
Improved Algorithms for Submodular Function Minimization and
Submodular Flow

Lisa Fleischer *

Dept. of Ind. Eng. & Oper. Res.

Columbia University

New York, NY 10027, USA

lisaOieor, columbia.edu

Satoru Iwata t

Grad. School of Eng. Science

Osaka University

Toyonaka, Osaka 560-8531, Japan

iwata@sys.es.osaka-u.ac.jp

Abstract

Very recently, two groups of researchers independently de-
veloped the first combinatorial, strongly polynomial-time al-
gorithms for submodular function minimization (Iwata, Flei-
scher, Fujishige; and Schrijver). In this paper, we improve
on these algorithms and show that the ideas generated in the
design of these algorithms are helpful in other contexts. This
work demonstrates one use of combinatorial algorithms for
submodular function minimization.

In particular we accomplish three things. First, we im-
prove the complexity of Schrijver's algorithm by designing
a push-relabel algorithm for submodular function minimiza-
tion (SFM). Second, we exploit the common structure shared
between submodular function minimization and maximum
submodular flow to design the first algorithm for maximum
submodular flow that does not depend on an oracle for SFM.
The overall time complexity is the same as for SFM. Finally,
we design the first algorithms for minimum cost submodu-
lar flow that do not depend on an oracle for SFM, using the
framework of submodular function minimization of Iwata,
Fleischer, Fujishige. We show that optimal dual solutions
can be computed in the same time as SFM, and that op-
timal primal solutions can thus be obtained with one ad-
ditional maximum submodular flow computation. We give
both weakly and strongly polynomial versions.

* Part of this work done while on leave at the Fields Institute, Toronto,
Canada. Partially supported by NSF grants INT-9902663 and EIA-
9973858.

tA part of this work is done while on leave at the Fields Institute,
Toronto, Canada. Partly supported by Grants-in-Aid for Scientific Research
from Ministry of Education, Science, Sports, and Culture of Japan.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provide4 that copies
are not made or distributed tbr profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on selwers or to redistribute to lists,
requires prior speciiic permission and/or a fee.
STOC 2000 Portland Oregon USA
Copyright ACM 2000 1-58113-184-4/00/5...$5.00

1. Introduction

A function f defined on all the subsets of a ground set V is
submodular if it satisfies for all X, Y C_ V,

f (x) + f (r) > f (x u r) + f (x n r).

Submodular functions arise in combinatorial optimization
and various other fields. Examples include cut capacity func-
tions, matroid rank functions, and entropy functions. Sub-
modular function minimization (SFM) is the problem of find-
ing a subset X C_ V with f(X) <_ f(Y) for all Y _C V.

Connecting submodular functions with network flows,
Edmonds and Giles [4] introduced the submodular flow prob-
lem, which includes network flow, matroid intersection, and
directed cut covering. Since then, several combinatorial op-
timization problems have been shown to be special cases of
submodular flow. In particular, Frank and Tardos [7] solved
the minimum cost rooted vertex connectivity augmentation
problem in directed graphs by reducing it to minimum cost
submodular flow. A recent paper of Jord~in [14] also reduces
a simultaneous edge-connectivity augmentation problem in
undirected graphs to the submodular intersection problem,
which is equivalent to maximum submodular flow.

A number of network flow algorithms have been extend-
ed to submodular flow problems. All these algorithms rely
on an oracle for finding the minimizer of a given submodu-
lar function. The best known time complexity in this frame-
work is O(n3h) for finding a feasible submodular flow [9]
and O(n4h min{log U, log C, n 2 log n}) for solving the mi-
nimum cost submodular flow problem [5, 8, 13], where h is
the time required for SFM, U is an upper bound on the ab-
solute value of the arc capacities and function values, G' is
the maximum absolute value of the arc costs, and all input
numbers are integers.

The first polynomial time algorithm for SFM was intro-
duced in [11] and uses the ellipsoid method. The ellipsoid
method is well-known for its use in establishing the poly-
nomial time equivalence of separation and optimization for
problems in combinatorial optimization. While many op-
timization problems were shown to be polynomially solv-

107

able using separation implies optimization, the optimiza-
tion problem for submodular function polyhedra is solvable
by the greedy algorithm [3]. SFM is the harder-to-solve
separation problem. For almost two decades, optimiza-
tion implies separation via the ellipsoid method gave the
only polynomial time algorithm for SFM. In the interim, re-
searchers achieved combinatorial, strongly polynomial-time
algorithms for special cases, including Cunningham's algo-
rithm for testing membership in matroid polyhedra [1], and
Queyranne's algorithm for minimizing symmetric submod-
ular functions [15].

Very recently, two groups independently devised com-
binatorial, strongly polynomial-time algorithms for general
submodular function minimization. Both of these algorithms
are based on Cunningham's approach [1, 2] to design an
augmenting path algorithm for SFM. Let 3' be the time to
evaluate f on one set. Schrijver [16] describes an algorithm
that runs in O(n 9 + 7nS). Iwata, Fleischer, Fujishige [12]
describe a strongly polynomial time algorithm that runs in
O(Tn 7 log n), and a weakly polynomial time algorithm that
runs in O(Tn 5 log M) time, where M is an upperbound on
the maximum function value, assuming all function values
are integer.

Our Contributions

First,we present a faster strongly polynomial-time algorithm
for SFM. The new algorithm exploits a subroutine devised
in [16]. We reduce the number of subroutine calls by a
factor of n by embedding the subroutine of [16] in a push-
relabel framework for submodular intersection developed by
Fujishige and Zhang [9]. The resulting algorithm runs in
O(n s + ~,n 7) time. If a function evaluation takes at least
linear time, then this is the fastest strongly polynomial algo-
rithm for SFM.

Next, we show that this algorithm can be modified to
solve a more general problem in the same time bound: We
describe the first algorithm for maximum submodular flow
that does not require an oracle for SFM. Instead, we modify
combinatorial algorithms for SFM to design a more direct,
strongly polynomial algorithm for this problem.

Finally, we describe the first algorithms for solving min-
imum cost submodular flow that do not require an oracle for
SFM. We present both weakly and strongly polynomial time
algorithms. The design of these combinatorial algorithms
builds on ideas in [5, 12]. Our algorithm computes optimal
dual node prices in the same time as SFM. Then, an optimal
flow can be computed either with one maximum submodular
flow, or m iterations of the price finding algorithm.

2. Preliminaries

We denote by Z and R the set of integers and the set of reals,
respectively. Let V be a finite nonempty set of cardinality
IVI = n. For a vector in x E R v and a set X C_ V we

define x (X) = ~ v e x x(v). For each u e V, we denote by
Xu the unit vector in R V such that X~, (v) = 1 if v = u and
= 0 otherwise.

Throughout this paper, we assume that f (0) = 0. The
base polyhedron of f is defined as

B (f) := { x l x E lrtV, x (V) = f (V)
x (X) < f (X) , V X C V }

A vector x E B(f) is called a base. An extreme base is an
extreme point of B(f) . A fundamental step in algorithms
for SFM and submodular flow is to move from one base x to
another x ~ via an exchange operation: x ~ := x + a (X v - X w) .
The maximum possible exchange tx allowable is called the
exchange capacity, and is defined as

a(x, v, w) := max{a I a E R , x + a(Xv - Xw) E B(f)} .

It is not hard to see that this is equivalent to

a (x , v , w) := m i n { f (X) - x (X) I v E X C V\{w}}.

For a given base x, we define Ax := { (w, v)la(x, v, w) >
0}. We call (w, v) E Ax an exchange arc. Computing ex-
change capacities in general is as hard as SFM. However, if
y is an extreme base, then exchange capacities can be com-
puted with one function evaluation for special vertex pairs
(w, v), as follows.

Let L = (Vl , ' - . ,Vn) be a linear ordering of V. The
greedy algorithm [3] generates an extreme base y by setting
L(Vh) := { v l , " " , vh} and y(Vh) = f (L(Vh)) -- f (L h - 1)
for each h. Edmonds showed that every extreme base is gen-
erated by the greedy algorithm applied to some linear order-
ing. Note that a linear ordering L generates base x if and
only if x(L(vh)) = f (L (vh)) for all h = 1, 2 , . . . ,n. Any
set X with x (X) = f (X) is called x-tight. Note that a set
X is x-tight if and only if there are no arcs in A~ that enter
X. The following lemma follows from the greedy algorithm
and the definition of exchange capacity.

Lemma 2.1: Let L be a linear ordering of V in which w
immediately follows v and that generates an extreme base
y E B(f) . Let L' be the linear ordering obtained by inter-
changing w and v. Then the extreme base y~ generated by
L' satisfies y' = y + a(y, v, w) (xv - Xw) with

a (y , v , w) = f (L (v) \ { w }) - y (L (v) \ { w }) . (2.1)

For an extreme base y, we denote w ___y v if w belongs
to every y-tight set containing v. Note that w - u v implies
w precedes v in the linear ordering generating y. Then ~y
is a partial order on V. If w ___y v, then a(y, v, w) > O.
F o r s , t E V, we call [s,t]y = {v I s 5y v 5v t} the
interval between s and t. If s 2~u t, the interval is empty by
definition. The Hasse diagram of ---u is a directed acyclic
graph on V whose arc set consists of pairs (w, v) of distinct
vertices such that [w, v]u = {w, v}.

108

3. S u b m o d u l a r Funct ion Min imiza t ion

The following dual characterization of a minimizer of a sub-
modular function follows from a rain-max theorem on the
vector reduction of a polymatroid due to Edmonds [3]. For
x E R V define x - by x - (v) := min{0,x(v)} forv E V.
Then Edmonds' theorem implies

ma x{x - (V) I x E B(f)} = min{ f (X) I X _C V}. (3.1)

This result can also be derived from LP strong duality. This
characterization has driven most searches for combinatorial
algorithms for SFM.

It is not necessarily true that the base achieving the max-
imum in 3.1 is an extreme base. Thus, in order to apply
Lemma 2.1, Cunningham [1, 2] chose to represent a base
x E B (f) as a convex combination of extreme bases: x =
~-~i Aiyi, Ai >_ O, ~ i Ai = 1, Yi E B(f) . This idea is also
used in the recent strongly polynomial time algorithms for
SFM, and in this current paper.

Roughly speaking, Cunningham uses this in an augment-
ing path framework which seeks to increase x - (V) by aug-
menting from vertices v with x(v) < 0 to vertices u with
x(u) > 0 along paths of arcs in the union of Hasse dia-
grams of Yi, i = 1, 2 , . . . , n. He obtains a pseudopolyno-
mial O (n S M log(nM)) time algorithm for SFM.

A major difference between the recent combinatorial,
polynomial time algorithm of Schrijver [16] and Cunning-
ham's algorithm [2], is that Schrijver maintains a directed
graph whose arc set is given by A~ = {(s, t) I 3i E I , s -<u,
t}, while Cunningham's algorithm uses only the arcs of the
Hasse diagrams. Another difference is that Schrijver's al-
gorithm does not perform augmentation along a path. It
constructs a layered network to detect a shortest augment-
ing path and applies an exchange operation only to the last
arc of a shortest augmenting path.

Instead of computing the exchange capacity, Schrijver
devises the following subroutine that computes an amount
of exchange that is sufficient to eliminate the arc from Az.

Reduce-Interval(b, s, t)

Input: An extreme base b E B(f) and distinct s, t E
V such that s '~b t.

Output: A positive constant # and a decomposition
of b + #(Xt - Xs) as a convex combination of
extreme bases y E B(f) such that [s, t]v C
Is, tlb,

This subroutine works as follows. Let L = (v l , . . • , vn)
be a linear extension of -% such that {Vv, • • • , vq} = [s, t]b.
Namely, vp = s and vq = t. For each r = p +
1 , . . . , q, compute the extreme base Yr generated by L r --~

(V l , ' ' " , Yp - - l ,Vr ,Vp , ' ' " , V r - - l , V r + l , ' ' " , V n) . Determine

/ / p + l , " " " , ~q ~ 0 s u c h t h a t

Xt -- Xs :

q

r:p-I-1

q Put r / = ~ = p + l r/~ and/z = 1#/. Then

q

r.=pq-1 I]

holds, and each Yr satisfies [s, t]y ~ C Is, t]b. Thus this sub-
routine runs in 0 (n 2 7) time.

The above algorithm of Schrijver[16] minimizes f by
calling the subroutine O (n ~) times. We will present another
algorithm that calls it O(n 5) times.

A Push-Relabel Algorithm for SFM

We now describe the push-relabel algorithm for SFM. The
push-relabel approach was introduced for network flows by
Goldberg and Tarjan [10], and is among the most efficient
known algorithms for maximum flow. It has been applied to
polymatroid intersection, a problem equivalent to maximum
submodular flow, by Fujishige and Zhang [9].

The algorithm maintains x E B(f) as a convex combina-
tion x = ~ i e t ,~iYi of extreme bases Yi and a directed graph

(V, A~). We start with an extreme base x E B(f) obtained
by the greedy algorithm [3]. Let S := {s I s E V, x(s) > 0}
and T := {t I t E V, x(t) < 0}. The labeling d : V --> Z is
valid if it satisfies d(t) = 0 for t E T and d(s) <_ d(t) + 1
for all (s, t) E A~. The algorithm maintains a valid label-
ing. Initially, d(s) = 0 for s E V, which is clearly valid.
Note that a valid distance labeling d serves as a lower bound
on the minimum number of arcs from s to T. For a valid
labeling d, we define Q := {s I s E S, d(s) < n}.

The algorithm consists of two basic ope~tions. Opera-
tion Push(s, t) applies if s E Q, (s , t) E A~ and d(s) =
d(t) + 1. Select k E I with the largest interval [s, t]u k, and
apply the subroutine Reduce-lnterval(yk, s, t) to get/z > 0
and a convex decomposition ~ j e J ~JYJ ofyk + #(Xt - Xs).
Update x := x + e(Xt - X,) with e = min{x(s), Ak/Z}.
Putting I := I U J , Ak := Ak -- e /# , and Aj := Ak~j for
j E J, we obtain a convex combination x = ~-']i~/Aigi. By
a standard linear programming technique, reduce the num-
ber of positive coefficients in this expression to at most n in
O(n 3) time, and then delete those indices with zero coef-
ficients from I. The operation Push(s, t) iterates this until
x(s) = 0 or (s, t) • Az. If (s, t) ~ ,,i~, we call Push(s, t)
saturating, and otherwise nonsaturating. In each iteration,
the maximum size of the intervals [s, t]y~ decreases or the
number of extreme bases that attain the maximum decreases.
Thus Push(s, t) performs at most O(n 2) iterations.

Operation Relabel(s) applies if s E Q and d(s) < d(t)
for every (s, t) E A, . It updates d(s) := d(s) + 1. Clearly,
d(s) < n holds for s E V throughout the algorithm.

109

The algorithm fixes an arbitrary total order < on the ver-
tices. The algorithm repeatedly selects a vertex s E Q with
highest d(s) to apply a procedure Scan(s). The procedure
Scan(s) repeatedly picks a vertex t E V in the total or-
der and applies Push(s, t) if possible, until x(s) = 0 or it
has examined every t E V. If Scan(s) ends with a non-
saturating Push(s,t) , the next time Scan(s) is invoked, it
starts at t. This is done by keeping a pointer 7(s) that indi-
cates the current vertex to be examined in Scan(s) for each
s E V. The algorithm increments ~-(s) if it performs a sat-
urating Push(s, 7(s)) or it finds Push(s, r (s)) is not appli-
cable. If ~-(s) is the last vertex in <, then the algorithm
performs Relabel(s) and resets T(S) to be the first vertex in
<.

The algorithm terminates when either Q or T is empty. If
Q = 0, let W denote the set of vertices from which there is a
directed path to T. Then x(s) < 0 for s E W and x(s) > 0
for s E V \ W . This implies x - (V) = x (W) . Since no arc
in .4~ enters W, we have yi(W) = f (W) for every i E I,
which implies x (W) = f (W) . Thus W is a minimizer of f .
If T = O, then f (X) > x (X) > 0 holds for every X C_ V,
which means 0 is a minimizer of f .

To establish the correctness and complexity of the al-
gorithm, we require the following technical lemma adapted
from Schtinsleben (1980). This lemma also highlights the
additional difficulty of working with Az. Namely, arcs in
-4x may appear, disappear, or change capacity when opera-
tions are applied to completely disjoint arcs in A~. This extra
complication does not arise in traditional network flows.

Lemma 3.1: Let z + # (X t - Xs) = ~-~.jeJ t~jyj be the convex
combination obtained by the subroutine, where t~j > 0 for
j E J. I fu 2~z v a n d u ~-uJ v f o r s o m e j C J, thenu ~ t
and s ~z v.

Proof. Since u 7~z v, there must be an X C_ V that satisfies
v E X, u ~ X, and y (X) = f (X) . I f u 7~z t, then there
exists an Y such that t E Y, u ¢ Y, and z(Y) = f (Y) .
It follows from t E X to Y and the submodularity of f that
y j (X tO Y) = z (X tO Y) = f (X tO Y) holds for any j E J,
which together with v E X tO Y and u ~ X tO Y contradicts
to u -<uJ v. Similarly, if s 2~z v, then there exists a Z C_ V
such that v e Z, s ~ Z, and z(Z) = f (Z) . It follows from
the submodularity of f and s ~ X V1 Z that yj (X V1 Z) =
z (X f-I Z) = f (X n Z) holds for any j E J, which together
with v E X n Z and u ~ X fl Z contradicts to u ~yj v. •

Lemma 3.2: The operations Push and Relabel maintain va-
lid d.

Proof. At start d is valid. The operation Relabel, if applica-
ble, maintains valid d. Suppose d is valid before Reduce--
Interval(yk, s, t) introduces a new arc (u, v) to -~x. In this
case, u 7~y, v and u ___y~ v and for some j E J. Lemma 3.1
then implies that u ---Y2 t and s ___y~ v. That is, (u, t)
and (s, v) belonged to A~ before Reduce-lnterval(yk, s, t).

Since d is valid before Reduce-lnterval(yk, s , t) , we have
d(u) < d(t) + 1 and d(s) < d(v) + 1. Since Push(s,t)
applies, d(s) = d(t) + 1, which implies d(n) < d(v) + 1.
Thus the push operation maintains valid labels d,and hence
d remains valid throughout the algorithm. •

Since d(s) <_ n for every s E V, the algorithm performs
at most n 2 relabel operations in total. Lemma 3.3 below en-
sures that Relabel(s) is applicable when the algorithm resets
r(s) in Scan(s). Therefore the algorithm performs at most
~3 saturating pushes.

Lemma 3.3: I f v < -c(u) and (u,v) E -4x, then d(u) <_
d(v).

Proof. Suppose the statement holds before a call to Reduce--
Interval(yk, s, t) introduces a new arc (u, v) E A~. It fol-
lows from Lemma 3.1 that u -<u~ t and s --<y~ v. By the va-
lidity of d, we have d(u) < d (t) + l and d(s) < d(v)+l . By
the applicability of Push(s, t), we also have d(s) = d(t) + 1.
If t < T(u), then d(u) < d(t). On the other hand, if
t > T(n) > V, then d(s) < d(v). In either case, we have
d(u) < d(v). •

Lemma 3.4: Between a non-saturating Push(s, t) and the
next Scan(s), the algorithm performs Relabel(u) for some
u E V .

Proof. As a consequence of Push(s, t), we have x(s) = O.
Before applying Scan (s) again, the algorithm must increase
z(s) by Push(v,s) for some v E V with d(v) = d(s) +
1. This implies by the highest label selection rule that there
must be a relabel operation somewhere before Push(v, s). •

Lemma 3.4 implies that the number of non-saturating
pushes is also at most n a. The proof is straightforward. Thus
the algorithm performs O(n z) relabel and O(n 3) push oper-
ations. Since each push operation calls the subroutine O(n 2)
times, the algorithm calls it O(n 5) times in total. Therefore,
the push-relabel algorithm runs in 0(n77 + n 8) time.

4. Feasible S u b m o d u l a r F low

In this section, we give the first combinatorial algorithm for
maximum submodular flow that does not call an oracle for
SFM. The best known algorithm runs in time O(nah) where
h is the time required by the SFM oracle [9]. We show how
to solve this in the same time as the SFM algorithm in the
preceding section, by modifying the polymatroid intersec-
tion algorithm of Fujishige and Zhang [9]. Our algorithm
replaces each call that their algorithm makes to an SFM ora-
cle with n calls to Reduce-Interval. The resulting algorithm
looks very similar to our SFM algorithm in the preceding
section, and could easily be interpreted as a modification of
that algorithm. We begin by describing how to find a feasible
submodular flow.

110

Let G = (V, E) be a directed graph with lower and up-
per bounds I < u on the flow values on arcs. For a flow qo
in G, its boundary 0qo is defined by Oqo(X) = qo(A+X) -
qo(A-X), where A + X and A - X are the sets of arcs leav-
ing X and entering X, respectively. In words, Oqo(X) is the
net flow leaving X. Let f be a submodular function on V
such that f({~) = f (V) = 0. A flow qo is a submodularflow
if it satisfies:

(SF) 0qo E B(f),
l < ~ < u .

Theorem 4.1 (Frank [6]): System (SF) is feasible ifandonly
/f

l (a + x) - _< f (x) (4.1)

holds for every X C_ V. I f in addition l, u, f are integer
valued, then there exists an integral solution. •

Our algorithm maintains a base z E B(f) as a convex
combination of extreme bases Yi E B(f) , z = ~ Aiyi; and
a flow ~ satisfying l < ~ < u. Initially, x is an extreme
base obtained using the greedy algorithm and ~v is any flow
obeying upper and lower bounds, for instance we can start
with ~v = 1. When x = 0~, then we have found a feasible
solution.

The algorithm also maintains a directed graph (V, A~ U
E~), where E~ = F~ U B~ is defined by F~ := {(v,w) [

< u(v,w)}, := I > l(w,v)}.
For an arc (v, w) E E~, we denote its residual capacity by
r(s, t). That is, r(v, w) := u(v, w) - ~o(v, w) if (v, w) E F~
and r(v, w) := ~(w, v) - l(w, v) if (v, w) E B~. Let S :=
{v E V I x(v) > Oqo(v)} and let T := {v E V I x(v) <

As with the previous algorithm, our feasibility algorithm
maintains a valid distance labeling d, which satisfies d(s) <
d(t) + 1 for every arc (s, t) E Az U E~ and d(t) = 0 for
every t E T. Initially, the algorithm starts with d(s) = 0 for
s E V. Again, we set Q := {s E S [d(s) < n}.

As before, our algorithm consists of two types of basic
operations, pushes and relabels. However, now pushes fall
into two categories: pushes on arcs in E~, and the previously
defined Push(s, t). We will differentiate the former type of
push by denoting it FPush(s, t). An FPush(s, t) applies if
s E Q, (s, t) E E~, and d(s) = d(t) + 1. It augments ~(s, t)
by e := min{x(s) - 0~(s) , r(s, t)}. I f e = r(s, t), then the
push is called saturating. Otherwise it is called nonsaturat-
ing.

In this algorithm, we also modify the applicability of re-
label, calling the operation F Rela bel(s). It is now applicable
if s E Q and d(s) < d(t) for every (s , t) E Az U E~. It
updates d(s) := d(s) + 1.

The algorithm works as before, but we replace Scan(s)
with FScan(s), where FScan(s) applies both Push(s, t) and
FPush(s, t); and Relabel(s) is replaced with FRelabel(s).

The algorithm terminates when Q is empty. If S is also
empty, then so is T a n d x (v) = O~v(v) for all v E V,
so that qv is a feasible flow. Otherwise, the set W of ver-
tices reachable from S, does not intersect T. In this case,
we have l (A+W) - u (A - W) = O~(W) < x (W) =
~ i e I Aiyi(W) = f (W) . Thus W is a certificate ofinfeasi-
bility via Theorem 4.1.

The correctness and complexity of the algorithm are
shown by extending Lemmas 3.2, 3.3, and 3.4 to this al-
gorithm by including operation FPush(s, t). The arguments
for this extra operation are similar and simpler, so are omit-
ted here.

This algorithm may be extended to find a feasible sub-
modular flow maximizing flow on a particular arc (s*, t*).
Instead of starting with d(v) = 0 for all v, we set d(s*) = n
and allow labels to increase to 2n. We also start with the
flow qv with ca(s, v) = u(s, v) V v E V, and with the ex-
treme base obtained using the greedy algorithm with an or-
dering that puts s* first. This implies that there will be no
initial arcs leaving s* in E~ U Az, and thus the modified
initial labeling is valid.

Theorem 4.2: There is a combinatorial algorithm for com-
puting a maximum submodular flow using O (n r) oracle calls
and O(n s) arithmetic computations.

5. Minimum Cost Submodular Flow

In this section we describe the first combinatorial, polyno-
mial time algorithm for minimum cost submodular flow that
does not call an oracle for SFM. Our algorithm computes
optimal dual node prices in the same time as the fastest com-
binatorial polynomial time algorithm for SFM [12]. We can
then modify our problem to obtain the flow with m addi-
tional iterations so that the resulting algorithm runs in time
O(mn 5 log(nU)). We also obtain a strongly polynomial
time algorithm.

We obtain these results by exploiting the similarity be-
tween the two recent papers: a scaling algorithm for sub-
modular flow by Fleischer, Iwata, and McCormick [5] and
the combinatorial, polynomial time algorithm for submodu-
lar function minimization by Iwata, Fleischer, Fujishige [12],
which was inspired by [5].

On Notation: The choice of direction for an exchange
arc made in Section 2 is arbitrary, but once fixed has im-
plications for other choices of orientation in the paper, such
as which vertices are sources and sinks, how O~v is defined,
and the relation of x-tight sets to As. In [16] and [5] this
choice was made one way, and in [12] the opposite choice
was made. Since our work in this paper builds on all of these
algorithms, we could not be consistent with both choices.
We chose to be consistent with [16] and [5]. The current sec-
tion builds on work in [5, 12], however. Thus it may seem
that what we are describing below is backwards from what
is contained in [12], but this is simply a matter of definitions.

111

5.1. Opt imal i ty Condi t ions

The minimum cost submodular flow problem, often called
the submodularflowproblem, asks for a solution to (SF) that
minimizes cTqo for a cost vector c E a E. In this section, we
review optimality conditions for the submodular flow prob-
lem.

As with standard network flows, we can consider a dual
problem that defines node prices p for v E V. For p E R V,
consider the linear program to maximize ~-~v~v p(v)x(v) on
the base polyhedron B(f) . An optimal solution is called a
p-maximum base. Let Pl > " ' " > Pk be the distinct values
ofp(v) , and put Hi = {v [p(v) > Pi}, the ith level set ofp.
Define Ho := 0 and let fp : 2 V --+ R be defined by

k

fv (X) = ~ { f ((X n Hi) U Hi- l) - f (H i - x) } .
i = 1

The following lemma follows easily from submodularity of
f and implies that B(fp) C_ B(f) .

Lemma 5.1: The function fp is submodular and satisfies
fp <_ f . In addition, if there exists i such that for set X
Hi C_ X C_ Hi+l, then fp (X) = f (X) .

Theorem 5.2: For a base x E B(f) , the following are equiv-
alent:
(i) x is p-maximum.
(ii) x E B(fp).
(iii) x(Hi) = f (H i) f o r every i.
(iv) p(w) > p(v) for every (w, v) E Ax. •

For arc (w, v) = a E E, define O+a = w and O-a = v.
Given a price function (or node potentials) p E R V, we
define the reduced cost w.r.t, p as Cp(a) = c(a) + p(O+a) -
p(O- a) for each a E E tO Ax.

Theorem 5.3: A submodular flow qo is optimal if and only if
there exists p E R V such that:
(a) For any a E E, Cp(a) > 0 implies ~o(a) = l(a), and
cp(a) < 0 implies qo(a) = u(a), and
(b) 0~ is a p-maximum base in B(f) .
Moreover, if c is integral, then we may restrict the above p to
be integral. •

5.2. A Scal ing Algor i thm

We begin by discussing the algorithm that obtains optimal
node prices p for a submodular function f that takes on inte-
gral values. In Section 5.2.8, we show how to obtain the op-
timal flow with < m applications of this algorithm. Instead,
we could use the optimal node prices to fix flows on all non-
zero reduced cost arcs and then call a maximum submodular
flow algorithm, such as the one described in Section 4 to find
the rest of the flow. Due to the differences in complexities of
the algorithms, it may sometimes be more efficient to do the
former.

We keep the general framework of the weakly polyno-
mial submodular flow algorithm described in [5]. This al-
gorithm uses a shortest augmenting path subroutine within
a scaling framework. We review this algorithm below, and
highlight the changes that are necessary to obtain an algo-
rithm that does not require an oracle for SFM. Our main
contribution is a subroutine to find a least cost 5-augmenting
path that does not require such an oracle. This subroutine is
described in Section 5.2.4.

5.2.1. The Scaling Framework

In the 6 scaling phase, capacities and submodular constraints
are relaxed by 6 by adding the arc set of a complete directed
graph on V with capacity 6 to the initial graph. This arc set is
denoted D = {(w,v) I w ~ v E V}. For a l i a E D, weset
c(a) = O, l(a) = O, and u(a) = 6. Define the submodular
function b : 2 V --+ R b y b(X) = IXl.IV-XI. Equivalently,
5b(X) is the capacity of the cut X in (V, D). This relaxation
can be thought of as either relaxing the condition that 0~o E
B(f) to 0qa E B (f + 5b), or as relaxing the capacities l and
u by 6. However, the arcs in D have no cost, so this is not
a pure relaxation of capacities. We treat the arcs of D as
having their own separate flow, denoted ¢. For any distinct
w, v E V, we may assume that at least one of ¢(w, v) and
¢(v , w) is zero, so that either (v, w) or (w, v) has residual
capacity 6.

At any given point in the algorithm we will have a flow
qa on E, and flow ~ on D, a price vector p, and a base
z E B (f p + S b) . We mainta inz = x - 0 ¢ as the sum
of x E B(fp) and - 0 ¢ E B(Sb). Since we are not allowed
to compute exchange capacities in general, as with the algo-
rithm in Section 4, we maintain x = ~ i e l Aiyi as a convex
combination of extreme bases yi E B(fv) . Following [12],
for each yi, we maintain a linear ordering Li that generates
Yi. This will allow us to apply Lemma 2.1 when appropriate.
Thealgorithm also maintains (a) of Theorem 5.3 for qo and
p, and (b) of Theorem 5.3 for x and p.

We measure progress in the algorithm via the discrep-
ancy between z and 0qo, which is defined by the discrepancy
function • = ~ v Iz(v) - Oqo(v)[. In a 5-scaling phase,
the algorithm repeatedly looks for a path from S+(6) :=
{vlz(v) > Ocp(v) + 5} to S - (5) := {v[z(v) < Oqo(v) -- 5}
of residual capacity >_ 6, and then augments flow on this
path, decreasing the discrepancy by 26. This is a path con-
sisting of arcs in E~ (6) U D e (5), where E~ (6) is the set of
arcs in E~ with capacity at least 6, and D e (6) is the set of
arcs a E D with ¢ (a) = 0. This is a 6-augmenting path.

Our algorithm starts with large enough 5 = U as speci-
fied in Section 5.2.2. We show in Section 5.2.3 that a scaling
phase starts with the discrepancy is at most 4n26 and ends
with the discrepancy at most n25. In Section 5.2.7 we show
that if f , l, u, and c are integer, then p is optimal at the end
of the scaling phase with 5 < 1/n 2.

112

5.2.2. Initialization

We start with a flow qo and a price vector p that satisfy condi-
tion (a) of Theorem 5.3 obtained as follows. First, we check
whether there exists a dual feasible solution p and obtain
such a solution, using the Bellman-Ford-Moore algorithm
in a modified graph, as described in [5]. With dual feasible
p, we can construct a flow cp that satisfies condition (a) of
Theorem 5.3 in O(m) time. We also start with linear or-
dering L that is ordered according to nonincreasing p-values
(see Lemma 5.5 for motivation), and a base x E B(fp) ob-
tained by applying the greedy algorithm [3] to L. We do not
check for primal infeasibility, since our algorithm will detect
this.

We set U := max{max{lu(a)l l u(a) < +oo},
max{ll(a)l I l(a) > - ~ } , max{f({v}) I v E V}}.
Since qo(a) < U for all a E E, we have 1(9~(v)l _< nU
for a l ly E V. S incex(V) = f (V) = 0, wehave tha t
Ix(v)l _< (n - 1)u. Thus the initial discrepancy between x
and qo is at most 2n2U.

5.2.3. A Scaling Phase

At the start of a new phase, we modify ¢ to satisfy the capac-
ity constraints for the new value of 5, and modify ~ to satisfy
(5.1) for arcs a with residual capacity 5 < r(a) < 25.

The object in a scaling phase is to decrease the discrep-
ancy by augmenting along 5-augmenting paths restricted to
E~ (5) t.J De (5), while maintaining reduced cost optimality
conditions

Cp(a) > 0 , V a E E ~ (5) UD¢(5)UA~ (5.1)

implied by Theorem 5.3. To do this, it is necessary
to find a least-cost (with respect to reduced costs Cp) 5-
augmenting path. The algorithm repeatedly calls the sub-
routine SubmodDijkstra to find this. This subroutine is an
extension of Dijkstra's algorithm and is discussed in the next
section. It returns a least-cost path on E~ (5) UD¢ (5). It may
seem that it should consider also arcs in A~ when searching
for a least cost 5-augmenting path. Instead, S u brood Dij kst ra
performs a double-exchange on selected arcs in its search for
a least cost path to avoid the appearance of exchange arcs on
this path. A double-exchange on arc a is an exchange oper-
ation on a followed by a modification of flow on a, so that z
is unchanged at the endpoints of a.

Since z = x - (9¢ and we augment by exactly 5 along a
least-cost 5-augmenting path, each augmentation decreases
the discrepancy by 5 at both endpoints of the augmenting
path, maintains the discrepancy of all other nodes. A phase
ends when one of S + (6) or S - (5) is empty, or the set of
nodes R reachable from S + (5) in E~ (5) U De (5) U Az is
disjoint from S - (5). In the first case, since the net excess is
0, at the end of a phase the total discrepancy is ,I, < 2n5. In
the second case, either the total discrepancy is bounded by
the residual capacity in (E~ tAD¢)fqA+ R, which is bounded
by (n2/2)d, or we have a proof of primal infeasibility.

5.2.4. Finding a Shortest 5 Augmenting Path

We describe how to find a least-cost 5-augmenting path in
E~ (5) t_J De (5) tJ A~ without using an exchange capacity
oracle. Our algorithm is an extension of Dijkstra's short-
est path algorithm to handle exchange capacities. Dijkstra's
algorithm has been used in the Edmonds-Karp capacity scal-
ing algorithm for minimum cost flow to find a least-cost path
of capacity at least 5. This can be done by ignoring edges
with residual capacity less than 5. This becomes more com-
plicated in submodular flow settings, since there may also
be exchange arcs. We avoid using exchange arcs on the
least-cost path by a double-exchange operation that trades
exchange capacity on an arc in Az for residual flow capacity
on the parallel arc in D. Since both these arcs have zero cost,
they also have the same reduced cost, and thus serve equally
well on a least cost path.

Performing an exchange operation on (s, t) can increase
exchange capacity on other arcs, thus changing the residual
exchange capacity graph. This makes it tricky to maintain
valid distance labels as required for the correctness of Dijk-
stra's algorithm. In particular, unlike the case for residual
flow arcs, we cannot ignore exchange arcs that have positive
residual capacity less than 5, since the capacity of these arcs
may change even when exchange operations are performed
on completely different arcs. Fortunately, we can character-
ize when the capacity of exchange arcs can become strictly
positive. Lemma 5.4 is a simpler version of Lemma 3.1.

Lemma5.4: Let y be a base, and y' = y + #(Xt - Xs)
for # <_ a(y, t, s). If (w, v) ~ Ay and (w, v) E Ay,, then
{(w,t) , (s ,v)} C_ Ay. •

In [5], the authors use Lemma 5.4 to develop a version
of Dijkstra's that works in the presence of exchange arcs.
To solve the SFM problem, this idea was modified to find 5-
augmenting paths without an oracle for computing exchange
capacities in [12]. Instead, the algorithm in [12] ignores
most exchange capacity arcs and only considers pairs sat-
isfying the conditions of Lemma 2.1. However, it does not
find a least-cost augmenting path. In this section, we extend
these ideas to find a least-cost 5-augmenting path while re-
stricted to computing exchange capacities using Lemma 2.1.
It is not immediately evident that it is possible to find least-
cost paths if some exchange arcs are ignored. We show that
this is possible by carefully choosing the linear orderings Li
generating Yi for / E I. The result yields an efficient, com-
binatorial algorithm for submodular flow.

The subroutine SubmodDijkstra starts with a parameter
5, node prices p, a base x = ~ i e I Aiyi E B(fp), a flow ~p
on E, and a flow ¢ on D(5). The algorithm also maintains
the linear orderings Li that generate Yi, Vi E I. The subrou-
tine SubmodDijkstra is described in Figure 2. It maintains
distance labels d and a set R of permanently labeled ver-
tices that are reachable from S + (5) by 5-augmenting paths
in E~ (5) tJ D¢ (5). The algorithm returns either a least cost

113

(w.r.t. Cp) 5-augmenting path in E~ U De or a set R of all
nodes reachable from S + (~) in E~o (~) U De (5) U As such
that R M S - (~) = 0.

The distance labels d : V -4 Z satisfy d(w) < d(v) +
Cp(V,W) for all (v,w) E E~(~) U D¢(~) with v E R, and
d(w) < d(v)+cp(v,w) for all (v,w) E E~(5)UD¢(5)UAx
with v, w E R. At start, R = S+(5) and all nodes in R have
distance label 0. Immediately, all nodes reachable from R
on 0-reduced cost arcs in E~ (5) U De (5) are added to R
with distance label 0.

5ubmodDijkstra proceeds by looking for arcs (w, v) E
A~ with w E R, v E V \ R and cp(a) = O. If such an arc
is found, a double-exchange is applied by performing an ex-
change operation, and then sending flow backwards on the
parallel ¢ arc to maintain z = x - 0¢. This works as fol-
lows. Double-Exchange(i, w, v) swaps exchange capacity
on (w, v) for residual flow capacity on (w, v) by setting Yk =
Yi + ~(Xv - Xw) for c~ := min{a(yi , v, w), 5} and reduc-
ing ¢(w, v) by a. In words, a is the minimum of 6, which
is lower bound on the amount of ¢ flow that can be sent
backwards on (w, v) (forwards on (v, w)), and the maxi-
mum amount of change possible to affect in x by performing
an exchange operation on yi for (w, v). Double-Exchange
is saturating if a = a(yi, v, w), and nonsaturating other-
wise. A saturating Double-Exchange(i, w, v) updates yi as
yi := Yi + a (y i , v ,w) (xv - Xw) and modifies Li by inter-
changing v and w. A nonsaturating double-exchange in ad-
dition adds a new index k to I with Yk equal to the old Yi, sets
Ai = a/a(y i , v, w) and sets Ak as the difference between old
and new Ai. In both cases, x moves to x + t~ (Xv - X~o). Thus
z = x - 0qo is invariant. The operation Double-Exchange is
depicted in Figure 1. It is based on the operation Swap in-
troduced in [5]. Swap was modified in [12] to the subroutine
given here.

If Double-Exchange creates a residual C-arc (w, v), then
this arc has zero reduced cost. (All ¢ arcs and all exchange
capacity arcs have initial cost 0, and hence the corresponding
reduced costs are the same. By the applicability of double
exchange, this is 0.) In this case, the set R(v) of all vertices
in V \ R reachable from v on 0-reduced cost paths in E~ (if) U
D0(6) may be added to R after updating the labels of these
vertices to be equal to d(w).

If no arc (w,v) E Az withw E R, v E V \ R a n d
cp(a) = 0 is found, then $ubmodDijkstra selects the low-
est, finitely-labeled vertex t in V \ R , adds R(t) to R after
updated all the labels in this set to be d(t), and updates the
labels of vertices in V \ R adjacent to R(t) in E~ (5)U De (~).

At the end of the subroutine SubmodDijkstra, the set of
extreme bases I is reduced to an affinely independent set
using a standard linear programming technique.

5.2.5. Implementation

To implement SubmodDijkstra efficiently, we start the sub-
routine by reordering each linear ordering Li so that the p-

Double-Exchange(i, w, v):

c~ +-- min{t~, Aia(yi, v, w)}
If a <)~ia(yi, v, w) then

k +-- a new index
Z~-Iu{k}
)~ +--)~ - a/a(yi, v, w)
hi ~-- a/tr(yi, v, w)
yk ~-- yi
Lk <-- Li

yi +'- Yi --l-a(yi,v,w)(x,~ - X~,)
Update L~ by interchanging v and w.
x +-- ~ e l)~iyi [x +-- x + a(X~ - X~)]

¢(v, w) ~ ¢(~, ~) +

Figure 1: The operation Double-Exchange(i, w, v).

values of vertices are monotone nonincreasing.

Lemma 5.5: For an extreme base Yi encountered during the
algorithm, there exists a linear ordering generating Yi that
is ordered according to nonincreasing p-values.

Proof. All exchange arcs (v, w) have c(v, w) = 0. Thus if
(v, w) E As then since the algorithm maintains cp(v, w) _>
0, we have that p(v) > p(w). By construction, (v, w) E Ay~
implies (v,w) E As. Suppose Li has p(vk) < p(Vk+l).
Then (Vk,Vk+l) • Ay, and thus a(yi,vk,Vk+l) = 0. Then
by Lemma 2.1, we can interchange Vk and vk+l in Li, and
the resulting order still generates Yi. •

Since p-values don't change between augmentations, this
grouping of vertices by level sets in each Li remains un-
changed between augmentations.

A pair of vertices (v, w) is called level-active if v E R,
w E V \ R , both v and w are in Ht\Ht-1 for some l, and
v immediately precedes w in Li for some i E I. (This is a
refinement of the concept of active pair introduced in [12].)
Since all exchange arcs have initial cost zero, if a level-active
pair has positive exchange capacity, then its reduced cost is
0. The following lemma says that it is sufficient to consider
level-active pairs when looking for 0-reduced cost exchange
arCS.

Lemma 5.6: If there are no level-active pairs, then there are
no O-reduced cost arcs in Ax that leave R.

Proof. Suppose that the level sets of p are 0 = Ho C Hx C
• .. C Hr --- V. We prove the lemma by proving the fol-
lowing statement: If there are no level-active pairs, then
(Ht \R) U HI-1 is tight for all l E [1,r]. This statement
implies the lemma, since if (w, v) E Az has 0-reduced cost,
then {w,v} C_ (Ht \Ht-1) for some I.

To prove the statement, it suffices to consider a fixed set
Jl = Ht \Ht -x . If there are no level-active pairs, then all
elements in J t \ R precede all elements in Jt n R in every
linear ordering Li, i E I. This implies that Hi-1 U J t \ R =

114

SubmodDijkstra(~o, ¢, 5, x = Y]i Aiyl,p)

Initialization
d(v) 6- +o0 Vv • V\S+.(5)
d(w) 6- 0 Vw • S+(tf)
R 6- S+(5) [permanently labeled vertices]
for all (w, v) • E~ (6) t3 De (6) with v • V \ R

d(v) 6- min{d(v), d(w) + %(w, v)}
for all i • I ,

reorder Li by nonincreasing p-values.

while R f3 S - = 0 and 3 level-active pairs,
while 3 level-active pair (w, v) for some i E I,

Double-Exchange(i, w, v).
i f¢(w,v) = 0,

For all z • R(v),
d(z) 6- d(w),

R 6- R U R(v)
for all a = (z, t) • E~ (5) t3 De (5)
with z • R(v) and t E V\R ,

d(t) 6- min{d(t), d(z) + %(a)}
if 3 v • V \ R with d(v) < +oo,

v 6- node in V \ R with smallest label.
For all z E R(v),

d(z) 6- d(w),
R ~ R U R(v)
for all a = t) • E , 0) U Do (6)

with z • R(v) and t E V\R,
d(t) 6- min{d(t), d(z) + cp(a) }

Reduce I to an affinely independent set.
i f 3 v • RfqS-(5) ,

return path P from S+(6) to v on nodes in R.
Else, return R.

Figure 2: Finding a least-cost 6-augmenting path.

H t \ R tO Ht-1 is yi-tight for all i E I . But, if a set X is
yi-tight for all i E I , then it is also x-tight, since in this case
z (x) = = J(x) = f (x) . •

5.2.6. Correctness and Complexity

Lemma 5.7: Double-Exchange(i, w, v) maintains valid dis-
tance labels, reduced cost optimality conditions, and z =
z - 0 ¢ .

Proof Double-Exchange is only applied to arcs with zero
reduced cost. Thus any new arc in D e (6) has zero reduced
cost.

Suppose Double-Exchange(i, w, v) is applied and moves
Yi to y~, and ¢ to ¢ ' . We show that if it creates a new ex-
change arc (s, t) in Au~, then there exists a path in Au~ U
D¢(6) of the same reduced cost: I f a new arc (s , t) ap-
pears in Ay~, then Lemma 5.4 implies that arc (s, v) and
arc (w, t) existed in Au,. Since Double-Exchange(i, w, v)
applies, (v, w) • D¢(6) before the double-exchange. Thus
there is a path from z to t of zero initial cost arcs before the

double-exchange. Since (s, t) E Au~ also has zero initial
cost, the reduced cost of these two paths are the same.

Thus, since reduced cost optimality conditions held be-
fore the double-exchange, they hold afterward. Similarly,
since the reduced cost of any new arc equals the reduced
cost of any path between the same endpoints, distance labels
remain valid.

Finally, for all vertices v, Double-Exchange alters x(v)
and O~o(v) by the same amount, so z is unchanged. •

Theorem 5.8: $ubmodDijkstra returns a least-cost 6-aug-
menting path, or a proof no such path exists, in O(n 3) time,
and using at most O(n 3) function evaluations.

Proof (Sketch) Correctness: The key is to show that when a
vertex is added to R, its label is the shortest path distance us-
ing distances cp from S - (6) on arcs in E~ (6) (3 De (5) tO Ax
by induction. This is uses Lemmas 5.6 and 5.7 combined
with standard arguments for correctness of Dijkstra's algo-
rithm. Details omitted for lack of space.

Complexity: The initial reordering of Li takes at most
n 2 steps per i E I for a total of n 3 steps. Each nonsatu-
rating Double-Exchange augments R, so there are at most n
nonsaturating double-exchanges. Each saturating Double--
Exchange moves an element of V \ R closer to the start of
Li. This can happen at most n - 1 times per element
of V \ R per i E I , for an upper bound of n 3 saturating
Double-Exchanges. Each Double-Exchange uses a constant
number of evaluations of fp plus a constant number of arith-
metic operations.

While a single evaluation of f , could require a linear
number of evaluations of f , fp is only evaluated on sets
nested in level sets of p. Thus, by Lemma 5.1, it suffices to
evaluate f . Thus the total effort spent finding a 6-augmenting
path is O(n 3) arithmetic steps and function evaluations.

Finally, $ubmodDijkstra updates I to be affinely inde-
pendent. SubmodDijkstra starts with an affinely indepen-
dent set I , and only increases the size of I in nonsaturating
double-exchanges. Thus at end I I I < 2n. Hence with O(n 3)
arithmetic operations, we can reduce I so that I I I < n. •

5.2.7. Termination

We now discuss how to terminate the scaling algorithm, pro-
vided that l, u, and f are all integer-valued. For a price func-
tion p, we define lp and up by setting lp(a) := up(a) := l(a)
if Cp(a) > 0; lp(a) := l(a), Up(a) := u(a) if c,(a) = 0;
lp(a) := Up(a) := u(a) if ep(a) < 0. At the end of the 6
scaling phase, for any X C V, we have

: = I A A + x) - up(X-x) - A (x)

< O o(x) - z (x)

<_ - z (x) + n 6/2

115

Since the discrepancy ff is at most n26/2, we obtain
rip(X) < n26. If 6 < 1/n 2, the integrality assumption im-
plies that t%,(X) < 0. Then it follows from Theorem 4.1 that
there exists a submodular flow ~ that satisfies lp < ~ < up
and 0~ E B(fp). Hence, Theorem 5.3 implies that ~ is an
optimal flow and p is an optimal price function.

Theorem 5.9: Optimal dual node prices for the minimum
cost submodular flow problem for integer f can be found
with O(n 5 log(nU)) arithmetic steps and function evalua-
tions.

Proof. There are log(nU) scaling phases. After the initial
flow adjustments, the initial discrepancy in a 6-phase is at
most 4n6 + 3n26 + 4rn& Thus the total number of augmen-
tations in any 6 phase is at most 4n 2 + 2n = O(n2), since
each augmentation decreases the discrepancy by 26. Theo-
rem 5.8 then implies the complexity bound. •

5.2.8. Obtaining the Flow

In order to compute an optimal submodular flow, it suffices
to find a feasible submodular flow with lp, up and fp. This
could be done by using the algorithm in Section 4. How-
ever, a more efficient algorithm is to apply the price finding
algorithm described above to m slightly modified problems:
Again, start with lp, up but now modify the reduced cost of
one of the zero reduced cost arcs to be (reduced) cost - 1. The
price finding algorithm finds optimal prices Px which reveal
the objective function value, and thus the maximum amount
of flow on this arc in any feasible flow. Fix this flow, and
repeat.

Corollary 5.10: A minimum cost submodular flow can be
found via a combinatorial algorithm in O(mn 5 log(nU))
time.

We have just explained how to find a feasible submod-
ular flow, or a flow maximizing the flow on a specified arc,
with m calls to a modified submodular function minimiza-
tion algorithm. Andrfis Frank points out that this can be
done with m calls to any SFM algorithm: Let h (X) :=
u (A - X) - I (A+X) . Since u _> l, h is submodular. Thus
Theorem 4.1 implies that feasibility of a submodular flow
problem can be checked by applying an SFM algorithm to
f + h. Applying this test to the modified problem with
l'(a) = u(a) for a fixed arc a reveals the maximum flow
possible on a in any feasible flow.

5.3. A Strongly Polynomial Algorithm

To obtain a strongly polynomial algorithm, we embed the
subroutine S u brood Dij kst ra in a variant of the strongly poly-
nomial algorithm in [5]. This uses log n scaling phases to fix
the sign of the reduced cost of one arc. Thus after n 2 log n
scaling phases, all reduced costs are fixed, and an optimal
price vector p is deduced. The optimal flow can then be
found as described in Section 5.2.8.

Acknowledgements

We are grateful to Lex Schrijver for sharing with us drafts
of his paper on a combinatorial algorithm for minimizing
submodular functions in strongly polynomial time. We also
thank Andr~is Frank and Tom McCormick for useful com-
ments.

References
[1] W. H. Cunningham. Testing membership in matroid polyhe-

dra. J. Combinatorial Theory B, 36:161-188, 1984.

[2] W. H. Cunningham. On submodular function minimization.
Combinatorica, 5:185-192, 1985.

[3] J. Edmonds. Submodular functions, matroids, and certain
polyhedra. In R. Guy, H. Hanani, N. Sauer, and J. Sch/Snheim,
editors, Combinatorial Structures and their Applications,
pages 69-87. Gordon and Breach, 1970.

[4] J. Edmonds and R. Giles. A min-max relation for submodular
functions on graphs. Ann. Discrete Math., 1:185-204, 1977.

[5] L. Fleischer, S, Iwata, and S. T. McCormick. A faster capac-
ity scaling algorithm for submodular flow. Technical Report
9947, C.O.R.E. Discussion Paper, Louvain-la-Neuve, Bel-
gium, 1999.

[6] A. Frank. Finding feasible vectors of Edmonds--Giles poly-
hedra. J. Combin. Theory, 36:221-239, 1984.

[7] A. Frank and [~. Tardos. An application of submodular flows.
Linear algebra and its applications, 114/115:329-348, 1989.

[8] S. Fujishige, H. R6ck, and U. Zimrnermann. A strongly poly-
nomial algorithm for minimum cost submodular flow prob-
lems. Math. Oper. Res., 14:60--69, 1989.

[9] S. Fujishige and X. Zhang. New algorithms for the intersec-
tion problem of submodular systems. Japan J. lndust. Appl.
Math., 9:369-382, 1992.

[10] A. V. Goldberg and R. E. Tarjan. A new approach to the
maximum flow problem. Journal of the ACM, 35:921-940,
1988.

[11] M. Grotschel, L. Lovasz, and A, Schrijver. The ellipsoid
method and its consequences in combinatorial optimization.
Combinatorica, 1:169-197, 1981.

[12] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial,
strongly polynomial-time algorithm for minimizing submod-
ular functions. In Proceedings of the 32th Annual ACM Sym-
posium on Theory of Computing, 2000. This proceedings.

[13] S. Iwata, S. T. McCormick, and M. Shigeno. A fast cost scal-
ing algorithm for submodular flow. To appear.

[14] T. Jordfm. Edge-splitting problems with demands. In
G. Comu6jols, R. E. Burkard, and G. J. Woeginger, editors,
Integer Programming and Combinatorial Optimization, vol-
ume 1610 of LNCS, pages 273-288, Graz, Austria, June 1999.
Springer.

[15] M. Queyranne. Minimizing symmetric submodular functions.
Math. Programming, 82:3-12, 1998.

[16] A. Schrijver. A combinatorial algorithm minimizing submod-
ular functions in strongly polynomial time. Preprint. Submit-
ted to JCTB., 1999.

116

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

