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Abstract

We prove that with high probability, two random permutations contain an undi-
rected Hamilton cycle and three random permutations almost always contain a di-
rected Hamilton cycle.

1 Introduction

Let 7 be a permutation of the set [n]. The undirected graph G, has vertex set [n] and edge
set B = {{i,j}: i = w(j) or j = m(i)}. It is of course the union of vertex disjoint cycles. If
T1,--. , Tk are permutations of [n] then Gy, . ., = ([n], Er,,.. z,) Where E .. = Ule E.,.
Gr,... =, is a 2k-regular (multi)graph and the properties of random regular graphs have been
the object of much recent study: Hamilton Cycles — [2, 9, 11, 20, 21, 13], Enumeration —
[19, 1, 3, 15, 16, 17], Contiguity — [14, 18]. See also the excellent survey paper of Wormald
[22] and the references contained therein. We note that in particular Gy, . ., has been
used as a model for the study of the second eigenvalue of random regular graphs — Broder
and Shamir [4], Friedman, Kahn and Szemerédi [10]. Here we prove

Theorem 1 If w,0 are chosen independently and uniformly at random then

Gr . is Hamiltonian whp'.

*Supported in part by NSF grant CCR-9818411
L A sequence of events &, is said to occur with high probability (whp) if lim,_, . P(£,) =1

1



Our method of analysis is via the extension-closure algorithm which has been used to prove
the Hamiltonicity of other sparse random graphs, [6, 7, 8, 12].

If we take account of orientation then we let D, denote the digraph with vertex set [n]
and arc set A, = {(¢,7(?)) : @ € [n]}. If m,mo,..., 7 are permuations of [n] then we let
= ([n], Ar, U A, U..., A ). We prove

D7l'1,7('2,--- Tk
Theorem 2 If 71,73, ™3 are chosen independently and uniformly at random then

Dy, ryxs 18 Hamiltonian whp.

This leaves the question of whether or not Dy, ,, is Hamiltonian whp. Colin Cooper [5]
has shown that whp it is not.

2 Proof of Theorem 1

A cycle cover is a set of vertex disjoint cycles which cover [n].
We use a two phase method as outlined below:

Phase 1 By replacing some edges of G, by edges of G, we increase the minimum cycle

100n
logn

length to at least ng = [

Phase 2 Using some more edges of G, we convert the Phase 1 cycle cover to a Hamilton
cycle.

In what follows inequalities are only claimed to hold for n sufficiently large.

2.1 Phase 1

It is well known that whp a random permutation has fewer than, say, 2logn cycles. We
assume that GG, has no more than this.

We divide the cycles of G, into sets SMALL and LARGE, containing cycles C of length
|C| < ng and |C| > ng respectively. We define a Near Cycle Cover (NCC) to be a graph
obtained from a cycle cover by removing one edge. Thus a NCC I" consists of a path P(T")
plus a set of cycles CC(T") which covers [n] \ V(P(T")).

We now give an informal description of a process which removes a small cycle C from a
current cycle cover II. We start by choosing an (arbitrary) edge {vo, uo} of C and delete it
to obtain an NCC TI'y with Py = P([g) € P(uo, vo), where P(z,y) denotes the set of paths



from z to y in G, ,. The aim of the process is to produce a large set S of NCC’s such that
for each " € S, (i) P(I") has a least ng edges and (ii) the small cycles of CC(I") are a subset
of the small cycles of II. We will show that whp the endpoints of one of the P(I')’s can be
joined by an edge to create a cycle cover with (at least) one less small cycle.

The basic step in a ug-Phase of this process is to take an NCC I'' with P(T") € P(uo,v) and
to examine the two edges of G, incident with v. Let w be the terminal vertex of such an
edge and assume that I' contains an edge {z,w}. Then I'' = I'U {{v, w}} \ {{z, w}} is also
an NCC. I is acceptable if it satisfies:

C1 If P(T') contains at least ng edges then P(I") must contain at least ng edges.

C2 Any new cycle created (i.e. in IV and not I') has at least ny edges.

We use the notation IV = bs(T; v, w, z).

We could replace C1 above by “P(I'") must contain at least ng edges.” This would compli-
cate matters slightly by insisting that, initially at least, we do not allow w to lie in a short
cycle of II.

If " contains no edge {z, w} then w = ug. We accept the edge if P(I") has at least ng edges.
This would (prematurely) end an iteration, although it is unlikely to occur. We have also
avoided explicit mention of the unlikely possibility that w is adjacent to v on P. This can
be considered as being excluded by C2.

We do not want to look at very many edges of G, in this construction and we build a tree
Ty of NCC’s in a natural breadth-first fashion where each non-leaf vertex I' can give rise
to at most four NCC children IV as described above. The construction of Ty ends when
we first have v = (\/ nlog n] leaves. The construction of Ty constitutes a ug-Phase of our
procedure to eliminate small cycles. Having constructed Ty we need to do a collection of
v;-Phases, for i = 1,2,... ,v.

Then whp we close at least one of the paths P(I") to a cycle of length at least ngy. If |C| > 4
and this process fails then we try again with a different independent edge of C in place of
{ug, vo}. Iterations continue until there are no more small cycles.

Before we start Phase 1 we choose a set of edges X, one from each cycle of size 4 or less and
2 disjoint ones from each small cycle of size at least 4 and so | X| < 4logn whp. The edge
{ug, vo} deleted from C is always a member of X. We let Vx denote the set of endpoints
of the edges in X.

2.1.1 Construction of T}

We grow Tj to a depth at most [(.5 + o(1))logsn]. The set of nodes at depth ¢ is denoted
by St-



Suppose I'' € S; and P = P(T") € P(ug,v). The potential children I of I", at depth ¢+ 1 are
those that can be obtained by a basic step of the form bs(I'; v, w, z). Generally speaking
there will likely be 4 descendants of I'.

We now define a set W = W; U Ws of dirty vertices. Initially all vertices are clean i.e.
W = (. When we carry out bs(I'; v, w,z) we add w,z to Wi. When we delete an edge
{vo,uo} € X we put vp into Wy at the start of the ug-Phase and vy into Wy at the end
of the ug-Phase. We do not allow |W;| to exceed n®*°(). Consider the conditioning
imposed by placing 2z in W and therefore exposing 07!(z),c(z). Suppose at this point
we can think of the conditioned permutation, denoted ow, as a random permutation of
a set Ny where SN{) = [n]. Then after adding z to W we let Z replace o7(2), 2,0(z2)
ie. Nwi, = Ny U{z}\ {07'(2),2,0(2)}. Furthermore, oy will always be a random
permutation of Ny,. This is because each oy, arises from n — 2|W| ow’s.

We will see also that whp

VX N W1 - (D (1)
We add a third condition to acceptability:
C3 z,w ¢ Vx U W, before bs(I'; v, w, x).

Furthermore, to simplify the analysis, in growing Ty we will allow an NCC T" to only have
0 or 4 descendants i.e. if at least one of the 4 possible basic steps is unacceptable then we
do not grow from I'.

Lemma 1 Let C € SMALL. Then, where v = (\/nlogn], and t1 = 1084_(2000/10gn) 3V =
(.5+0(1))logyn

Pr(3t <ty such that |S.| € [1,30]) =1~ O (o ) -

Proof. We assume we stop an iteration, in mid-phase if necessary, when |S;| € [v, 3v]. Let
us consider a generic construction in the growth of Tg. Thus suppose we are extending
from I and P(T) € P(ug,v).

We consider S;;; to be constructed in the following manner: we examine v € S; in the
order that these vertices were placed in S; to see if they produce acceptable edges.

Let Z(v) be the indicator random variable for one of the 4 possible basic steps bs(I" : v, ., .)
being unacceptable and let Z; = > ¢ Z(v). Thus [Sp1| = 4(|S:| — Z;). If Z(v) = 1
then either (i) one of c7'(v),o(v) lies on P(T") and is too close to an endpoint; this has
probability bounded above by 801/logn, or (ii) the corresponding vertex z is in W; this

has probability bounded above by n=%+°(1), Then P(Z(v) = 1) < logn Tegardless of the



history of the process and so Z; is stochastically dominated by 4B(|S;|, %), where B(n, p)

denotes a binomial random variable.

We use the following inequalities some of which derive from the fact that Z; is dominated
by a binomial.

(a) IP’(Zt>0):O< 2 )

logn

k logn klogn

(b) P(Z, > k| |Si| =) < (s) 1000)k < (100063)]3.

— logn

(c) P(Zt > 2000|5:| | 1S = 8) < ¢~1000s/logn

Let to = [log, log, log, n| and apply (a) tot =1,2,... ¢ to obtain

P81 # 4%) = O (greme=eco ) - (2)

Apply (b) with £ = 4 and s < /logn to obtain

B(|Sua| > 45 = 4) | 1S < Viogn) 21 - 0 ((ogie=ew ) 3)

Apply (b) with k = (loglogn)? and s < (logn)(loglogn) to obtain

P(|Ses1| > 4(1Si| — (1oglogn)?) | v/logn < |Si| < (1ogn)(loglogn)) > 1— O (gozky ) -
4)

Apply (c) to obtain

2000 S|

P (Zt >
logn

(logn)(loglogn) < |S,] < n-5+°<1>) < (logn) ™, (5)

It follows from (2)—(5) that with probability 1 — O (

4 — o(1) at each iteration and the lemma follows.

m)a |S¢| grows by a factor of

Actually the preceding analysis ignores cycles of length one or two. The case of w in a
cycle of length one or two of G, can be absorbed into the above analysis as rare exceptions
which do not change any of the probability statements. This is because whp there are at
most log n such cycles. This leaves the case where {ug, vo} is a loop. In this case we use one
of the GG, edges in the ug-Phase and the other is used in the v;-Phase described below. The
expected number of loops is constant and all that happens is that we get 2 descendants
instead of 4. Furthermore, the probability that two loops of G, are at distance < 10 say

in G, can be bounded by 0(1"%) and so the analysis is essentially unchanged. O



The total number of vertices added to W in this way throughout the whole of Phase 1 is
O(vlogn) = o(n5t°W).

Let t* denote the value of ¢ when we stop the growth of Ty. At this stage we have leaves
[y, for i = 1,... ,v, each with a path P(I;) € P(ug,v;) of length at least ng, (unless we
have already successfully made a cycle). We now execute v;-Phases, for i = 1,2,...,v.
This involves the construction of trees T;,i = 1,2,...v. We start with ['; and build T; in a
similar way to Ty except that here all paths generated end with v;.

We consider the construction of our v trees in two stages. First of all we grow the trees only
enforcing condition C3 of success and thus allow the formation of small cycles and paths.
We try to grow them to depth ¢;. We also consider that the v trees are constructed simul-
taneously. We mean by this that the construction of each T; is begun with W considered
to be as it was at the end of the construction of T.

Let L;, denote the set of start vertices of the paths associated with the nodes at depth £ of
the jth tree, i =1,2... ,1, =0,1,... ,t;. Thus L; o = {uo} for all 5. We prove inductively
that L;,, = Ly, for all ¢,£. In fact if L;, = L, , then the acceptable edges have the same
set of initial vertices and since all of the deleted edges are G, edges (enforced by C3) we
have L;py1 = Lig41-

The probability that we succeed in constructing trees 71,75, ...T, is, by the analysis of
Lemma 3, 1 — O (%ﬂ)
(logn) =)

We now consider the fact that in some of the trees some of the leaves may have been
constructed in violation of C1,C2. We imagine that we prune the trees Ty,75,...T, by
disallowing any node that was constructed in violation of C1,C2. Let a tree be BAD if
after pruning it has less than v leaves and GOOD otherwise. Now an individual pruned
tree has been constructed in the same manner as the tree Ty obtained in the vo-Phase. (We
have chosen ¢; to obtain v leaves even at the slowest growth rate of 4 — (2000/ logn) per
node.) Thus

. 1
P(Tl 18 BAD) = O (W)

and
v
E(number of BAD trees) = O (W)
and 1
> = —_— .
P(3 > v/2 BAD trees) = O ((log n)l_o(l))
Thus



P(3 < v/2 GOOD trees after pruning)
< P(failure to construct T1,T5,...T,) + Pr(3 > v/2 BAD trees)

=O(W)

Thus with probability 1-O (W) we end up with v/2 sets of v paths, each of length

at least 100n/logn where the ith set of paths all terminate in v; ¢ W. Hence,

P(no G, edge closes one of these paths) < (1 - %)V =0(n™).

Consequently the probability that we fail to eliminate a particular small cycle C' after

1
(log n)l—o(l)

edges of C and so the probability we fail to eliminate a given small cycle C is certainly

breaking an edge is O ( . If |C| > 4 then we try once or twice using independent

O (W) for |C| > 4 (remember that we calculated all probabilities conditional on

previous outcomes and assuming |W| < n5to() )

We can now see that P(Vx NW; #0) <E (M) = o(1) verifying (1)

n—o(n)

Now the number of cycles of length 1,2,3 or 4 in GG is asymptotically Poisson with mean
25/12 and so there are fewer than loglogn whp. Hence,

Lemma 2 The probability that Phase 1 fails to produce a cycle cover with minimal cycle
length at least ng is o(1).

O

At this stage we have shown that G = G, almost always contains a cycle cover II* in
which the minimum cycle length is at least nyg.

We shall refer to II* as the Phase I cycle cover.

2.2 Phase 2. Patching the Phase 1 cycle cover to a Hamilton
cycle

Let C1,Cs,...,C be the cycles of IT*, and let ¢; = |C; \ W/, ¢1 < ¢z < -+ < ¢, and

c1 > ng — nto) > 991%. If K = 1 we can skip this phase, otherwise let a = @. For

each C; we consider selecting a set of m; = 2[%] + 1 vertices v € C; \ W, and deleting
the edge {v,u} in II*. Let m = Zle m; and relabel (temporarily) the broken edges as



{vi,ui}, i € [m] as follows: in cycle C; identify the lowest numbered vertex z; which loses
a cycle edge. Put v; = z; and then go round C) defining vs,vs,...v,, in order. Then
let v,,,+1 = 2, and so on. We thus have m path sections P; € P(ug(;),v;) in II* for some
permutation ¢. We see that ¢ is an even permutation as all the cycles of ¢ are of odd
length.

It is our intention to rejoin these path sections of II* to make a Hamilton cycle using G,
if we can. For simplicity, we will assume an orientation for each cycle and treat the paths
as oriented paths. The edges of G, are still treated as undirected.

Suppose we can rejoin these path sections. This defines a permutation p where p(i) = j if
P, is joined to P; by (v;, ug(;)), where p € Hy, the set of cyclic permutations on [m]. We
will use the second moment method to show that a suitable p exists whp. A technical
problem forces a restriction on our choices for p. This will produce a variance reduction in
a second moment calculation.

Given p define A = ¢p. In our analysis we will restrict our attention to p € Ry = {p €
H, :¢p € H,}. If p € Ry then we have not only constructed a Hamilton cycle in G, but
also in the auziliary digraph A, whose edges are (i, A(7)).

Lemma 3 (m —2)! < |Ry| < (m —1)!

Proof. We grow a path 1, A\(1), A%(1),... ,A\"(1) ... in A, maintaining feasibility in the way
we join the path sections of I[I* at the same time.

We note that the edge (4, A(¢)) of A corresponds in G, to the edge {v;, ugp()}- In choosing
A(1) we must avoid not only 1 but also ¢(1) since A(1) = 1 implies p(1) = 1. Thus there
are m — 2 choices for A(1) since ¢(1) # 1 from the definition of m;.

In general, having chosen A(1),A%(1),...,A7(1),1 < r < m — 3 our choice for X"*1(1) is
restricted to be different from these choices and also 1 and £ where u, is the initial vertex
of the path terminating at vy-(;) made by joining path sections of II*. Thus there are either
m — (r + 1) or m — (r + 2) choices for ™™ (1) depending on whether or not £ = 1.

Hence, when r = m — 3, there may be only one choice for A™~2(1), the vertex h say. After
adding this edge, let the remaining isolated vertex of A be w. We now need to show that
we can complete A, p so that A\,p € H,,.

Which vertices are missing edges in A at this stage ? Vertices 1, w are missing in-edges,
and h,w out-edges. Hence the path sections of II* are joined so that either

UL —> Up, Uy —> Uy O Uy —> Uy, Uy —> Up.

The first case can be (uniquely) feasibly completed in both A and D by setting A(h) =
w, A(w) = 1. Completing the second case to a cycle in [I* means that

A= (1,A1),..., 2™ 2(1))(w) (6)



and thus A € H,,. We show this case cannot arise.

A = ¢p and ¢ is even implies that A and p have the same parity. On the other hand p € H,,
has a different parity to A in (6) which is a contradiction.

Thus there is a (unique) completion of the path in A. O

Let H stand for the union of II* and G,. We finish our proof by proving
Lemma 4 P(H does not contain a Hamilton cycle ) = o(1).

Proof. Let X be the number of Hamilton cycles in H obtainable by deleting edges as
above, rearranging the path sections generated by ¢ according to those p € Ry and if
possible reconnecting all the sections using edges of G,. We will use the inequality

&=

(X)”

BX > 0) 2 fia (7)

&=

Probabilities in (7) are with respect to the space of G, choices for edges incident with
vertices not in W.

Now the definition of the m; yields that

2—n—k§m§2—n+k
a a
and so
(1.99)logn < m < (2.01)logn.
Also {
ogn ¢ a )
k< —S" m>199and = >—  1<i<k.
=0 M= T A = 901 ==

Let €2 denote the set of possible cycle re-arrangements. w € €2 is a success if G, contains



the edges needed for the associated Hamilton cycle. Thus,

E(X) = ZIP’(w is a success)

> (1—(1))Z(i)m
> (a-om) (2) - 2)!}1 (%)
- () B ((es) ()
L (L= o(1))(2m) m/i%teTh2 (2_m)mH (7)’”
m+/m en ) -5 \(1.02)m;
S (1 — o(1))(2m)—m/398 (2_m)m( ea (1)0’2”)
= n1/1200m,, /m en 3.01 x 1.02
> S ()
> n'd. (8)

Let M, M’ be two sets of selected edges which have been deleted in IT* and whose path
sections have been rearranged into Hamilton cycles according to p, p' respectively. Let
N, N’ be the corresponding sets of edges which have been added to make the Hamilton
cycles. What is the interaction between these two Hamilton cycles?

Let s= |MNM'| and t = [N NN'|. Now t < s since if (v,u) € NN N’ then there must be
a unique (7,u) € M N M' which is the unique II*-edge into u. We claim that ¢ = s implies
t =s=mand (M, p) = (M, p'). (This is why we have restricted our attention to p € Ry.)
Suppose then that t = s and (v;,u;) € M N M'. Now the edge (v;,uxi)) € N and since
t = s this edge must also be in N'. But this implies that (vxg), uas)) € M’ and hence in
M N M'. Repeating the argument we see that (vyk(;), uys(;y) € M N M’ for all k > 0. But
A is cyclic and so our claim follows.

We adopt the following notation. Let < s,t¢ > denote |[M N M'| =s and [NNN'| =¢. So

= wnsu-n B g )

MeQ
€ N'NN=0

+(1 + o(1)) MXG% (%)m ég zﬂ: (%)m_t

= E(X)+ Ey + E; say. (9)
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Clearly
E; < (1+0(1))E(X)>. (10)

For given p, how many p’ satisfy the condition < s,t >? Previously |R4| > (m — 2)! and
now given < s,t >, |Ry4(s,t)| < (m —t — 1)!, (consider fixing ¢ edges of A').
Thus

E, <E(X)? isz_i (8) [ > ﬁ iy (Cz TZ)] (”Zn;i;)})! (g)t

o1+t op=s i=1
Now
(m,,;ci 0',,;)

< (1+0(1)) (’Z—)a exp {_"(‘2’7”1‘1)}
< (1+0(1) (@)a exp {_M}

2mi

k 2 9

ag; S
E : > f0r0'1+---+0'k:3,
pa 2m; — 2m

and
JEIGE)-0)
Hence
siie < 0seEE (e -SH) () 5t 0

2.01\° me—(t-D /pyt
( a ) s! (5)

= ot 35 (20 e S () (1)

A
—~~
'—l
+

[w)
—~~
'—l
g
g
3

(]

frart
)3

|

P
~ O o~
N——
[¢)]

4
o]
—A— —

|
(\>]
T %
——




To verify that the RHS of (11) is o(1) we can split the summation into

2a s!

. Lri:/;u ((2,01)nexp{_S /2m})s 1

and

e 2.01)nexp{—s/2m}\° 1
s- 3 (@obmentmy'L
2a s!

s=|m/4|+1

Ignoring the term exp{—s/2m} we see that

[(.5025)log n |
((1.005) logn)®
Su< )

s!

s=2
0(n9/10)

since this latter sum is dominated by its last term.
Finally, using exp{—s/2m} < e~/® for s > m/4 we see that
S, < n(l.oos)e—l/s < /10

The result follows from (7) to (11). O

3 Proof of Theorem 2

The proof of this is almost identical to that of Theorem 1 and so we only provide an outline.
A directed cycle cover is a set of vertex disjoint directed cycles which cover [n].
We use a two phase method as outlined below:

Phase 1 By replacing some edges of D,, by edges of D, », we increase the minimum cycle

100n
logn

length to at least ng = [

Phase 2 Using some more edges of D, ., we convert the Phase 1 directed cycle cover to
a directed Hamilton cycle.

A Near Directed Cycle Cover (NDCC) is a cycle cover less on arc. It is therefore the union
of a directed path and vertex disjoint directed cycles.

In Phase 1, the ug-Phases are replaced by OUT-Phases. In a typical basic step we start
with an NDCC I which has a directed path P which goes from ug to v say. We look at

12



the 2 arcs a; = (v, m(v)) = (v,4:), ¢ = 2,3 and for each i we expect to find a new NDCC
by adding a; and removing (77 (y;),%;). We thus grow a tree of NDCC’s until we have v
leaves. We can see that in a breadth first construction we expect the level sizes to grow at
a rate of 2 — o(1) per level. (It is here that we need 2 extra permutations in order to have
the trees grow at an exponential rate — (roughly) two per level.)

At the end of a OUT-Phase we should have v NDCC’s whose paths each start at ug and
end at a distinct vertex v;, j = 1,2,...,v. For each j we do an IN-Phase. Here we
keep v; as an end point of the path. In a generic basic step we start with an NDCC
I' which has a directed path P which goes from u, say, to v;. We look at the 2 arcs
b; = (m;'(u),u) = (zi,u),i = 2,3 and for each i we expect to find a new NDCC by
adding b; and removing (z;, m1(x;)). As in the undirected case we expect to find v? possible
opportunities to close a path and remove a small cycle, and whp for one of these, the
desired arc will exist.

Phase 2 is as in the undirected case. O
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