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Abstract. Admission control (call control) is a well-studied online prob-

lem. We are given a �xed graph with edge capacities, and must process
a sequence of calls that arrive over time, accepting some and rejecting

others in order to stay within capacity limitations of the network. In the

standard theoretical formulation, this problem is analyzed as a bene�t
problem: the goal is to devise an online algorithm that accepts at least

a reasonable fraction of the maximum number of calls that could possi-

bly have been accepted in hindsight. This formulation, however, has the
property that even algorithms with optimal competitive ratios (typically

O(log n)) may end up rejecting the vast majority of calls even when it

would have been possible in hindsight to reject only very few.
In this paper, we instead consider the goal of approximately minimizing

the number of calls rejected. This is much more natural for real-world
settings in which rejections are intended to be rare events. In order to

avoid trivial lower-bounds, we assume preemption is allowed and that

calls are given to the algorithm as �xed paths. We show that in a number
of cases, we can in fact achieve a competitive ratio of 2 for rejections (so

if the optimal in hindsight rejects 0 then we reject 0; if the optimal rejects

r then we reject at most 2r). For other cases we get worse but nontrivial
bounds. For the most general case of �xed paths in arbitrary graphs

with arbitrary edge capacities, we achieve matching �(
p
m) upper and

lower bounds. We also show a connection between these problems and
online versions of the vertex-cover and set-cover problems (our factor-2

results give 2-approximations to slight generalizations of the vertex cover

problem, much as [AAA99] show hardness results for the bene�t version
based on the hardness of approximability of independent set).

1 Introduction

In the well-studied admission control (or call control) problem, our job is to

manage a network G (a graph with edge capacities) in the presence of online

requests for communication (calls). Requests for communicationmay be accepted

or rejected, and the goal of an online algorithm is to accept as many as possible

while staying within the edge capacities of the network.

This problem has typically been studied as a bene�t problem. That is, one

compares the number of calls that could have been accepted in hindsight to the



number actually accepted by the online algorithm, and tries to minimize this

ratio. A number of papers have produced good bounds for this metric, such as

the work of Awerbuch, Azar and Plotkin [AAP93] for the high-capacity setting,

and Awerbuch et al. [AGLR94] for trees and other speci�c networks. A serious

problem with viewing call-control as a bene�t problem, however, is that even

with, say, an O(logn) competitive ratio that would normally be considered quite

good, it is possible that the algorithm may route only a 1=(logn) fraction of the

calls even if a solution routing nearly all of them is possible.1 For many of the

natural applications of admission control, even a modest constant fraction of

rejections would be deemed unacceptable performance. Thus, for these types of

applications, the bene�t formulation appears fundamentally awed.

In this paper we depart from the bene�t metric and instead set our sights

on the goal of minimizing the number of calls rejected. That is, if OPT (the

optimal strategy in hindsight) rejects 0 then we should reject 0. If OPT rejects

a small number, then we should reject only a small multiple of that. What

we show is that for several natural cases, we can in fact achieve a competitive

ratio of 2 for rejections. For other versions we can achieve worse but still non-

trivial bounds. Of course, approximately minimizing rejections su�ers from the

reverse problem that the algorithm may accept no calls even if in hindsight it

was possible to accept, say, half of them. However, in many applications, even

optimal performance in such a case would be unacceptable: if one's network

required one to reject a signi�cant fraction of calls, then the correct response

would be to upgrade the network. It is these types of settings that motivate our

work.

We assume in our results that the online algorithm is allowed preemption: at

any time we may preempt (reject) requests that had previously been accepted,

and simply count it as if the request had been rejected from the start. This is

one of the standard models and is necessary to achieve any nontrivial bound on

rejections. A second assumption we make is that each request is for a �xed path.

That is, the requests can be thought of as a sequence of paths p1; p2; : : :, and the

decision made by the online algorithm is just whether to accept or reject each

path, and does not involve routing. Again, if routing is part of the algorithm's

job, then even in very simple settings, no nontrivial bound is possible for our

performance metric.2 Our results are then as follows:

1 In fact, prior to Leonardi et al. [LMSPR98] the situation was even worse. Depending

on the types of requests made, many of the randomized algorithms would, with

probability 1 � 1=(log n), accept no calls at all. That is, the variance of possible
bene�ts was high compared to the expectation.

2 Consider a 4-cycle ABCD with capacity c on each edge. Imagine that we are given c

calls connecting the diagonally opposite nodes A and C, and then we are given either
c calls connecting A and B, or else c calls connecting A and D, with equal probability.

Every on-line algorithm rejects c=2 calls in expectation, while it was possible to reject

none o�-line. Similarly, with n separate 4-cycles, the on-line algorithm rejects nc=2
calls in expectation, while OPT rejects none.



Admission control on a line: When the underlying graph is a line, we can

achieve a competitive ratio of 2 for any set of edge capacities. That is, the

algorithm will reject at most twice as many as the minimum possible in

hindsight.

Admission control on a general graph: For general graphs, we can achieve

a competitive ratio of 2 if all edge capacities are 1 (the disjoint paths case).

This extends to a ratio of c+ 1 if all edge capacities are � c. For arbitrary

capacities, we give a di�erent algorithm that achieves a competitive ratio of

O(
p
m), where m is the number of edges, which we match with an 
(

p
m)

lower bound.

An interesting aspect of the rejection measure is that the easiest cases are when

capacities are low. This is the opposite of the situation for the bene�t measure,

where low capacities are di�cult and higher capacities make the problems easier.

1.1 Related work

As discussed above, existing work on admission control has primarily focused on

the problem of maximizing the number of accepted calls, rather than minimizing

the number of rejected calls. (See the surveys by Plotkin [Plo95] and Leonardi

[Leo98].) The one exception we are aware of is the work of Kamath, Palmon, and

Plotkin [KPP96], who provide performance guarantees in terms of a competitive

ratio on rejections. Their setting is quite di�erent from ours, however. Most

signi�cantly, they assume the input to be probabilistically generated, not worst-

case. They consider calls that are generated according to a Poisson process,

with exponentially distributed holding times, and also assume the maximum

bandwidth of a call to be very small relative to the available edge capacity (i.e.

large capacities). Moreover, their model does not allow pre-emption.

Routing on �xed paths, as we consider here, was studied by Alon, Arad, and

Azar [AAA99] under the traditional measure of maximizing bene�t. Of course, in

linear networks, and more generally in tree networks, one is necessarily routing

on �xed paths; for trees, work of Awerbuch et al. [ABFR94] provides O(logn)-

competitive algorithms for for maximizing bene�t. (See also the earlier work of

[GG92,GGK+93] for linear networks, and the improved probabilistic guarantees

obtained by Leonardi et al. [LMSPR98].)

A number of previous papers have considered the performance gains obtain-

able by allowing pre-emption, in the context of maximizing bene�t. Adler and

Azar [AA99] show that allowing pre-emption leads to an O(1)-competitive algo-

rithm for bene�t maximization in linear networks, when the bene�t of a call is

de�ned to be proportional to the bandwidth it consumes.

1.2 Notation and de�nitions

We are given a graph G, which may be directed or undirected, with m edges

and n nodes. Each edge e has an integer capacity ce > 0. We are also given a

sequence of requests, p1; p2; : : :, each of which is a simple path in the graph. Each



path may either be accepted or rejected. The requirement is that for every edge

e, the number of unrejected requests that have edge e should be no larger than

ce. We will call a set of rejection decisions valid if it satis�es this requirement.

In the o�-line problem, we must simply �nd a small valid set of rejections. In

the on-line problem, we are given requests one at a time, and we much choose

to accept or reject the requests on-line so that the set of accepted requests

never exceeds the capacity of any edge. We also allow our online algorithm to

preempt an earlier request, i.e. we may reject a request after already accepting

it. However, we may not accept a request after rejecting it.

Let OPT be a minimum valid set of rejections. We say that an algorithm is

k-competitive (k may be a function of m, n, and c) if the number of requests

rejected by this algorithm is at most kjOPTj.
One �nal note: Our algorithms will sometimes decide to reject some requests

even when not strictly necessary. Because we have preemption, these can always

be implemented in a lazy manner. That is, such requests are marked but not

actually rejected until a new request arrives that causes a conict with it.

2 Preliminaries: set-cover and vertex-cover

A well-known result for the set-cover problem is that if every point is in at

most k sets, then there is a simple k-approximation algorithm: pick an arbitrary

uncovered point, take all � k sets that cover it, and repeat. The case k = 2

corresponds to vertex cover.

A slight generalization of the k = 2 case is a setting in which a point may

potentially be covered by many sets s1; s2; : : :, but where we are guaranteed

that some two of those sets si; sj cover their union. Then one can achieve a

2-approximation as follows: pick an arbitrary uncovered point p, �nd two sets

that cover the union of all sets covering p, take those two sets and repeat. This

is a 2-approximation because each time two sets are chosen, they can be charged

to whatever set sp in the optimal solution is used to cover p. Because the two

sets chosen by the algorithm contain sp, we are guaranteed that each selection

of two sets is charged to a unique set in the optimal cover.

Some of the results below can be viewed as an online version of this algorithm

and guarantee.

3 Admission control on a line

We begin with the special case of a line graph. Each edge e has some arbitrary

capacity ce. A request corresponds to an interval on this line and the capacities

limit the number of intervals covering any given edge that may be accepted. We

show a 2-competitive algorithm, based on the set-cover idea above. The idea is

that whenever a new request cannot be accepted due to capacity constraints, we

look at (an arbitrary) one of the edges that would go over capacity, and throw

out the two requests pl and pr covering that edge that extend farthest to the



left and farthest to the right, respectively. (One of these may or may not be the

current request.) We then accept the current request if we did not throw it out.

To be more precise:

1. If a request can be accepted, accept it.

2. If a request cannot be accepted, then choose an arbitrary edge e that would

be put over capacity.

(a) Among the unrejected requests that contain e (including the current

request), let pl be one that extends furthest to the left.

(b) Among the unrejected requests that contain e (including the current

request), let pr be one that extends furthest to the right.

3. Reject pl and pr, and accept the current request if it is not one of fpl; prg.

Theorem 1. The above algorithm is 2-competitive.

Proof. Consider some optimal valid rejection set OPT. Each time the algorithm

rejects a pair of requests fpl; prg, we will modify OPT by adding at most 1

request to it, in order to maintain an invariant that OPT is a superset of the

requests rejected by the online algorithm. We do this as follows. Each time

the online algorithm reaches case 2, we know that OPT must have rejected at

least one request popt of those being considered by the online algorithm (i.e., at

least one of those covering edge e that have not yet been rejected by the online

algorithm).Therefore, when the online algorithm rejects pl and pr , we know that

(viewing paths as sets of edges) pl[pr � popt. Therefore, if we put pl and pr into

OPT, and then remove popt if neither pl nor pr had been in OPT already, this

only adds 1 to the size of OPT, maintains its status as a valid rejection set, and

maintains our invariant. So, if OPTinit is the true o�ine optimal, OPTfinal is

the �nal OPT set achieved by the above transformation, and t is the number of

requests rejected by the online algorithm, then t � jOPTfinalj � jOPTinitj+t=2,
and therefore t � 2jOPTinitj. ut

Another way of viewing this argument is that each time the algorithm rejects

two requests pl and pr, we give OPT a \two-fer", allowing it to reject those two

requests for the price of 1. Since OPT must reject some request contained in

their union, it might as well take the o�er. Inductively, at the end of the game,

OPT has rejected the exact same set as the online algorithm, but at half the

cost.

The above algorithm and analysis also applies if the underlying graph is a

cycle.

4 General graphs

4.1 The low capacity case

Theorem 2. On a general graph G, if every edge e has capacity ce � c, then

there is a simple (c+ 1)-competitive algorithm.



Proof. The algorithm is just an online version of the k-approximation to set

cover:

1. If a request can be accepted, accept it.

2. If a request cannot be accepted, then choose the �rst edge e that would be

over capacity. Reject the current request along with the ce (unrejected) other

requests that contain e.

This algorithm rejects sets of requests of size � c+ 1 that all share an edge.

These sets are disjoint. Any valid rejection set must include at least one request

from each of these sets. Therefore, the algorithm achieves a competitive ratio of

c+ 1. ut

Thus, if all edges have capacity 1 (the disjoint paths case) we have a 2-

competitive algorithm.

4.2 General capacities

The above algorithm gets worse as the capacities in the graph become large.

Can we achieve a bound independent of the capacities for general graphs? The

connection to set-cover suggests that perhaps we could achieve an O(logm)

bound. However, it turns out that the online nature of the problem makes that

impossible.What we show instead are a set of matching�(
p
m) upper and lower

bounds. We begin with the lower bound.

Theorem 3. There is a 
(
p
m) lower bound on the competitive ratio of any

online algorithm for general graphs with arbitrary capacities. This holds for ran-

domized algorithms as well.

Proof. For clarity, we will use a multigraph for the lower bound. The multigraph

consists of k+1 vertices f0; 1; : : : ; kg arranged in a line, with k edges connecting

each vertex to the next. So the total number of edges is k2. Each edge has

capacity kk�1.

We begin by seeing kk paths of length k, one for each possible route between

vertex 0 and vertex k. By design, these will �ll all edges exactly to capacity. We

then see k single-edge paths: the �rst path is a random edge between vertex 0

and vertex 1; the second is a random edge between vertex 1 and vertex 2, and

so on.

The o�ine algorithm needs only to reject one path, namely the path among

the �rst kk that happens to match the sequence of k single-edge paths seen at

the end. However, any online algorithm must reject at least k=2 in expectation.

That is because if j < k paths have been rejected so far, then the next single-

edge path seen has at least a (k � j)=k chance of causing its edge to go over

capacity. Therefore, the competitive ratio of any online algorithm is at least k=2

which is 
(
p
m). ut



One can also give the above argument using a standard (non-multi) graph.

For example, we can have the underlying graph be the complete graph and

initially see all n! Hamiltonian paths that (by design) �ll all edges exactly to

capacity. We then see n edges one at a time that together make up a random

Hamiltonian path. The optimal o�ine algorithm again rejects just one path:

namely, the Hamiltonian path among the �rst n! corresponding to the �nal

sequence of n edges. However, any online algorithm will need to reject at least


(n) paths in expectation.

We now give a matching O(
p
m) upper bound. Speci�cally, we present a

4
p
m-competitive algorithm for an arbitrary multigraph with m edges. The al-

gorithm is as follows, starting with zero \chips" on every edge and R = 0.

1. If a request covers at least
p
m edges that have chips, then

(a) Reject the request

(b) Remove one chip from each of the request's edges (that have chips)

2. If a request cannot be accepted (some edge would be over capacity), then

(a) Reject the request

(b) R = R+ 1

(c) If R is a multiple of
p
m, then

i. Add a chip to each edge

ii. Reapply Step 1 to every accepted request so far.

3. Else, accept the request.

Theorem 4. The above algorithm is O(
p
m)-competitive.

Analysis. Observe that the number of rejections from Step 1 (line 1a) is no

more than the number of rejections from Step 2 (line 2a). This is because, after

R Step-2 rejections, we have placed no more than R=
p
m chips on each edge,

and every Step-1 rejection removes at least
p
m chips. Thus, to show that the

algorithm is 4
p
m-competitive, we will show that R � 2jOPT jpm. From here

on, when we refer to a rejection, we mean a Step-2 rejection.

Just before we perform each rejection, we \blame" it on an individual edge

in one of OPT's rejections, as follows. Let e be the �rst of the edges that would

have gone over capacity had we accepted the request. We blame the rejection on

the �rst OPT rejection that has not yet been rejected, has e, and has not yet

been blamed for e. Not only must there be some such OPT rejection to blame,

but it must come no later in the request sequence than the current request. To

see this, say we have had e as a blame edge t times before, and we have rejected

r of OPT's rejections that have e. Then, including the current request, we must

have seen ce + r + t + 1 requests that contain e. OPT must also reject at least

r+ t+ 1 requests with e, and we have rejected r of these and blamed t of them

for e, leaving at least 1 previous OPT rejection to blame.

Also notice that after jOPT j chips have been removed from an edge, we will

not blame any more rejections on that edge. This is because the total number

of requests that have an edge does not exceed ce + jOPT j. Finally, it su�ces

to show that no OPT rejection is blamed for more than
p
m rejections after



R = jOPT jpm. At this point, we have placed jOPT j chips on each edge. Fix

an OPT rejection. Look at the �rst rejection after R = jOPT jpm blamed on it.

Since we did not reject the OPT rejection in Step 1, it has less than
p
m edges

with chips. All of its other edges must have had at least jOPT j chips removed,

so they will never blamed again. Thus, we will blame at most
p
m edges on each

OPT rejection after R = jOPT jpm, which implies R � 2jOPT jpm and the

total number of rejections is at most 4jOPT jpm.

5 The o�ine case

It is interesting to consider the o�ine version of our problem because of its

connection to set-cover. For the o�-line problem, we know the excess of each

edge, i.e. the number of calls that include that edge minus its capacity. Let ne be

the excess of edge e. Our goal is to reject the fewest requests such that each edge

e is contained in at least ne rejections. This can be thought of as generalization

of a set cover problem, where each point e has an associated number ne, and

instead of the usual goal of covering each point at least once, a legal cover must

cover point e at least ne times.

Let us de�ne N =
P

e
ne; that is, N is the total sum of the excesses. Then,

the usual analysis of greedy set-cover gives us an O(logN ) approximation to

this generalized problem. In particular, if we imagine placing ne chips on point

e, then the greedy set-cover algorithm becomes: take the set that covers the most

points of those with chips on them, remove one chip from each point covered,

and repeat. If the optimal solution uses k sets, then at each step, the greedy

algorithm must remove at least a 1=k fraction of the chips remaining, giving us

the O(logN ) ratio.

A natural question is whether this upper bound can be improved to O(logm)

where m is the number of points (edges). This would be strictly better than what

is achievable for the online problem. It is not clear if the greedy algorithm can

be used to achieve this, but we can get O(logm) via randomized rounding as

follows.

Formulate the problem as a linear programming problem, where 0 � fi �
1 is the fraction of set si to take (the fraction of the ith request to reject).

Our objective is to minimize
P

fi subject to the chip (capacity) constraintsP
i:e2si

fi � ne, for every point e. The minimumvalue of the objective will be no

larger than k, the value of the optimal integer solution. To round, we choose each

set independently, with probability of choosing set si equal to min(1; 5fi logm).

Next, Cherno� bounds imply that a given point e is covered at least ne times

with probability � 1�1=m2. To see this, �rst note that we do not have to worry

about those sets that have 5fi logm � 1, because we will select them for certain.

So ignore these sets. Let ze be the sum of the fi for the remaining sets si that

have e, and we can assume ze � 1 else we are already done. We expect to select

5ze logm sets covering e, and the only way in which we could fail is if the number

we actually select is less than ze. By the multiplicative Cherno� bounds, this



happens with probability less than

e�(1�
1

5 logm )
2
(5ze logm)=2 � 1

m2

for su�ciently large m. Thus with probability at least 1�m=m2 we will have all

points covered the desired number of times. Furthermore, the expected number

of sets chosen is O(k logm), as desired.

6 Conclusions

We have shown that in a number of natural cases, we can achieve good, or at least

nontrivial bounds for minimizing the number of rejections in admission control.

One open question left by these results is that our 
(
p
m) lower bound requires

an exponential number of requests and exponential size capacities. Perhaps one

might be able to achieve bounds that are logarithmic in m if we also allow

logarithmic dependence on the maximum capacity c.
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