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Abstract 

Very recently, two groups of  researchers independently de- 
veloped the first combinatorial, strongly polynomial-time al- 
gorithms for submodular function minimization (Iwata, Flei- 
scher, Fujishige; and Schrijver). In this paper, we improve 
on these algorithms and show that the ideas generated in the 
design of  these algorithms are helpful in other contexts. This 
work demonstrates one use of  combinatorial algorithms for 
submodular function minimization. 

In particular we accomplish three things. First, we im- 
prove the complexity of  Schrijver's algorithm by designing 
a push-relabel algorithm for submodular function minimiza- 
tion (SFM). Second, we exploit the common structure shared 
between submodular function minimization and maximum 
submodular flow to design the first algorithm for maximum 
submodular flow that does not depend on an oracle for SFM. 
The overall time complexity is the same as for SFM. Finally, 
we design the first algorithms for minimum cost submodu- 
lar flow that do not depend on an oracle for SFM, using the 
framework of  submodular function minimization of  Iwata, 
Fleischer, Fujishige. We show that optimal dual solutions 
can be computed in the same time as SFM, and that op- 
timal primal solutions can thus be obtained with one ad- 
ditional maximum submodular flow computation. We give 
both weakly and strongly polynomial versions. 
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1. Introduction 

A function f defined on all the subsets of  a ground set V is 
submodular if it satisfies for all X,  Y C_ V, 

f ( x )  + f ( r )  > f ( x  u r)  + f ( x  n r). 

Submodular functions arise in combinatorial optimization 
and various other fields. Examples include cut capacity func- 
tions, matroid rank functions, and entropy functions. Sub- 
modular function minimization (SFM) is the problem of find- 
ing a subset X C_ V with f(X) <_ f(Y) for all Y _C V. 

Connecting submodular functions with network flows, 
Edmonds and Giles [4] introduced the submodular flow prob- 
lem, which includes network flow, matroid intersection, and 
directed cut covering. Since then, several combinatorial op- 
timization problems have been shown to be special cases of  
submodular flow. In particular, Frank and Tardos [7] solved 
the minimum cost rooted vertex connectivity augmentation 
problem in directed graphs by reducing it to minimum cost 
submodular flow. A recent paper of  Jord~in [ 14] also reduces 
a simultaneous edge-connectivity augmentation problem in 
undirected graphs to the submodular intersection problem, 
which is equivalent to maximum submodular flow. 

A number of  network flow algorithms have been extend- 
ed to submodular flow problems. All these algorithms rely 
on an oracle for finding the minimizer of  a given submodu- 
lar function. The best known time complexity in this frame- 
work is O(n3h) for finding a feasible submodular flow [9] 
and O(n4h min{log U, log C, n 2 log n}) for solving the mi- 
nimum cost submodular flow problem [5, 8, 13], where h is 
the time required for SFM, U is an upper bound on the ab- 
solute value of  the arc capacities and function values, G' is 
the maximum absolute value of  the arc costs, and all input 
numbers are integers. 

The first polynomial time algorithm for SFM was intro- 
duced in [11] and uses the ellipsoid method. The ellipsoid 
method is well-known for its use in establishing the poly- 
nomial time equivalence of  separation and optimization for 
problems in combinatorial optimization. While many op- 
timization problems were shown to be polynomially solv- 
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able using separation implies optimization, the optimiza- 
tion problem for submodular function polyhedra is solvable 
by the greedy algorithm [3]. SFM is the harder-to-solve 
separation problem. For almost two decades, optimiza- 
tion implies separation via the ellipsoid method gave the 
only polynomial time algorithm for SFM. In the interim, re- 
searchers achieved combinatorial, strongly polynomial-time 
algorithms for special cases, including Cunningham's algo- 
rithm for testing membership in matroid polyhedra [1], and 
Queyranne's algorithm for minimizing symmetric submod- 
ular functions [ 15]. 

Very recently, two groups independently devised com- 
binatorial, strongly polynomial-time algorithms for general 
submodular function minimization. Both of these algorithms 
are based on Cunningham's approach [1, 2] to design an 
augmenting path algorithm for SFM. Let 3' be the time to 
evaluate f on one set. Schrijver [16] describes an algorithm 
that runs in O(n 9 + 7nS). Iwata, Fleischer, Fujishige [12] 
describe a strongly polynomial time algorithm that runs in 
O(Tn 7 log n), and a weakly polynomial time algorithm that 
runs in O(Tn 5 log M) time, where M is an upperbound on 
the maximum function value, assuming all function values 
are integer. 

Our Contributions 

First,we present a faster strongly polynomial-time algorithm 
for SFM. The new algorithm exploits a subroutine devised 
in [16]. We reduce the number of subroutine calls by a 
factor of n by embedding the subroutine of [ 16] in a push- 
relabel framework for submodular intersection developed by 
Fujishige and Zhang [9]. The resulting algorithm runs in 
O(n s + ~,n 7) time. If a function evaluation takes at least 
linear time, then this is the fastest strongly polynomial algo- 
rithm for SFM. 

Next, we show that this algorithm can be modified to 
solve a more general problem in the same time bound: We 
describe the first algorithm for maximum submodular flow 
that does not require an oracle for SFM. Instead, we modify 
combinatorial algorithms for SFM to design a more direct, 
strongly polynomial algorithm for this problem. 

Finally, we describe the first algorithms for solving min- 
imum cost submodular flow that do not require an oracle for 
SFM. We present both weakly and strongly polynomial time 
algorithms. The design of these combinatorial algorithms 
builds on ideas in [5, 12]. Our algorithm computes optimal 
dual node prices in the same time as SFM. Then, an optimal 
flow can be computed either with one maximum submodular 
flow, or m iterations of the price finding algorithm. 

2. Preliminaries 

We denote by Z and R the set of integers and the set of reals, 
respectively. Let V be a finite nonempty set of cardinality 
IVI = n. For a vector in x E R v and a set X C_ V we 

define x ( X )  = ~ v e x  x(v). For each u e V, we denote by 
Xu the unit vector in R V such that X~, (v) = 1 if v = u and 
= 0 otherwise. 

Throughout this paper, we assume that f (0)  = 0. The 
base polyhedron of f is defined as 

B ( f )  := { x l  x E lrtV, x (V )  = f ( V )  
x ( X )  < f ( X ) , V X  C V } 

A vector x E B( f )  is called a base. An extreme base is an 
extreme point of B( f ) .  A fundamental step in algorithms 
for SFM and submodular flow is to move from one base x to 
another x ~ via an exchange operation: x ~ := x + a ( X v - X w ) .  
The maximum possible exchange tx allowable is called the 
exchange capacity, and is defined as 

a(x,  v, w) := max{a  I a E R ,  x + a(Xv - Xw) E B(f)} .  

It is not hard to see that this is equivalent to 

a ( x , v , w )  := m i n { f ( X )  - x ( X )  I v E X C V\{w}}. 

For a given base x, we define Ax := { (w, v)la(x,  v, w) > 
0}. We call (w, v) E Ax an exchange arc. Computing ex- 
change capacities in general is as hard as SFM. However, if 
y is an extreme base, then exchange capacities can be com- 
puted with one function evaluation for special vertex pairs 
(w, v), as follows. 

Let L = (Vl , ' - .  ,Vn) be a linear ordering of V. The 
greedy algorithm [3] generates an extreme base y by setting 
L(Vh) := { v l , " "  , vh} and y(Vh) = f (L(Vh))  -- f ( L h - 1 )  
for each h. Edmonds showed that every extreme base is gen- 
erated by the greedy algorithm applied to some linear order- 
ing. Note that a linear ordering L generates base x if and 
only if x(L(vh))  = f (L (vh ) )  for all h = 1, 2 , . . .  ,n. Any 
set X with x ( X )  = f ( X )  is called x-tight. Note that a set 
X is x-tight if and only if there are no arcs in A~ that enter 
X. The following lemma follows from the greedy algorithm 
and the definition of exchange capacity. 

Lemma 2.1: Let L be a linear ordering of V in which w 
immediately follows v and that generates an extreme base 
y E B(f) .  Let L' be the linear ordering obtained by inter- 
changing w and v. Then the extreme base y~ generated by 
L' satisfies y' = y + a(y,  v, w) (xv  - Xw) with 

a ( y , v , w )  = f ( L ( v ) \ { w } )  - y ( L ( v ) \ { w } ) .  (2.1) 

For an extreme base y, we denote w ___y v if w belongs 
to every y-tight set containing v. Note that w - u  v implies 
w precedes v in the linear ordering generating y. Then ~y 
is a partial order on V. If w ___y v, then a(y, v, w) > O. 
F o r s , t  E V, we call [s,t]y = {v I s 5y  v 5v  t} the 
interval between s and t. If s 2~u t, the interval is empty by 
definition. The Hasse diagram of ---u is a directed acyclic 
graph on V whose arc set consists of pairs (w, v) of distinct 
vertices such that [w, v]u = {w, v}. 
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3. S u b m o d u l a r  Funct ion  Min imiza t ion  

The following dual characterization of a minimizer of a sub- 
modular function follows from a rain-max theorem on the 
vector reduction of a polymatroid due to Edmonds [3]. For 
x E R V define x -  by x - ( v )  := min{0,x(v)} forv  E V. 
Then Edmonds' theorem implies 

ma x{x - ( V)  I x E B(f )}  = min{ f (X)  I X _C V}. (3.1) 

This result can also be derived from LP strong duality. This 
characterization has driven most searches for combinatorial 
algorithms for SFM. 

It is not necessarily true that the base achieving the max- 
imum in 3.1 is an extreme base. Thus, in order to apply 
Lemma 2.1, Cunningham [1, 2] chose to represent a base 
x E B ( f )  as a convex combination of extreme bases: x = 
~-~i Aiyi,  Ai >_ O, ~ i  Ai = 1, Yi E B(f ) .  This idea is also 
used in the recent strongly polynomial time algorithms for 
SFM, and in this current paper. 

Roughly speaking, Cunningham uses this in an augment- 
ing path framework which seeks to increase x -  (V) by aug- 
menting from vertices v with x(v)  < 0 to vertices u with 
x(u)  > 0 along paths of arcs in the union of Hasse dia- 
grams of Yi, i = 1, 2 , . . .  , n. He obtains a pseudopolyno- 
mial O ( n S M  log(nM)) time algorithm for SFM. 

A major difference between the recent combinatorial, 
polynomial time algorithm of Schrijver [16] and Cunning- 
ham's algorithm [2], is that Schrijver maintains a directed 
graph whose arc set is given by A~ = {(s, t) I 3i E I ,  s -<u, 
t}, while Cunningham's algorithm uses only the arcs of the 
Hasse diagrams. Another difference is that Schrijver's al- 
gorithm does not perform augmentation along a path. It 
constructs a layered network to detect a shortest augment- 
ing path and applies an exchange operation only to the last 
arc of a shortest augmenting path. 

Instead of computing the exchange capacity, Schrijver 
devises the following subroutine that computes an amount 
of exchange that is sufficient to eliminate the arc from Az. 

Reduce-Interval(b, s, t) 

Input: An extreme base b E B( f )  and distinct s, t E 
V such that s '~b t. 

Output: A positive constant # and a decomposition 
of b + #(Xt - Xs) as a convex combination of 
extreme bases y E B(f) such that [s, t]v C 
Is, tlb, 

This subroutine works as follows. Let L = (v l , . .  • , vn) 
be a linear extension of -% such that {Vv, • • • , vq} = [s, t]b. 
Namely, vp = s and vq = t. For each r = p + 
1 , . . .  , q, compute the extreme base Yr generated by L r  --~ 

( V l , ' ' "  , Yp - - l ,Vr ,Vp , ' ' "  , V r - - l , V r + l , ' ' "  , V n ) .  Determine 

/ / p + l ,  " " " , ~q ~ 0 s u c h  t h a t  

Xt -- Xs : 

q 

r:p-I-1 

q Put r / =  ~ = p + l  r/~ and/z = 1#/. Then 

q 

r.=pq-1 I] 

holds, and each Yr satisfies [s, t]y ~ C Is, t]b. Thus this sub- 
routine runs in 0 ( n 2 7 )  time. 

The above algorithm of Schrijver[16] minimizes f by 
calling the subroutine O ( n  ~) times. We will present another 
algorithm that calls it O(n  5) times. 

A Push-Relabel Algorithm for SFM 

We now describe the push-relabel algorithm for SFM. The 
push-relabel approach was introduced for network flows by 
Goldberg and Tarjan [10], and is among the most efficient 
known algorithms for maximum flow. It has been applied to 
polymatroid intersection, a problem equivalent to maximum 
submodular flow, by Fujishige and Zhang [9]. 

The algorithm maintains x E B( f )  as a convex combina- 
tion x = ~ i e t  ,~iYi of extreme bases Yi and a directed graph 

(V, A~). We start with an extreme base x E B( f )  obtained 
by the greedy algorithm [3]. Let S := {s I s E V, x(s) > 0} 
and T := {t I t E V, x(t) < 0}. The labeling d : V --> Z is 
valid if it satisfies d(t) = 0 for t E T and d(s)  <_ d(t) + 1 
for all (s, t) E A~. The algorithm maintains a valid label- 
ing. Initially, d(s)  = 0 for s E V, which is clearly valid. 
Note that a valid distance labeling d serves as a lower bound 
on the minimum number of arcs from s to T. For a valid 
labeling d, we define Q := {s I s E S, d(s)  < n}.  

The algorithm consists of two basic ope~tions. Opera- 
tion Push(s, t) applies if s E Q, (s , t )  E A~ and d(s) = 
d(t) + 1. Select k E I with the largest interval [s, t]u k, and 
apply the subroutine Reduce-lnterval(yk, s, t) to get/z > 0 
and a convex decomposition ~ j e J  ~JYJ ofyk + #(Xt - Xs ). 
Update x := x + e(Xt - X,)  with e = min{x(s), Ak/Z}. 
Putting I := I U J ,  Ak := Ak -- e /# ,  and Aj := Ak~j for 
j E J,  we obtain a convex combination x = ~-']i~/Aigi. By 
a standard linear programming technique, reduce the num- 
ber of positive coefficients in this expression to at most n in 
O(n 3) time, and then delete those indices with zero coef- 
ficients from I. The operation Push(s, t) iterates this until 
x(s )  = 0 or (s, t) • Az. If (s, t) ~ ,,i~, we call Push(s, t) 
saturating, and otherwise nonsaturating. In each iteration, 
the maximum size of the intervals [s, t]y~ decreases or the 
number of extreme bases that attain the maximum decreases. 
Thus Push(s, t) performs at most O(n 2) iterations. 

Operation Relabel(s) applies if s E Q and d(s) < d(t) 
for every (s, t) E A, .  It updates d(s)  := d(s)  + 1. Clearly, 
d(s)  < n holds for s E V throughout the algorithm. 
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The algorithm fixes an arbitrary total order < on the ver- 
tices. The algorithm repeatedly selects a vertex s E Q with 
highest d(s) to apply a procedure Scan(s). The procedure 
Scan(s) repeatedly picks a vertex t E V in the total or- 
der and applies Push(s, t) if possible, until x(s) = 0 or it 
has examined every t E V. If Scan(s) ends with a non- 
saturating Push(s,t) ,  the next time Scan(s) is invoked, it 
starts at t. This is done by keeping a pointer 7(s) that indi- 
cates the current vertex to be examined in Scan(s) for each 
s E V. The algorithm increments ~-(s) if it performs a sat- 
urating Push(s, 7(s)) or it finds Push(s, r (s))  is not appli- 
cable. If ~-(s) is the last vertex in <, then the algorithm 
performs Relabel(s) and resets T(S) to be the first vertex in 
<. 

The algorithm terminates when either Q or T is empty. If 
Q = 0, let W denote the set of vertices from which there is a 
directed path to T. Then x(s) < 0 for s E W and x(s) > 0 
for s E V \ W .  This implies x - ( V )  = x (W) .  Since no arc 
in .4~ enters W, we have yi(W) = f ( W )  for every i E I, 
which implies x (W)  = f ( W ) .  Thus W is a minimizer of f .  
If T = O, then f ( X )  > x ( X )  > 0 holds for every X C_ V, 
which means 0 is a minimizer of f .  

To establish the correctness and complexity of the al- 
gorithm, we require the following technical lemma adapted 
from Schtinsleben (1980). This lemma also highlights the 
additional difficulty of working with Az. Namely, arcs in 
-4x may appear, disappear, or change capacity when opera- 
tions are applied to completely disjoint arcs in A~. This extra 
complication does not arise in traditional network flows. 

Lemma 3.1: Let z + # ( X t -  Xs) = ~-~.jeJ t~jyj be the convex 
combination obtained by the subroutine, where t~j > 0 for 
j E J. I fu  2~z v a n d u  ~-uJ v f o r s o m e j  C J, thenu ~ t 
and s ~z v. 

Proof. Since u 7~z v, there must be an X C_ V that satisfies 
v E X,  u ~ X,  and y (X)  = f ( X ) .  I f u  7~z t, then there 
exists an Y such that t E Y, u ¢ Y, and z(Y)  = f ( Y ) .  
It follows from t E X to Y and the submodularity of f that 
y j ( X  tO Y)  = z ( X  tO Y)  = f ( X  tO Y)  holds for any j E J,  
which together with v E X tO Y and u ~ X tO Y contradicts 
to u -<uJ v. Similarly, if s 2~z v, then there exists a Z C_ V 
such that v e Z, s ~ Z, and z(Z)  = f (Z ) .  It follows from 
the submodularity of f and s ~ X V1 Z that yj (X V1 Z) = 
z ( X  f-I Z) = f ( X  n Z) holds for any j E J,  which together 
with v E X n Z and u ~ X fl Z contradicts to u ~yj v. • 

Lemma 3.2: The operations Push and Relabel maintain va- 
lid d. 

Proof. At start d is valid. The operation Relabel, if applica- 
ble, maintains valid d. Suppose d is valid before Reduce-- 
Interval(yk, s, t) introduces a new arc (u, v) to -~x. In this 
case, u 7~y, v and u ___y~ v and for some j E J.  Lemma 3.1 
then implies that u ---Y2 t and s ___y~ v. That is, (u, t) 
and (s, v) belonged to A~ before Reduce-lnterval(yk, s, t). 

Since d is valid before Reduce-lnterval(yk, s , t) ,  we have 
d(u) < d(t) + 1 and d(s) < d(v) + 1. Since Push(s,t)  
applies, d(s) = d(t) + 1, which implies d(n) < d(v) + 1. 
Thus the push operation maintains valid labels d,and hence 
d remains valid throughout the algorithm. • 

Since d(s) <_ n for every s E V, the algorithm performs 
at most n 2 relabel operations in total. Lemma 3.3 below en- 
sures that Relabel(s) is applicable when the algorithm resets 
r(s) in Scan(s). Therefore the algorithm performs at most 
~3 saturating pushes. 

Lemma 3.3: I f  v < -c(u) and (u,v) E -4x, then d(u) <_ 
d(v). 

Proof. Suppose the statement holds before a call to Reduce-- 
Interval(yk, s, t) introduces a new arc (u, v) E A~. It fol- 
lows from Lemma 3.1 that u -<u~ t and s --<y~ v. By the va- 
lidity of d, we have d(u) < d ( t ) + l  and d(s) < d(v)+l .  By 
the applicability of Push(s, t), we also have d(s) = d(t) + 1. 
If t < T(u), then d(u) < d(t). On the other hand, if 
t > T(n) > V, then d(s) < d(v). In either case, we have 
d(u) < d(v). • 

Lemma 3.4: Between a non-saturating Push(s, t) and the 
next Scan(s), the algorithm performs Relabel(u) for some 
u E V .  

Proof. As a consequence of Push(s, t), we have x(s) = O. 
Before applying Scan (s) again, the algorithm must increase 
z(s) by Push(v,s) for some v E V with d(v) = d(s) + 
1. This implies by the highest label selection rule that there 
must be a relabel operation somewhere before Push(v, s). • 

Lemma 3.4 implies that the number of non-saturating 
pushes is also at most n a. The proof is straightforward. Thus 
the algorithm performs O(n z) relabel and O(n 3) push oper- 
ations. Since each push operation calls the subroutine O(n 2) 
times, the algorithm calls it O(n 5) times in total. Therefore, 
the push-relabel algorithm runs in 0(n77 + n 8) time. 

4. Feasible  S u b m o d u l a r  F low 

In this section, we give the first combinatorial algorithm for 
maximum submodular flow that does not call an oracle for 
SFM. The best known algorithm runs in time O(nah) where 
h is the time required by the SFM oracle [9]. We show how 
to solve this in the same time as the SFM algorithm in the 
preceding section, by modifying the polymatroid intersec- 
tion algorithm of Fujishige and Zhang [9]. Our algorithm 
replaces each call that their algorithm makes to an SFM ora- 
cle with n calls to Reduce-Interval. The resulting algorithm 
looks very similar to our SFM algorithm in the preceding 
section, and could easily be interpreted as a modification of 
that algorithm. We begin by describing how to find a feasible 
submodular flow. 
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Let G = (V, E)  be a directed graph with lower and up- 
per bounds I < u on the flow values on arcs. For a flow qo 
in G, its boundary 0qo is defined by Oqo(X) = qo(A+X) - 
qo(A-X),  where A + X  and A - X  are the sets of arcs leav- 
ing X and entering X,  respectively. In words, Oqo(X) is the 
net flow leaving X.  Let f be a submodular function on V 
such that f({~) = f ( V )  = 0. A flow qo is a submodularflow 
if it satisfies: 

(SF) 0qo E B(f),  
l < ~ < u .  

Theorem 4.1 (Frank [6]): System (SF) is feasible ifandonly 
/f 

l ( a + x )  - _< f ( x )  (4.1) 

holds for every X C_ V. I f  in addition l, u, f are integer 
valued, then there exists an integral solution. • 

Our algorithm maintains a base z E B( f )  as a convex 
combination of extreme bases Yi E B( f ) ,  z = ~ Aiyi; and 
a flow ~ satisfying l < ~ < u. Initially, x is an extreme 
base obtained using the greedy algorithm and ~v is any flow 
obeying upper and lower bounds, for instance we can start 
with ~v = 1. When x = 0~,  then we have found a feasible 
solution. 

The algorithm also maintains a directed graph (V, A~ U 
E~), where E~ = F~ U B~ is defined by F~ := {(v,w) [ 

< u(v,w)},  := I > l(w,v)}.  
For an arc (v, w) E E~, we denote its residual capacity by 
r(s, t). That is, r(v, w) := u(v, w) - ~o(v, w) if (v, w) E F~ 
and r(v, w) := ~(w, v) - l(w, v) if (v, w) E B~. Let S := 
{v E V I x(v) > Oqo(v)} and let T := {v E V I x(v) < 

As with the previous algorithm, our feasibility algorithm 
maintains a valid distance labeling d, which satisfies d(s) < 
d(t) + 1 for every arc (s, t) E Az U E~ and d(t) = 0 for 
every t E T. Initially, the algorithm starts with d(s) = 0 for 
s E V. Again, we set Q := {s E S [ d(s) < n}. 

As before, our algorithm consists of two types of basic 
operations, pushes and relabels. However, now pushes fall 
into two categories: pushes on arcs in E~, and the previously 
defined Push(s, t). We will differentiate the former type of 
push by denoting it FPush(s, t). An FPush(s, t) applies if 
s E Q, (s, t) E E~, and d(s) = d(t) + 1. It augments ~(s,  t) 
by e := min{x(s)  - 0~(s) ,  r(s, t)}. I f e  = r(s, t), then the 
push is called saturating. Otherwise it is called nonsaturat- 
ing. 

In this algorithm, we also modify the applicability of re- 
label, calling the operation F Rela bel(s). It is now applicable 
if s E Q and d(s) < d(t) for every (s , t )  E Az U E~. It 
updates d(s) := d(s) + 1. 

The algorithm works as before, but we replace Scan(s) 
with FScan(s), where FScan(s) applies both Push(s, t) and 
FPush(s, t); and Relabel(s) is replaced with FRelabel(s). 

The algorithm terminates when Q is empty. If  S is also 
empty, then so is T a n d x ( v )  = O~v(v) for all v E V, 
so that qv is a feasible flow. Otherwise, the set W of ver- 
tices reachable from S, does not intersect T. In this case, 
we have l (A+W)  - u ( A - W )  = O~(W) < x (W)  = 
~ i e I  Aiyi(W) = f ( W ) .  Thus W is a certificate ofinfeasi- 
bility via Theorem 4.1. 

The correctness and complexity of the algorithm are 
shown by extending Lemmas 3.2, 3.3, and 3.4 to this al- 
gorithm by including operation FPush(s, t). The arguments 
for this extra operation are similar and simpler, so are omit- 
ted here. 

This algorithm may be extended to find a feasible sub- 
modular flow maximizing flow on a particular arc (s*, t*). 
Instead of starting with d(v) = 0 for all v, we set d(s*) = n 
and allow labels to increase to 2n. We also start with the 
flow qv with ca(s, v) = u(s, v) V v E V, and with the ex- 
treme base obtained using the greedy algorithm with an or- 
dering that puts s* first. This implies that there will be no 
initial arcs leaving s* in E~ U Az, and thus the modified 
initial labeling is valid. 

Theorem 4.2: There is a combinatorial algorithm for com- 
puting a maximum submodular flow using O ( n r) oracle calls 
and O(n s) arithmetic computations. 

5. Minimum Cost Submodular Flow 

In this section we describe the first combinatorial, polyno- 
mial time algorithm for minimum cost submodular flow that 
does not call an oracle for SFM. Our algorithm computes 
optimal dual node prices in the same time as the fastest com- 
binatorial polynomial time algorithm for SFM [12]. We can 
then modify our problem to obtain the flow with m addi- 
tional iterations so that the resulting algorithm runs in time 
O(mn 5 log(nU)). We also obtain a strongly polynomial 
time algorithm. 

We obtain these results by exploiting the similarity be- 
tween the two recent papers: a scaling algorithm for sub- 
modular flow by Fleischer, Iwata, and McCormick [5] and 
the combinatorial, polynomial time algorithm for submodu- 
lar function minimization by Iwata, Fleischer, Fujishige [ 12], 
which was inspired by [5]. 

On Notation: The choice of direction for an exchange 
arc made in Section 2 is arbitrary, but once fixed has im- 
plications for other choices of orientation in the paper, such 
as which vertices are sources and sinks, how O~v is defined, 
and the relation of x-tight sets to As. In [16] and [5] this 
choice was made one way, and in [12] the opposite choice 
was made. Since our work in this paper builds on all of these 
algorithms, we could not be consistent with both choices. 
We chose to be consistent with [16] and [5]. The current sec- 
tion builds on work in [5, 12], however. Thus it may seem 
that what we are describing below is backwards from what 
is contained in [ 12], but this is simply a matter of definitions. 

111 



5.1. Opt imal i ty  Condi t ions  

The minimum cost submodular flow problem, often called 
the submodularflowproblem, asks for a solution to (SF) that 
minimizes cTqo for a cost vector c E a E. In this section, we 
review optimality conditions for the submodular flow prob- 
lem. 

As with standard network flows, we can consider a dual 
problem that defines node prices p for v E V. For p E R V, 
consider the linear program to maximize ~-~v~v p(v)x(v) on 
the base polyhedron B( f ) .  An optimal solution is called a 
p-maximum base. Let Pl > " ' "  > Pk be the distinct values 
ofp(v) ,  and put Hi = {v [ p(v) > Pi}, the ith level set ofp.  
Define Ho := 0 and let fp : 2 V --+ R be defined by 

k 

fv (X)  = ~ { f ( ( X  n Hi) U Hi- l )  - f (H i - x ) } .  
i = 1  

The following lemma follows easily from submodularity of 
f and implies that B(fp) C_ B( f ) .  

Lemma 5.1: The function fp is submodular and satisfies 
fp <_ f .  In addition, if there exists i such that for set X 
Hi C_ X C_ Hi+l, then fp (X)  = f ( X ) .  

Theorem 5.2: For a base x E B(f ) ,  the following are equiv- 
alent: 
(i) x is p-maximum. 
(ii) x E B(fp).  
(iii) x(Hi) = f ( H i ) f o r  every i. 
(iv) p(w) > p(v) for every (w, v) E Ax. • 

For arc (w, v) = a E E,  define O+a = w and O-a = v. 
Given a price function (or node potentials) p E R V, we 
define the reduced cost w.r.t, p as Cp(a) = c(a) + p(O+a) - 
p(O- a) for each a E E tO Ax. 

Theorem 5.3: A submodular flow qo is optimal if and only if 
there exists p E R V such that: 
(a) For any a E E, Cp(a) > 0 implies ~o(a) = l(a), and 
cp(a) < 0 implies qo(a) = u(a), and 
(b) 0~  is a p-maximum base in B(f) .  
Moreover, if c is integral, then we may restrict the above p to 
be integral. • 

5.2. A Scal ing Algor i thm 

We begin by discussing the algorithm that obtains optimal 
node prices p for a submodular function f that takes on inte- 
gral values. In Section 5.2.8, we show how to obtain the op- 
timal flow with < m applications of this algorithm. Instead, 
we could use the optimal node prices to fix flows on all non- 
zero reduced cost arcs and then call a maximum submodular 
flow algorithm, such as the one described in Section 4 to find 
the rest of the flow. Due to the differences in complexities of 
the algorithms, it may sometimes be more efficient to do the 
former. 

We keep the general framework of the weakly polyno- 
mial submodular flow algorithm described in [5]. This al- 
gorithm uses a shortest augmenting path subroutine within 
a scaling framework. We review this algorithm below, and 
highlight the changes that are necessary to obtain an algo- 
rithm that does not require an oracle for SFM. Our main 
contribution is a subroutine to find a least cost 5-augmenting 
path that does not require such an oracle. This subroutine is 
described in Section 5.2.4. 

5.2.1. The Scaling Framework 

In the 6 scaling phase, capacities and submodular constraints 
are relaxed by 6 by adding the arc set of a complete directed 
graph on V with capacity 6 to the initial graph. This arc set is 
denoted D = {(w,v) I w ~ v E V}. For a l i a  E D, weset  
c(a) = O, l(a) = O, and u(a) = 6. Define the submodular 
function b : 2 V --+ R b y  b(X) = IXl.IV-XI. Equivalently, 
5b(X) is the capacity of the cut X in (V, D).  This relaxation 
can be thought of as either relaxing the condition that 0~o E 
B( f )  to 0qa E B ( f  + 5b), or as relaxing the capacities l and 
u by 6. However, the arcs in D have no cost, so this is not 
a pure relaxation of capacities. We treat the arcs of D as 
having their own separate flow, denoted ¢. For any distinct 
w, v E V, we may assume that at least one of ¢(w,  v) and 
¢(v ,  w) is zero, so that either (v, w) or (w, v) has residual 
capacity 6. 

At any given point in the algorithm we will have a flow 
qa on E,  and flow ~ on D, a price vector p, and a base 
z E B ( f p + S b ) .  We mainta inz  = x - 0 ¢  as the sum 
of x E B(fp) and - 0 ¢  E B(Sb). Since we are not allowed 
to compute exchange capacities in general, as with the algo- 
rithm in Section 4, we maintain x = ~ i e l  Aiyi as a convex 
combination of extreme bases yi E B(fv) .  Following [12], 
for each yi, we maintain a linear ordering Li that generates 
Yi. This will allow us to apply Lemma 2.1 when appropriate. 
Thealgorithm also maintains (a) of Theorem 5.3 for qo and 
p, and (b) of Theorem 5.3 for x and p. 

We measure progress in the algorithm via the discrep- 
ancy between z and 0qo, which is defined by the discrepancy 
function • = ~ v  Iz(v) - Oqo(v)[. In a 5-scaling phase, 
the algorithm repeatedly looks for a path from S+(6) := 
{vlz(v ) > Ocp(v) + 5} to S - ( 5 )  := {v[z(v) < Oqo(v) -- 5} 
of residual capacity >_ 6, and then augments flow on this 
path, decreasing the discrepancy by 26. This is a path con- 
sisting of arcs in E~ (6) U D e  (5), where E~ (6) is the set of 
arcs in E~ with capacity at least 6, and D e  (6) is the set of 
arcs a E D with ¢ (a )  = 0. This is a 6-augmenting path. 

Our algorithm starts with large enough 5 = U as speci- 
fied in Section 5.2.2. We show in Section 5.2.3 that a scaling 
phase starts with the discrepancy is at most 4n26 and ends 
with the discrepancy at most n25. In Section 5.2.7 we show 
that if f ,  l, u, and c are integer, then p is optimal at the end 
of the scaling phase with 5 < 1/n 2. 
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5.2.2. Initialization 

We start with a flow qo and a price vector p that satisfy condi- 
tion (a) of Theorem 5.3 obtained as follows. First, we check 
whether there exists a dual feasible solution p and obtain 
such a solution, using the Bellman-Ford-Moore algorithm 
in a modified graph, as described in [5]. With dual feasible 
p, we can construct a flow cp that satisfies condition (a) of 
Theorem 5.3 in O(m) time. We also start with linear or- 
dering L that is ordered according to nonincreasing p-values 
(see Lemma 5.5 for motivation), and a base x E B(fp) ob- 
tained by applying the greedy algorithm [3] to L. We do not 
check for primal infeasibility, since our algorithm will detect 
this. 

We set U := max{max{lu(a)l l u(a ) < +oo}, 
max{ll(a)l I l(a) > - ~ } ,  max{f({v})  I v E V}}. 
Since qo(a) < U for all a E E,  we have 1(9~(v)l _< nU 
for a l ly  E V. S incex(V)  = f (V)  = 0, wehave tha t  
Ix(v)l _< (n - 1)u.  Thus the initial discrepancy between x 
and qo is at most 2n2U. 

5.2.3. A Scaling Phase 

At the start of a new phase, we modify ¢ to satisfy the capac- 
ity constraints for the new value of 5, and modify ~ to satisfy 
(5.1) for arcs a with residual capacity 5 < r(a) < 25. 

The object in a scaling phase is to decrease the discrep- 
ancy by augmenting along 5-augmenting paths restricted to 
E~ (5) t.J De  (5), while maintaining reduced cost optimality 
conditions 

Cp(a) > 0 ,  V a E E ~ ( 5 )  UD¢(5)UA~ (5.1) 

implied by Theorem 5.3. To do this, it is necessary 
to find a least-cost (with respect to reduced costs Cp) 5- 
augmenting path. The algorithm repeatedly calls the sub- 
routine SubmodDijkstra to find this. This subroutine is an 
extension of Dijkstra's algorithm and is discussed in the next 
section. It returns a least-cost path on E~ (5) UD¢ (5). It may 
seem that it should consider also arcs in A~ when searching 
for a least cost 5-augmenting path. Instead, S u brood Dij kst ra 
performs a double-exchange on selected arcs in its search for 
a least cost path to avoid the appearance of exchange arcs on 
this path. A double-exchange on arc a is an exchange oper- 
ation on a followed by a modification of flow on a, so that z 
is unchanged at the endpoints of a. 

Since z = x - (9¢ and we augment by exactly 5 along a 
least-cost 5-augmenting path, each augmentation decreases 
the discrepancy by 5 at both endpoints of the augmenting 
path, maintains the discrepancy of all other nodes. A phase 
ends when one of S + (6) or S - (5 )  is empty, or the set of 
nodes R reachable from S + (5) in E~ (5) U De  (5) U Az is 
disjoint from S -  (5). In the first case, since the net excess is 
0, at the end of a phase the total discrepancy is ,I, < 2n5. In 
the second case, either the total discrepancy is bounded by 
the residual capacity in (E~ tAD¢)fqA+ R, which is bounded 
by (n2/2)d, or we have a proof of primal infeasibility. 

5.2.4. Finding a Shortest 5 Augmenting Path 

We describe how to find a least-cost 5-augmenting path in 
E~ (5) t_J De (5) tJ A~ without using an exchange capacity 
oracle. Our algorithm is an extension of Dijkstra's short- 
est path algorithm to handle exchange capacities. Dijkstra's 
algorithm has been used in the Edmonds-Karp capacity scal- 
ing algorithm for minimum cost flow to find a least-cost path 
of capacity at least 5. This can be done by ignoring edges 
with residual capacity less than 5. This becomes more com- 
plicated in submodular flow settings, since there may also 
be exchange arcs. We avoid using exchange arcs on the 
least-cost path by a double-exchange operation that trades 
exchange capacity on an arc in Az for residual flow capacity 
on the parallel arc in D. Since both these arcs have zero cost, 
they also have the same reduced cost, and thus serve equally 
well on a least cost path. 

Performing an exchange operation on (s, t) can increase 
exchange capacity on other arcs, thus changing the residual 
exchange capacity graph. This makes it tricky to maintain 
valid distance labels as required for the correctness of Dijk- 
stra's algorithm. In particular, unlike the case for residual 
flow arcs, we cannot ignore exchange arcs that have positive 
residual capacity less than 5, since the capacity of these arcs 
may change even when exchange operations are performed 
on completely different arcs. Fortunately, we can character- 
ize when the capacity of exchange arcs can become strictly 
positive. Lemma 5.4 is a simpler version of Lemma 3.1. 

Lemma5.4:  Let y be a base, and y' = y + #(Xt - Xs) 
for # <_ a(y, t, s). If (w, v) ~ Ay and (w, v) E Ay,, then 
{(w,t) , (s ,v)}  C_ Ay. • 

In [5], the authors use Lemma 5.4 to develop a version 
of Dijkstra's that works in the presence of exchange arcs. 
To solve the SFM problem, this idea was modified to find 5- 
augmenting paths without an oracle for computing exchange 
capacities in [12]. Instead, the algorithm in [12] ignores 
most exchange capacity arcs and only considers pairs sat- 
isfying the conditions of Lemma 2.1. However, it does not 
find a least-cost augmenting path. In this section, we extend 
these ideas to find a least-cost 5-augmenting path while re- 
stricted to computing exchange capacities using Lemma 2.1. 
It is not immediately evident that it is possible to find least- 
cost paths if some exchange arcs are ignored. We show that 
this is possible by carefully choosing the linear orderings Li 
generating Yi for / E I. The result yields an efficient, com- 
binatorial algorithm for submodular flow. 

The subroutine SubmodDijkstra starts with a parameter 
5, node prices p, a base x = ~ i e I  Aiyi E B(fp), a flow ~p 
on E, and a flow ¢ on D(5). The algorithm also maintains 
the linear orderings Li that generate Yi, Vi E I. The subrou- 
tine SubmodDijkstra is described in Figure 2. It maintains 
distance labels d and a set R of permanently labeled ver- 
tices that are reachable from S + (5) by 5-augmenting paths 
in E~ (5) tJ D¢ (5). The algorithm returns either a least cost 
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(w.r.t. Cp) 5-augmenting path in E~ U De or a set R of all 
nodes reachable from S + (~) in E~o (~) U De (5) U As such 
that R M S -  (~) = 0. 

The distance labels d : V -4 Z satisfy d(w) < d(v) + 
Cp(V,W) for all (v,w) E E~(~) U D¢(~) with v E R, and 
d(w) < d(v)+cp(v,w) for all (v,w) E E~(5)UD¢(5)UAx 
with v, w E R. At start, R = S+(5) and all nodes in R have 
distance label 0. Immediately, all nodes reachable from R 
on 0-reduced cost arcs in E~ (5) U De  (5) are added to R 
with distance label 0. 

5ubmodDijkstra proceeds by looking for arcs (w, v) E 
A~ with w E R, v E V \ R  and cp(a) = O. If such an arc 
is found, a double-exchange is applied by performing an ex- 
change operation, and then sending flow backwards on the 
parallel ¢ arc to maintain z = x - 0¢.  This works as fol- 
lows. Double-Exchange(i, w, v) swaps exchange capacity 
on (w, v) for residual flow capacity on (w, v) by setting Yk = 
Yi + ~(Xv - Xw) for c~ := min{a(yi ,  v, w), 5} and reduc- 
ing ¢(w, v) by a. In words, a is the minimum of 6, which 
is lower bound on the amount of ¢ flow that can be sent 
backwards on (w, v) (forwards on (v, w)), and the maxi- 
mum amount of change possible to affect in x by performing 
an exchange operation on yi for (w, v). Double-Exchange 
is saturating if a = a(yi, v, w), and nonsaturating other- 
wise. A saturating Double-Exchange(i, w, v) updates yi as 
yi := Yi + a (y i , v ,w) (xv  - Xw) and modifies Li by inter- 
changing v and w. A nonsaturating double-exchange in ad- 
dition adds a new index k to I with Yk equal to the old Yi, sets 
Ai = a/a(y i ,  v, w) and sets Ak as the difference between old 
and new Ai. In both cases, x moves to x + t~ (Xv - X~o). Thus 
z = x - 0qo is invariant. The operation Double-Exchange is 
depicted in Figure 1. It is based on the operation Swap in- 
troduced in [5]. Swap was modified in [12] to the subroutine 
given here. 

If Double-Exchange creates a residual C-arc (w, v), then 
this arc has zero reduced cost. (All ¢ arcs and all exchange 
capacity arcs have initial cost 0, and hence the corresponding 
reduced costs are the same. By the applicability of double 
exchange, this is 0.) In this case, the set R(v) of all vertices 
in V \ R  reachable from v on 0-reduced cost paths in E~ (if) U 
D0(6) may be added to R after updating the labels of these 
vertices to be equal to d(w). 

If no arc (w,v)  E Az withw E R, v E V \ R a n d  
cp(a) = 0 is found, then $ubmodDijkstra selects the low- 
est, finitely-labeled vertex t in V \ R ,  adds R(t)  to R after 
updated all the labels in this set to be d(t), and updates the 
labels of vertices in V \ R  adjacent to R(t) in E~ (5)U De (~). 

At the end of the subroutine SubmodDijkstra, the set of 
extreme bases I is reduced to an affinely independent set 
using a standard linear programming technique. 

5.2.5. Implementation 

To implement SubmodDijkstra efficiently, we start the sub- 
routine by reordering each linear ordering Li so that the p- 

Double-Exchange(i, w, v): 

c~ +-- min{t~, Aia(yi, v, w)} 
If  a < )~ia(yi, v, w) then 

k +-- a new index 
Z~-Iu{k} 
)~ +-- )~ - a/a(yi,  v, w) 
hi ~-- a/tr(yi, v, w) 
yk ~-- yi 
Lk <-- Li 

yi +'- Yi --l-a(yi,v,w)(x,~ - X~,) 
Update L~ by interchanging v and w. 
x +-- ~ e l  )~iyi [ x +-- x + a(X~ - X~)] 

¢(v, w) ~ ¢(~, ~) + 

Figure 1: The operation Double-Exchange(i, w, v). 

values of vertices are monotone nonincreasing. 

Lemma 5.5: For an extreme base Yi encountered during the 
algorithm, there exists a linear ordering generating Yi that 
is ordered according to nonincreasing p-values. 

Proof. All exchange arcs (v, w) have c(v, w) = 0. Thus if 
(v, w) E As then since the algorithm maintains cp(v, w) _> 
0, we have that p(v) > p(w). By construction, (v, w) E Ay~ 
implies (v,w) E As. Suppose Li has p(vk) < p(Vk+l). 
Then (Vk,Vk+l) • Ay, and thus a(yi,vk,Vk+l) = 0. Then 
by Lemma 2.1, we can interchange Vk and vk+l in Li, and 
the resulting order still generates Yi. • 

Since p-values don't change between augmentations, this 
grouping of vertices by level sets in each Li remains un- 
changed between augmentations. 

A pair of vertices (v, w) is called level-active if v E R, 
w E V \ R ,  both v and w are in Ht\Ht-1  for some l, and 
v immediately precedes w in Li for some i E I.  (This is a 
refinement of the concept of active pair introduced in [12].) 
Since all exchange arcs have initial cost zero, if a level-active 
pair has positive exchange capacity, then its reduced cost is 
0. The following lemma says that it is sufficient to consider 
level-active pairs when looking for 0-reduced cost exchange 
arCS. 

Lemma 5.6: If there are no level-active pairs, then there are 
no O-reduced cost arcs in Ax that leave R. 

Proof. Suppose that the level sets of p are 0 = Ho C Hx C 
• .. C Hr --- V. We prove the lemma by proving the fol- 
lowing statement: If there are no level-active pairs, then 
(Ht \R)  U HI-1 is tight for all l E [1,r]. This statement 
implies the lemma, since if (w, v) E Az has 0-reduced cost, 
then {w,v} C_ (Ht \Ht-1)  for some I. 

To prove the statement, it suffices to consider a fixed set 
Jl = Ht \Ht -x .  If there are no level-active pairs, then all 
elements in J t \ R  precede all elements in Jt n R in every 
linear ordering Li, i E I.  This implies that Hi-1 U J t \ R  = 

114 



SubmodDijkstra(~o, ¢, 5, x = Y]i Aiyl,p) 

Initialization 
d(v) 6- +o0 Vv • V\S+.(5) 
d(w) 6- 0 Vw • S+(tf) 
R 6- S+(5) [permanently labeled vertices ] 
for all (w, v) • E~ (6) t3 De (6) with v • V \ R  

d(v) 6- min{d(v), d(w) + %(w, v)} 
for all i • I ,  

reorder Li by nonincreasing p-values. 

while R f3 S -  = 0 and 3 level-active pairs, 
while 3 level-active pair (w, v) for some i E I,  

Double-Exchange(i, w, v). 
i f¢(w,v)  = 0, 

For all z • R(v), 
d(z) 6- d(w), 

R 6- R U R(v) 
for all a = (z, t) • E~ (5) t3 De  (5) 
with z • R(v) and t E V\R ,  

d(t) 6- min{d(t), d(z) + %(a)} 
if 3 v • V \ R  with d(v) < +oo, 

v 6- node in V \ R  with smallest label. 
For all z E R(v), 

d(z) 6- d(w), 
R ~ R U R(v) 
for all a = t) • E ,  0 )  U Do (6) 

with z • R(v) and t E V\R,  
d(t) 6- min{d(t), d(z) + cp(a) } 

Reduce I to an affinely independent set. 
i f 3 v  • RfqS-(5) ,  

return path P from S+(6) to v on nodes in R. 
Else, return R. 

Figure 2: Finding a least-cost 6-augmenting path. 

H t \ R  tO Ht-1 is yi-tight for all i E I .  But, if a set X is 
yi-tight for all i E I ,  then it is also x-tight, since in this case 
z ( x )  = =  J(x) = f ( x ) .  • 

5.2.6. Correctness and Complexity  

Lemma 5.7: Double-Exchange(i, w, v) maintains valid dis- 
tance labels, reduced cost optimality conditions, and z = 
z - 0 ¢ .  

Proof Double-Exchange is only applied to arcs with zero 
reduced cost. Thus any new arc in D e (6) has zero reduced 
cost. 

Suppose Double-Exchange(i, w, v) is applied and moves 
Yi to y~, and ¢ to ¢ ' .  We show that if it creates a new ex- 
change arc (s, t) in Au~, then there exists a path in Au~ U 
D¢(6) of the same reduced cost: I f  a new arc (s , t )  ap- 
pears in Ay~, then Lemma 5.4 implies that arc (s, v) and 
arc (w, t) existed in Au,. Since Double-Exchange(i, w, v) 
applies, (v, w) • D¢(6) before the double-exchange. Thus 
there is a path from z to t of zero initial cost arcs before the 

double-exchange. Since (s, t) E Au~ also has zero initial 
cost, the reduced cost of these two paths are the same. 

Thus, since reduced cost optimality conditions held be- 
fore the double-exchange, they hold afterward. Similarly, 
since the reduced cost of any new arc equals the reduced 
cost of any path between the same endpoints, distance labels 
remain valid. 

Finally, for all vertices v, Double-Exchange alters x(v) 
and O~o(v) by the same amount, so z is unchanged. • 

Theorem 5.8: $ubmodDijkstra returns a least-cost 6-aug- 
menting path, or a proof no such path exists, in O(n 3) time, 
and using at most O(n 3) function evaluations. 

Proof (Sketch) Correctness: The key is to show that when a 
vertex is added to R, its label is the shortest path distance us- 
ing distances cp from S -  (6) on arcs in E~ (6) (3 De  (5) tO Ax 
by induction. This is uses Lemmas 5.6 and 5.7 combined 
with standard arguments for correctness of Dijkstra's algo- 
rithm. Details omitted for lack of space. 

Complexity: The initial reordering of Li takes at most 
n 2 steps per i E I for a total of n 3 steps. Each nonsatu- 
rating Double-Exchange augments R, so there are at most n 
nonsaturating double-exchanges. Each saturating Double-- 
Exchange moves an element of V \ R  closer to the start of 
Li. This can happen at most n - 1 times per element 
of V \ R  per i E I ,  for an upper bound of n 3 saturating 
Double-Exchanges. Each Double-Exchange uses a constant 
number of evaluations of fp plus a constant number of arith- 
metic operations. 

While a single evaluation of f ,  could require a linear 
number of evaluations of f ,  fp is only evaluated on sets 
nested in level sets of p. Thus, by Lemma 5.1, it suffices to 
evaluate f .  Thus the total effort spent finding a 6-augmenting 
path is O(n 3) arithmetic steps and function evaluations. 

Finally, $ubmodDijkstra updates I to be affinely inde- 
pendent. SubmodDijkstra starts with an affinely indepen- 
dent set I ,  and only increases the size of I in nonsaturating 
double-exchanges. Thus at end I I I <  2n. Hence with O(n 3) 
arithmetic operations, we can reduce I so that I I I <  n. • 

5.2.7. Termination 

We now discuss how to terminate the scaling algorithm, pro- 
vided that l, u, and f are all integer-valued. For a price func- 
tion p, we define lp and up by setting lp(a) := up(a) := l(a) 
if Cp(a) > 0; lp(a) := l(a), Up(a) := u(a) if c,(a) = 0; 
lp(a) := Up(a) := u(a) if ep(a) < 0. At the end of the 6 
scaling phase, for any X C V, we have 

: =  I A A + x )  - up( X-x) - A ( x )  

< O o(x) - z ( x )  

<_ - z ( x )  + n 6/2 
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Since the discrepancy ff is at most n26/2, we obtain 
rip(X) < n26. If  6 < 1/n  2, the integrality assumption im- 
plies that t%,(X) < 0. Then it follows from Theorem 4.1 that 
there exists a submodular flow ~ that satisfies lp < ~ < up 
and 0~ E B(fp). Hence, Theorem 5.3 implies that ~ is an 
optimal flow and p is an optimal price function. 

Theorem 5.9: Optimal dual node prices for the minimum 
cost submodular flow problem for integer f can be found 
with O(n 5 log(nU)) arithmetic steps and function evalua- 
tions. 

Proof. There are log(nU) scaling phases. After the initial 
flow adjustments, the initial discrepancy in a 6-phase is at 
most 4n6 + 3n26 + 4rn& Thus the total number of augmen- 
tations in any 6 phase is at most 4n 2 + 2n = O(n2), since 
each augmentation decreases the discrepancy by 26. Theo- 
rem 5.8 then implies the complexity bound. • 

5.2.8. Obtaining the Flow 

In order to compute an optimal submodular flow, it suffices 
to find a feasible submodular flow with lp, up and fp. This 
could be done by using the algorithm in Section 4. How- 
ever, a more efficient algorithm is to apply the price finding 
algorithm described above to m slightly modified problems: 
Again, start with lp, up but now modify the reduced cost of 
one of the zero reduced cost arcs to be (reduced) cost - 1. The 
price finding algorithm finds optimal prices Px which reveal 
the objective function value, and thus the maximum amount 
of flow on this arc in any feasible flow. Fix this flow, and 
repeat. 

Corollary 5.10: A minimum cost submodular flow can be 
found via a combinatorial algorithm in O(mn  5 log(nU)) 
time. 

We have just explained how to find a feasible submod- 
ular flow, or a flow maximizing the flow on a specified arc, 
with m calls to a modified submodular function minimiza- 
tion algorithm. Andrfis Frank points out that this can be 
done with m calls to any SFM algorithm: Let h (X)  := 
u ( A - X )  - I (A+X) .  Since u _> l, h is submodular. Thus 
Theorem 4.1 implies that feasibility of a submodular flow 
problem can be checked by applying an SFM algorithm to 
f + h. Applying this test to the modified problem with 
l'(a) = u(a) for a fixed arc a reveals the maximum flow 
possible on a in any feasible flow. 

5.3. A Strongly Polynomial Algorithm 

To obtain a strongly polynomial algorithm, we embed the 
subroutine S u brood Dij kst ra in a variant of the strongly poly- 
nomial algorithm in [5]. This uses log n scaling phases to fix 
the sign of the reduced cost of one arc. Thus after n 2 log n 
scaling phases, all reduced costs are fixed, and an optimal 
price vector p is deduced. The optimal flow can then be 
found as described in Section 5.2.8. 

Acknowledgements 

We are grateful to Lex Schrijver for sharing with us drafts 
of his paper on a combinatorial algorithm for minimizing 
submodular functions in strongly polynomial time. We also 
thank Andr~is Frank and Tom McCormick for useful com- 
ments. 

References 
[1] W. H. Cunningham. Testing membership in matroid polyhe- 

dra. J. Combinatorial Theory B, 36:161-188, 1984. 

[2] W. H. Cunningham. On submodular function minimization. 
Combinatorica, 5:185-192, 1985. 

[3] J. Edmonds. Submodular functions, matroids, and certain 
polyhedra. In R. Guy, H. Hanani, N. Sauer, and J. Sch/Snheim, 
editors, Combinatorial Structures and their Applications, 
pages 69-87. Gordon and Breach, 1970. 

[4] J. Edmonds and R. Giles. A min-max relation for submodular 
functions on graphs. Ann. Discrete Math., 1:185-204, 1977. 

[5] L. Fleischer, S, Iwata, and S. T. McCormick. A faster capac- 
ity scaling algorithm for submodular flow. Technical Report 
9947, C.O.R.E. Discussion Paper, Louvain-la-Neuve, Bel- 
gium, 1999. 

[6] A. Frank. Finding feasible vectors of Edmonds--Giles poly- 
hedra. J. Combin. Theory, 36:221-239, 1984. 

[7] A. Frank and [~. Tardos. An application of submodular flows. 
Linear algebra and its applications, 114/115:329-348, 1989. 

[8] S. Fujishige, H. R6ck, and U. Zimrnermann. A strongly poly- 
nomial algorithm for minimum cost submodular flow prob- 
lems. Math. Oper. Res., 14:60--69, 1989. 

[9] S. Fujishige and X. Zhang. New algorithms for the intersec- 
tion problem of submodular systems. Japan J. lndust. Appl. 
Math., 9:369-382, 1992. 

[10] A. V. Goldberg and R. E. Tarjan. A new approach to the 
maximum flow problem. Journal of the ACM, 35:921-940, 
1988. 

[11] M. Grotschel, L. Lovasz, and A, Schrijver. The ellipsoid 
method and its consequences in combinatorial optimization. 
Combinatorica, 1:169-197, 1981. 

[12] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial, 
strongly polynomial-time algorithm for minimizing submod- 
ular functions. In Proceedings of the 32th Annual ACM Sym- 
posium on Theory of Computing, 2000. This proceedings. 

[13] S. Iwata, S. T. McCormick, and M. Shigeno. A fast cost scal- 
ing algorithm for submodular flow. To appear. 

[14] T. Jordfm. Edge-splitting problems with demands. In 
G. Comu6jols, R. E. Burkard, and G. J. Woeginger, editors, 
Integer Programming and Combinatorial Optimization, vol- 
ume 1610 of LNCS, pages 273-288, Graz, Austria, June 1999. 
Springer. 

[15] M. Queyranne. Minimizing symmetric submodular functions. 
Math. Programming, 82:3-12, 1998. 

[16] A. Schrijver. A combinatorial algorithm minimizing submod- 
ular functions in strongly polynomial time. Preprint. Submit- 
ted to JCTB., 1999. 

116 



 

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice




