violatedinequality for the minimum
knapsackproblem,we fix d to avaluein [1, D], andsearch
for a setof edgesA that satisfiesD(A) = d andthatmin-

IMizesy- . cpm 4 “dée)x(e), whereu?(e) := min{u(e),d}.

For fixedd, eachedgehasa weightw(e) := #‘ge)x(e) and
acapacityu(e). We seeka minimum-weightsubsebf edges
of total capacityatleast? —d, whereT := . u(e). This
is exactly aminimumknapsaclproblem for which thereex-
istsanFPTAS [19].

We now reducethe numberof calls to the knapsack
cover FPTAS from D to somethingpolynomialin theinput
size. Let A* denotethe setof edgesthat yields the most
violated inequality Let d* = D(A*). Supposenow that
we don't look for violatedinequalitiesfor all valuesof d =
D(A) intheset[1, D], butonly for aselectedsubsetlIf there

isad < d* in oursetsuchthat}”, . p 4» “dée)x(e) <1+

€) D ecr\ax L;*@lx(e), then the most violated inequality
we find whenwe fix d will be at leastthis violated, and

hencean e-approximatemostviolatedinequality Sincefor
d a*
d < d*, “759) > “d—*(e) and this inequality is leasttight

o
whenul(e) = u? (e), we ha/ethat“dTge) <+ e)“d—*(e)
whenererd > d*/(1 + €). Thus,to find an e-approximate
mostviolatedinequality it suficesto restrictour searchto
valuesof d in {[(1+¢€)*] | i =0,1,..., [log, . D]}. This
reducesthe numberof iterationsof the dynamic program
from D to L log D.

The Gag andKdnemanrs FPTAS for solving positive
packing LPs requires O(e~2m) most-violated-inequality-
subroutinecalls. Thusthe corresponding=PTAS for solv-
ing our LP requiresO(e~3m(log D) K (m,¢)) time, where
K (m,e€) is thetime requiredto obtainan e-approximateso-
lution to a minimum knapsackproblemon m items. For
capacitatedoveringproblemsthis runtimeis multiplied by
thenumberof original covering constraints.

4 OQuterplanar Graphs

In this section,we give a pseudopolynomial-timelynamic
programandcorrespondindg-PTAS for the (s, t)-capacitated
network designproblemon outerplanamultigraphs. This
problemis NP-completesinceit generalizegshe minimum
knapsaclproblem.SchwarzandKrumke [32] givea FPTAS
for the (s,t) capacitatedhetwork designproblemon series
parallelgraphswhens andt¢ arethe two endpoints. Their
algorithmusesdynamicprogrammingmoving up theseries-
paralleldecompositiortree. Our resultis not subsumedy
this algorithmsincewe allow s and¢ to be ary two nodes
onanouterplanagraph(wheresuchdecompositiortreesdo
notexist).

The dynamicprogramfor outerplanargraphsproceeds
asfollows. Consideranouterplanaembeddingf thegraph
G from which the multigraphis derived. If s andt arenot
biconnectedthe problemeasily partitionsinto two or more
smaller parts whose solutions are easily combinedinto a
solutionfor the whole. Therefore,we canassumewithout
lossof generalitythats andt¢ arebiconnectedFurthermore,
thebiconnectedomponentsiot containingboth s andt can
beignored.

ConsidetthebiconnectedomponeniB containingboth
s andt. Sinced is outerplanarB mustbe a cycle C' with
chords.If theedge(s, t) exists, B is series-parallelandwe
canusethe dynamicprogramand FPTAS of Schwarz and
Krumke. Otherwisetheverticess andt partitionC — {s, t}
into anupperpath P andalower pathQ).

In generalit is challengingto find anorderin which to
processheverticesfor standarddynamicprogrammingWe
transformthe graphto an equivalentform where dynamic
programmings easy Replacesachvertex v; (w;) in P (Q)
adjacentto verticesin both P and @ by a path P; (Q);) of
lengthequalto the numberof verticesin @ (P) to which v;
(w;) is adjacent.Give the edgesin P; (();) capacityD and



costzero. Eachvertex in P;(();) becomesanendpointof an
edgeoriginally adjacento v;(w;). Thereis only oneway to
assignedgedo verticeswhile preservingouterplanarity
The dynamic program processeseach edge (v;, w;)
(wherev; € P andw; € @) in orderfrom s to t. For each
suchedge we computea minimum-costsolutionthatroutes
d; demandov; andD —d; demandow; ford; =0,...,D.
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