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1 Introduction

The Assignment Problem (AP) is the problem of finding a minimum-weight perfect matching
in an edge-weighted bipartite graph. An instance of the AP can be specified by an n X n
matrix C = (C(i, j)); here C(i, j) represents the weight (or “cost”) of the edge between i € X
and j € Y, where X,Y are disjoint copies of [n] = {1,2,...,n} and X is the set of “left
vertices” and Y is the set of “right vertices” in the complete bipartite graph Kxy. The AP
can be stated in terms of the matrix C as follows. Find a permutation 7 of [n] = {1,2,... ,n}
that minimizes ) ; C(i,7(¢)). Let AP(C) be the optimal value of the instance of the AP
specified by C.

The Asymmetric Traveling-Salesman Problem (ATSP) is the problem of finding a Hamil-
tonian circuit of minimum weight in an edge-weighted directed graph. An instance of the
ATSP can be specified by an n X n matrix C = (C(4, 7)) in which C(3, j) denotes the weight
of edge (,7). The ATSP can be stated in terms of the matrix C as follows: find a cyclic
permutation 7 of [n] that minimizes ), , C(i, 7(¢)); here a cyclic permutation is one whose
cycle structure consists of a single cycle. Let ATSP(C) be the optimal value of the instance
of the ATSP specified by C.

It is evident from the parallelism between the above two definitions that AP(C) <
ATSP(C). The ATSP is NP-hard, whereas the AP is solvable in time O(n?®). Several
authors have investigated whether the AP can be used effectively in a branch-and-bound
method to solve the ATSP and have observed that the AP gives extremely good bounds on
random instances.

Karp was able to explain this in an important paper [11]. He assumed that the entries
of C were independent uniform [0,1] random variables, and proved the surprising result that

E(ATSP(C) — AP(C)) = o(1). 1)

Since whp' AP(C) > 1 we see that this rigorously explains the quality of the assignment
bound, a significant plus for probabilistic analysis. Importantly, Karp proved (1) construc-
tively, analysing an O(n?®) patching heuristic that transformed an optimal Assignment Prob-
lem solution into a good TSP solution. Karp and Steele [12] simplified and sharpened this
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analysis, and Dyer and Frieze [4] improved the error bound in (1) to O (M) Our first
theorem sharpens this further.

Theorem 1 QOver random cost matrices C,

1 2
ATSP(C) — AP(C) < ¢ 2™
n
E(ATSP(C) — AP(C)) > 2.
n
In this paper, cg,c1,... are positive absolute constants whose precise values are not too

important to us.

As in previous works, we will prove the upper bound in Theorem 1 by analysing an
O(n®) heuristic which patches an optimal AP solution into a good ATSP solution. We note
a related result of Frieze, Karp and Reed [8], who consider the C(i, j) to be random positive
integers chosen from the range [0,L = L(n)|, and determine when one has ATSP = AP
whp.

Karp and Steele showed that whp the greatest cost of an edge used in the optimal
(Inn)?

assignment was O( ; our next theorem improves upon this. Let Chax = Cmax(C)

denote the maximum cost of an edge used in an optimal assignment.

Theorem 2 Whp over random cost matrices C,

Inn Inn
1—0(1)— < Cpax < Co—.
(1= 0(1) "2 < O < 2>
It is perhaps of interest to estimate the expected difference A, between the cheapest
and second-cheapest assignments. (Since 1 in n permutations is cyclic, it is plausible that
the ATSP might typically be the n’th cheapest assignment, providing one reason that gaps
between various cheap assignments are a natural object of study.)

Theorem 3 Over random cost matrices C, E(As3) < c322.
We have no non-trivial lower bound.
The algorithm with the best known worst-case time for solving the ATSP is the O(n?2")

dynamic programming algorithm of Held and Karp [9]. The next theorem describes a modest,
probabilistic improvement.

Theorem 4 Whp, a random instance of the ATSP can be solved exactly in time eOvm).

Here O is the standard notation for ignoring logarithmic factors.



2 Analysis of the Assignment Problem

In this section we will prove Theorem 2. The difficult part of the proof — showing that
the longest edge in an optimal assignment has length O(Inn) — has its essence in Lemma 5
below.

Define the k-neighborhood of a vertex to be the k vertices nearest it, where distance is
given by the matrix C; let the k-neighborhood of a set be the union of the k-neighborhoods
of its vertices. In particular, for a complete bipartite graph Kxy andall S C X, T CY,

N (S)={y €Y : ds € Sst. (s,y)is one of the k shortest arcs out of s}, (2)
N (T) ={x € X : 3t € T s.t. (z,t) is one of the k shortest arcs into t}. (3)

Given the complete bipartite graph Kx y, any permutation 7 : X — Y has an associated
matching M, = {(z,y): z € X,y €Y, y=n(z)}. Given a cost matrix C and permutation
m, define the digraph

D=Dg,=(XUY, E) (4)

consisting of backwards matching edges and forward “short” edges:

E={y,z): yeY,zeX, y=7=)}U {(z,9): z€ X, y € Ny(z)}
U {(z,y): y€Y, 5 € Na(y)}. (5)

Lemma 5 Whp over random cost matrices C, for every permutation w, the diameter of
D= Dc,r is at most 3log, n.

Proof. For SC X, TCY, let

N5(S) ={y € Y : 3s € S such that (s,y) € E},
Ny(T) ={x € X : 3t € T such that (z,t) € E}.

We first prove that whp, for all § C X with |S| < [n/5], |[N5(S)| > 4|S|. (Note that only
the cheap edges out of S, and not the matching edges into it, are involved here.)

/5]
Pr(35: [§] < [n/5], [Np(S)| < 4|S]) < Z( < )

s=1

<5 (%) <—> ()"

- f”z/? 543635
- = n35
= o(1). (6)

Similarly, whp, for all T C Y with |T'| < [n/5], |N5(T)| > 4/T|. (Again only the cheap
edges, not the matching edges, are involved.)



In the remainder of this proof, assume that we are in the high-probability “good” case,
in which all small sets S and T expand.
Now, for an arbitrary z € X, define Sy, S1,53,..., by

So = {z} and S; = 7 (N5(Si_1))-

Since we are in the good case, |S;| > 4|S5;_1| provided |S;_1] < n/5, and so there exists
a smallest index ig — 1 < logu(n/5) < logym — 1 such that |S;;_1| > n/5. Arbitrarily

discard vertices from S;; 1 to create a smaller set S; ., with |S; ;| = [n/5], so that
Si; = N5(Si,_1) has cardinality S} | > 4|S;,_,| > 4n/5

Similarly, for an arbitrary y € Y define Ty, T3, ... , by
To = {y} and T; = 7(Np(T;-1))-

Again, we will find an index ir < log,n whose modified set has cardinality |T; | > 4n/5.

With both |S] | and |T; | larger than n/2, there must be some z’ € S;_ for which y' =
n(z') € T;_ . This establishes the existence of a walk and hence a path of length at most
2(is +ir) < 2log,n from z to y in D.

We have proved there is a short path from any z € X to any y € Y. A short path from
z to ' both in X can be formed by going from z to y = w(z') and appending the backward
edge to z'; a path from y to ' by starting with the backward edge from y to z = 7—!(y) and
then pursuing a path to z'; and a path from y to 3’ by taking a path from y to =’ = 77 (y/)
and discarding its final backward edge. O

We will also need the following inequality, Lemma 4.2(b) of [7].

Lemma 6 Suppose that ky + ks + -+ + ky < alnN, and Y1,Ys,... ,Yy are independent
random variables with Y; distributed as the k;th minimum of N independent uniform [0,1]
random variables. If A > 1 then

Aaln N

N+1
Let the weight of a forward edge (z,y) be C(z,y) and the weight of backwards edge (y, z)

be —C(z,y).

Lemma 7 Whp over random C, for all 7, the weighted diameter of D= DC,r is < ¢yt 1“"

Proof. Let

Pr (Y1 o+ Yy > ) < Nal+inA=3),

k k—1
71 = max {X:C’(ar;i,yz ZC’ Vi, Tit1 } (7)
=0

i=0
where the maximum is over sequences zg, Yo, 1, - - - , Tk, Y¢ Where (x;,y;) is one of the 40
shortest arcs leaving z; for i = 0,1,... ,k < ko = [3log, n].

We estimate the probability that Z; is large. Indeed, for any ¢ > 0 we have

Inn o oht1 1 1
Pr| Z; ><— SZTL mﬁx
k=1 )

w[(ylsn)k > q(m,---,pk;<+y)]dy

p1t+--+pr <40k




where |
nn
ﬁmpn,mnﬂ=I%(Xi+~-+Xk2n77),

Xi, ..., Xy are independent and X; is distributed as the p;th minimum of n — 1 uniform
[0,1] random variables.
Explanation: We have < n choices for the sequence zg, Yo, Z1, - - - , T, Yx- LThe term

% (w%)k bounds the probability that the sum of k& independent uniforms, C(yg, z1) + -+ +

C(yx_1,2x), is at most yl% We integrate over y. % is the probability that (z;,y;) is the
pith shortest edge leaving z;, and these events are independent for 0 < ¢ < k — 1. The final
summation bounds the probability that the associated edge lengths sum to at least (ty)tnn

It follows that if ¢ is sufficiently large then, for all y > 0, g(p1,... ,pi;;{ +y) < n~ )/
and

2k+1

ko k )
1 1 40k — 1
pr (22 (M) <oy CRE (DO 7 g,
k=1 ' B y=0
ko k+1
Inn)* (40e
< omi-e2 3 IR (40N Ty
= “n kz:; k! Inn (k+1)

< 2n17¢/2(40e)k0+2
= 0(1)’

for large enough (. Similarly, whp Z; < ¢ lnT", where Z; is the maximum of the RHS of
expression (7) over sequences where (z;,y;) is one of the 40 shortest arcs entering y;.

An alternating path P from z € X to y € Y defined in Lemma 5 can be decomposed
into a path P from z to y = w(z'), the edge (v',z') and a path P, from z' to y. The cost
of P is at most the sum of the costs of P;, P, which is at most Z; + Z; < 2(1“7" whp.

We have proved there is a cheap path from any z € X to any y € Y. Extending this to
cheap paths between any two vertices is just as in the proof of Lemma 5. O

We can now prove Theorem 2, restated here for convenience.

Theorem 2 Whp over random cost matrices C,

Inn Inn
1= 0(1))—— < Clax < Ca—r .
(1= 1) < O < 1
Proof. The lower bound follows easily from the fact that I“T” is the threshold probability
for a random bipartite graph to have a perfect matching, as shown by Erdés and Rényi [6].
For the upper bound, define D = D¢, as per (4) and (5). From the preceding lemma,
we can assume the existence of a cheap alternating path from any z to (z),

T =T0,Y0,T1,Y15--- s Ty Yk = 7T(£L’), k < 2kO (8)

consisting of cheap forward edges and backwards matching edges. Appending a final back-
wards edge (7(z), z) creates an alternating cycle.
If any edge in the optimal matching has cost C(z,m(z)) > 222 then the canonical

@lnn ot whp has forward

alternating cycle on z has reverse (matching) edge cost at least % *"



edge cost Z, < 621% From the original matching, delete the alternating cycle’s match-
ing edges and replace them with its forward edges to produce a new matching of smaller

cost — contradicting optimality. Thus whp, every edge in an optimal matching has cost
C(z,n(z)) < 228, O

3 Analysis of the Traveling Salesman Problem
Our goal in this section is to prove Theorem 1, recalled here for convenience.

Theorem 1 QOver random cost matrices C,

ATSP(C) — AP(C) < q(m:)?
E(ATSP(C) — AP(C)) > %

We prove the Theorem’s first assertion in sections through 3.3, and the second in sec-
tion 3.4.

If (¢,7(i)), i € X, is a perfect matching of Kxy, then (i,7(:)) defines a permutation
digraph, i.e., a set of vertex-disjoint directed cycles that cover all n vertices of the complete
directed graph K, associated with K x,y- The size |7| of 7w is the number of cycles in the
permutation.

Similarly a near-perfect matching gives rise to a near-permutation digraph (NPD), i.e.,
a digraph obtained from a permutation digraph by removing one edge. Thus an NPD I’
consists of any number of directed cycles and a single directed path PATH(T").

The edges (i, j) will be coloured: Red for C(3, j) € [0, c3'2]; Blue for
C(i,5) € (222, 2¢,™22]; Green for C(i,7) € (2¢2'22, 3¢3™22]; and Black otherwise.

We will use a three phase method as outlined below:

Phase 1. Solve the assignment problem to obtain an optimal assignment 7 and perfect
matching M, in Kxy; whp, only Red edges are used.

Phase 2. Whp, at cost O(%) we increase the minimum cycle length in the permutation

digraph to at least ng = [ -‘ . We use Red and Blue edges.

_n__
(Inn)5/3

Phase 3. Whp, at cost O((ln:)z) we convert the Phase 2 permutation digraph to a tour.
We use Green edges.

3.1 Phasel

That only Red edges are used in an optimal assignment is immediate from Theorem 2. Also,
whp, the optimal assignment 7’s associated permutation digraph II; is of size |II;| < 2Inn.
This holds because 7 is a random permutation; we will elaborate on this in Phase 2.



3.2 Phase 2

In this phase, to increase the minimum cycle length in the PD, we will deal with each small
cycle in turn. Let us describe the essence of how one small cycle of a PD is repaired, setting
aside the combinatorial and probabilistic issues. One edge (a, b) of the cycle is chosen. From
vertex a, an alternating path is grown, alternating forward non-PD edges (starting with
an edge out of a) with PD edges traversed backwards. From b a similar path is grown,
alternating non-PD edges traversed backwards (starting with an edge into b) with PD edges
traversed forwards. The a-path, followed by the edge joining its terminal to that of the
b-path, followed by the reversed b-path, followed by the edge (b, a), defines an alternating
cycle. The “sum” of this cycle and the original PD is a new PD. If the two paths, and the
edge bridging their endpoints, are cheap, the new PD is not much more expensive than the
old one. How does the new structure compare with the old one?

Consider the sum of the original PD and the path on a, as the path grows. When the
path enters a vertex on a PD cycle and exits from the vertex’s predecessor, the sum (an
NPD) includes a directed path starting at a and going the long way around through the
cycle. When the next cycle is struck, it is added to this string. If a cycle is hit a second
time ( “the string crosses itself” ), the loop formed splits off as a cycle, and the path continues
on. Similarly from b. As long as no cycles split off are small, and a and b hit no common
cycles, and either a or b hits at least one large cycle, the new cycle containing a and b, and
any other new cycles formed, will be large. We will try to arrange for this to be the case,
otherwise declaring the attempt a failure.

If we fail for one edge (a,b) in a cycle, we try for one more (unless the cycle size is 10 or
less). Since we will never make any new small cycles, the “trial” edges can all be fixed in
advance, randomly. If we fail for a cycle, then the entire algorithm fails. If we succeed, we
proceed to the next small cycle, until all small cycles are repaired.

Of course the “new” PD of one case becomes the “original” PD of the next one, and
the most difficult part of the analysis is avoiding conditioning that might be introduced by
this evolving cycle structure. (We will rely on the fact that a PD is induced by a bipartite
matching when the two sets of vertices are put into correspondence by a labelling, and until
that labelling is established, the PD and the matching are in a sense independent.)

The first detail is the construction of the cheap alternating paths out of vertices a and b.
Paths alternating with respect to a PD as described above are also alternating with respect
to the corresponding bipartite matching. We begin by finding a cheap “alternating tree”
(actually a directed acyclic graph, or DAG, but no matter), rooted at a, containing many
cheap alternating paths. After doing the same for b, we (hopefully) find some cheap edge
between an a-leaf and a b-leaf, and we use the paths selected by these leaves.

To define the trees, recall the definitions (2) and (3) of Ni(S) and Ni(T). For the
remainder of this section let K be a suitably large constant. Let Ex = {(z,y) : y €
Nk(z) or z € Nk(y)}.

Inn
2lnlnn

Lemma 8 Whp over random matrices C, every set of s < sg =
most s edges from Ef.

vertices, spans at

Proof. Since K is large, we know that whp every edge in Ex has length at most 2K an



So the probability there exists a set S containing |S| + 1 edges is at most

0 500 () 0 Sz

O
Lemma 9 Whp over random matrices C, for all SC X, T CY, with |S|,|T| < n3/*
[Nk ()| = (K —2)|5]| and Nk (T)| = (K - 2)|T]. 9)
Proof. Just as in deriving (6),
Pr(3S or T : —(9))
n3/4 n n (K-2)s\ \ *
<23 () (") <( @ ))
= o(1).
O

As before, we use this expansion to create many short alternating paths. Let a bijection
(matching) p; between X and Y be given, and let one matching edge (a;, b;) be specified.
Define branching factors r; = [KInn]| for a first generation ¢ = 1, and r, = K for all
subsequent generations ¢t > 2. For each i we construct a “tree” (actually a DAG) which we
will use to modify bijection p = p;. Its depth-t nodes consist of the set Si(t) (resp. Ti(t)). The
depth-0 node set is the singleton consisting of the given vertex itself,

SO = {g;} and TV = {b;}.

In
For 1 <t < 50— let

and for t > 211:1?17; let

S = p (N (SN (U S Ul e T

<3 i<
T = p(Ne (TN (U TP U p(82))
<1 i<

It follows from Lemmas 8 and 9 that whp |Si(t)| > (K—3)|Si(t_1)| and |Ti(t)| > (K—3)|Ti(t_1)|
as long as both Si(t_l) and Ti(t_l) are of size at most n%*%. By throwing away random vertices
if necessary, we can assume that |Sz-(t)| = (K — 3)|Si(t_1)| and |Ti(t)| = (K — 3)|Ti(t_1)|. Thus

if 7= [1+logg_3(n%*/(KInn))], then whp

Vi: nt < |87 = |17 < Kn¥4, (10)



Eachz € Si(t) defines a walk from a; to z, of length 2¢, which is alternating w.r.t. the matching
M,,; prune it to define a path P[i,z]. Similarly, each y € Ti(t) defines a path Q[i,y] from y to
b;, of length 2¢, which is alternating w.r.t. M,.

We say that a cycle C of II; is small if |C| < ng. (Recall that ny = [W-‘ .) Let

the small cycles of II; be Cy,Cs,.... At the start of Phase 2, from each cycle C of length
less than 10 we choose an edge (a,b) of C, a € X, b € Y, and for each small cycle of
length 10 or more, we choose a second one disjoint from the first. Let the chosen edges be
(a;,0;),5 =1,2,...,A.

We now describe how we try to remove a C; without creating any new small cycles.
Suppose we have removed C, (5, ... ,C;_1 and the original permutation 7 has become p =
p;i. Assume that we have not already serendipitously removed C; as well. Let (a;,b;) be one
of the chosen edges of C}.

Each alternating path P[i,z] starts with a “forward” edge which is one of the K'Inn
shortest edges leaving a; (the first branching factor was vy = K lnn), 7 — 1 other forward
edges each of which is one of the K shortest edges leaving a vertex, and another 7 “backward”,
matching edges (edges in M,); a symmetric condition holds for Q;.

It follows from the proof of Lemma 7 that whp each of these paths is such that the total
length of its forward edges minus the total length of its backward edges is bounded by c41“7”.

We now see that if we find & € Si(T) and 7; € Ti(T) such that (&;,7;) is Blue then it —
together with the edge (a;,b;) and the paths P[i,&;] and Q[i, ;] — defines an alternating
cycle whose action on the current perfect matching increases its cost by at most (cs+2cp) ™22
We now show that we can whp find at least one such alternating cycle whose action does
not create any new small cycles. Furthermore, if such a path contains an edge of Cj, j' > j,
then this alternating cycle will also destroy the cycle Cj.

Let ¢ be a random permutation of [n] associating the vertices of X to those of Y, and let
matrix C be defined by C(i, j) = C(i, #(j)). If ¥ is the (w.p. 1, unique) minimum solution to
the assignment problem with matrix C then 7 = @Y is the minimum solution to the original
problem. We exploit the randomness of ¢ which produces the random permutation 7 from
¥. Instead of taking 7 as given, we assume that 1 is given and 7 is to be obtained through
a random permutation ¢. We condition on the cycle structure of 7. We assume that there
are k; cycles of length ¢ and that (i) )2, ik; < 2ny and that (ii) 0 = Y., ki < 2Inn.
These conditions hold whp. How do we sample from this conditional distribution? Let
IT denote the set of permutations of X with the given cycle structure. For j € [o] let
C;={t;+1,...,tj11} where t; =0, t,41 = n, and the multi-sets {¢t;11 —¢; : j € [0]} and
{ki x i : i € [n]} coincide. We first define v: if z,y € C; and y = 2+ 1 mod ¢;4 — t;
then y(z) = y. Then given a bijection f : X — [n] we define a permutation 7; on X
by 7 = f~'vf. Each permutation n € II appears precisely [[}_, k;!i* times as 7;. Thus
choosing a random mapping f, chooses a random 7y from II. (This is equivalent to randomly
choosing ¢ = ¢~! f~yf.) The most natural way to look at this is to think of having oriented
cycles on the plane whose vertices are at points P, P, ... , P, and then randomly labelling
these points with 1 to n. Then if P’ follows P on one of the cycles and P, P’ are labelled
z,z' by f then 74(z) = .

As we proceed through Phase 2 we have to expose parts of f (equivalently ¢). z is clean
if f(z) is unexposed (the label z has not yet been used) and dirty otherwise. Thus imagine
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that we have cycles, mostly unlabelled, but with a few vertices labelled. Let us use ~ to
denote a partially labelled graph.

We can now describe how to eliminate the small cycles. We proceed in order ¢ € [A]. At
stage ¢ we should have eliminated Cy,Cy,...,C;_, for some j and have a current perfect
matching M;, defining p;. (Consider M; to be fully revealed, but the labels on its vertices
not revealed except for those matching edges in short cycles; thus all that is revealed of p;
is its cycle structure and labels on these few edges.)

We construct the trees Si(T) and Ti(T), and then seek a blue edge between the leaves of Si(T)

and those of Ti(T). The unconditional probability there are fewer than %nl/ 2Inn such edges
is 1 — e~?'/?Inn) anq this bound holds conditionally on there being at least this number
for each i’ < i, by the FKG inequality. Choose one &; € Si(T),m € Ti(T) such that (&, )
is Blue. (We will say more later about how to make this choice.) Consider the alternating
cycle C = P[i, &], (&,m:), reversal Q[i, 7], (b;,a;) (here we may remove some edges to make
a cycle that contains (b;, a;)). We will define what it means for a cycle to be “acceptable”,
and show that C is likely to be.

For any z € Si(t), consider P[i,z] = (zo = ai, Y0, T1,¥1, - - - , & = ) where y;_1 = pi(z;)
for j > 1. P[i,z] defines a sequence M@ MM ... M® of near-perfect matchings where
M© = M;\ {(a;,b:)} and M® = (MED\ {(z5,95-1)}) U{(2s,7s)}. Let 0O T . TO®
be the associated NPD’s. We say that ['®) is acceptable if (i) |PATH(I'®))| > ng and
(ii) the small cycles of I'®) are a subset of C;,1,...,Cy. We say that z is acceptable if
r® r® . T® are all acceptable.

Going back to P[i,z = x| let us estimate the probability that z; is acceptable, given
that it is clean and x;_; is acceptable. Assume that we have chosen f(z;—;) and that we
have a partially labelled NPD fﬁt‘”. We randomly choose f(z:) from the unlabelled points
and label it with z,. We then replace the arc (f(z),:) of f‘gt_l) by (f(z¢-1),:). = will be

acceptable if f(x.) is not within ng of an endpoint of PATH(I:‘Et_l)). Since at most O((Inn)?)
values of f are exposed, this happens with probability at least 1 — nfzz’n) =1-0((Inn)~5/3)
conditional on previous exposures. A similar analysis holds for the paths Q[z, y].

If all vertices on C are clean then the probability that C is not acceptable is O((Inn)~%/3).
So the probability that for small cycles of length 10 or more, both trials fail, is O((In n)~4/3).
Thus if we can always find clean paths then the probability that Phase 2 fails is o(1) +
O((Inlnn)(Inn)~2/% + (Inn)(Inn)~*/3) = o(1), using Inlnn as a high probability bound on
the number of cycles of length at most 10 in a random permutation. To ensure that we only
have to deal with clean cycles, we choose &;,7; so that P[i, ;] and Q[é,7;] are clean. Can this
be done?

Let Agt) denote the clean vertices of Si(t), t=1,2,...,7. It follows from Lemma 8 that
|A§1)| > KInn — 47 and in general, for £ > 1, from Lemma 9 that |A§t+1)| > (K — 3)|A§t)| —
47lnn. Thus, |A| > n3/5. Making a similar argument for clean vertices of T.", there is

almost sure to be a Blue edge between a clean vertex in Si(T) and one in Ti(T), and they define
a clean cycle.
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3.3 Phase 3

For Phase 3 we use the Green edges. Now we can easily show that whp a random permutation
has a cycle C whose length is in the range [n; = n(logn)~/¢,n(logn)~/7]. Prior to Phase 2,
we fix such a C in our unlabelled set of cycles and expose f~(C). This defines a random set
of matching edges of M, whose vertices will be taken out of the Phase 2 process. This will not
affect the previous analysis (more details in final version) and we assert that whp at the end
of Phase 2, all cycles are of length at least ng and there is at least one cycle of length at least
ny. Given two cycles C;,Cs with one of length at least ng and the other of length at least
n1, the probability that we cannot patch them together (delete edges (a;, b;) from C;,i = 1,2
and replace them by Green edges (a1, bs), (as,b1)) is (1 — cga:izn)z)"onl < e0n)Y® Doing

this < 21nn times increases the cost by at most 4 02% and so Phase 3 succeeds whp.

This completes the proof of the high probability upper bound on ATSP — AP. We now
consider the lower bound.

3.4 Proof of the lower bound

The Assignment Problem can be expressed as a linear program:

Minimise ZC’(i,j)zi,j subject to Z Zig = sz,j =1,Vk,0< 2, <1,Vi,j. (LP)

1,3 i J
This has the dual linear program:

Maximise Y "u; + » _v; subject to u; +v; < C(i, §), Vi, j. (DLP)

2 J

Remark 10 Condition on an optimal basis for (LP). We may w.l.o.g. take u; = 0 in (DLP),
whereupon w.p. 1 the other dual variables are uniquely determined. Furthermore, the re-
duced costs of the non-basic variables C(i,j) = C(i,j) — u; — v; are independently and
uniformly distributed, with C (i, ) €ynir [max {0, —u; — v;},1 — u; — vj].

Proof. The 2n — 1 dual variables are unique w.p. 1 because they satisfy 2n — 1 linear equa-
tions. The only conditions on the non-basic edge costs are that C(i, j) € [0, 1] (equivalently

C(i,j) € [—uw; — v;,1 —u; — v;]) and C(4,7) > 0; intersecting these intervals yields the last
claim. O

Lemma 11 Whp

Inn
max {Ju, o]} < c5- (11)
1,3 n

Proof. Optimal dual values u;,v; can be characterised as shortest distances, as follows [1].
Consider a directed bipartite digraph I" on X UY with “forward” edges (z;,y;), 4,7 € [n],
J # m(i), of length C(3,7); and “backward” edges (y;,:), 4,7 € [n], 7 = 7(i), of length
—C(i,7(i)). If uy =0, then —u; is the shortest distance d(z;, z;) from z; to z; in I', and v;
is the shortest distance from z; to y;.
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Lemma 7 implies that —u;,v; < 061“7” for i € [n]. Furthermore, using the fact that
a cheapest path is also a cheapest walk (derived from the optimal assignment, I" has no
negative-cost cycles), —u; = d(z1,7;) < d(z1, @) + d(zs,z;) < —u; + g2 implies u; —
u; < 061“7". Immediately, |u;| < 061“7" and also, with & = > u;/n, |u| < 061“7". Likewise,
v —v; < cﬁlnT", from which |v; — 7] < 061“7". But we know that whp the optimal assighment
cost satisfies 1.51 < - u; + > . v; < 1.94 [10, 5, 13, 3], so ¥ € (1.51/n — @,1.94/n — 1),
giving 9] < 622 + O(1/n) and finally |v;| < ;22 O

Having solved LP we will have n basic variables 2, ;, (4,j) € I;, with value 1 and n — 1
basic variables z; , (,7) € I, with value 0. The edges (z;,y;), (¢,7) € I =, U I, form a
tree T* in Kxy. We show that with probability at least cg > 0 there exists (i,4) € I; (a
loop) such that (z;,y;) is a pendant edge in T*; w.l.o.g. suppose z; is its leaf. In this case
the optimal TSP tour, viewed as a bipartite matching, cannot use the edge (z;, y;) (a loop),
and must use some other edge (z;, yi); since z; is a leaf in T*, 2, ;» is not a basic LP variable.
The expected value of the reduced cost of z; » is at least “> and so E(ATSP — AP) > @2
and the lower bound follows.

To prove the existence of (i,7) we show that whp the optimal assignment % for C of
Section 3 has at least c;1n leaves L. After applying the random permutation ¢, the number of
leaves giving rise to loops is, at least, a random variable whose distribution is asymptotically
Poisson with density c;;; thus

Pr(3 at least one leaf-loop) > (1 — o(1))(1 — e™“1*).

By taking a spanning tree T' of Kxy which contains a perfect matching M and shrinking
the edges of M we obtain a tree isomorphic to a spanning tree T" of K,,. Each T arises from
exactly 2"~ T's because we have two choices as to how to configure each non-M edge. (An
(¢,7) edge in T can in T be expanded to (z;,y;) or to (z;,¥;).) Let b(T) = b(T") denote the
number of branching nodes (degree > 3) of T and T'. A tree T" is e-bushy if b(T") < en.
Bohman and Frieze used this concept in [2] and showed that the number of e-bushy trees
is at most n!e?™ where 8(¢) — 0 as € — 0. It follows that the number of e-bushy trees of
Kxy which have a perfect matching is at most e?(*2"1nl. Observe that the number of
leaves in T is at least b(T"). We complete the proof by showing that, for a sufficiently small
constant e,

Pr(T* is e-bushy) = o(1). (12)

For any tree T' with a perfect matching, we can put u; = 0 and then solve the equations
u; +v; = C(4,7) for (z;,y;) € T to obtain the associated dual variables. T' is optimal if
C(i,j) = C(4,j) —wi —v; > 0 for all (z;,y;) ¢ T- Let Zp = >, u; + ), v;. Let Now whp
the optimal tree T™ satisfies Zr+ € [1.51,1.94], because Zr+ is the optimal assignment cost,
and it is known both that expectation is in the stated range [13, 3| and that the actual value

is concentrated about the expectation [14]. Then if £ denotes the event {(11) and Zy €
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[1.51,1.94]}, for any tree T, over random matrices C(i, j),
Pr(Zr € [1.51,1.94] and (11) and C(3,5) > 0Y(3,j) ¢ I)

< Pr(C(i,§) > 0Y(i,5) ¢ T | £) x Pr(Zy € [1.51,1.94])

1.94™
<—E( [ a=(@+v)h)|e)
1.94™
< E(exp{— Z (wi +v;)} | €) ol
(wi,95)€T .
. 1.94™
< E(e 7 exp{ Z (wi +v;)} [ €)) ol
(zi,9;)€T .
< o-15lnp 26 1-94n'

n!

Explanation 1'2# bounds the probability that the sum of the lengths of the edges in the
perfect matching of T' is at most 1.94. The product term is the probability that each non-
basic reduced cost is non-negative.

Thus

Pr(3 an e-bushy tree T : Z7 € [1.51,1.94] and (11) and C(3,7) > 0V(i,j) ¢ I)
< pl2nef@n e—l.51nn205%

= o(1)

n!

for € sufficiently small. This implies (12).

4 An enumerative algorithm

We can now prove Theorem 4, restated here for convenience.
Theorem 4 Whp, a random instance of the ATSP can be solved exactly in time eOvm)

Proof. Let I; denote the interval [2_’“01%,2_(’“1)@%] for kK > 1. It follows from
Lemmas 11 and 10 that whp (i) there are < ¢;2~*~UnInn non-basic variables z; ; whose
reduced cost is in Iy, 1 < k < ko = 1 log, n and (ii) there are < 2¢;+/n In n non-basic variables
z; ; whose reduced cost is < ¢; (:’3722.

We can search for an optimal solution to ATSP by choosing a set of non-basic variables,
setting them to 1 and then re-solving the assignment problem. If we try all sets and choose
the best tour we find, then we will clearly solve the problem exactly. However, it follows

from Theorem 1 that we need only consider sets which contain < 2* variables with reduced
(Inn)?
n

costs in I;, and none with reduced cost > ¢; . Thus whp we need only check at most

ko 2k —(k—
o2e1y/nlnn H Z (012 *Ynn ”) _ O
t

k=1 t=1
sets. O
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5 Second best assignment

We recall and prove Theorem 3, on the gap As between the costs of the cheapest and
second-cheapest assignments.

Theorem 3 Over random cost matrices C, E(As3) < c32.

Proof. A, is equal to the minimum non-basic reduced cost. From Lemma 11 and , u; +
> ;v > 1.51 whp, it follows that whp there are at least n; = 07% pairs ¢, j such that
u; + v; > 0. Each such pair corresponds to a non-basic variable C;;, and it follows from
Remark 10 that the minimum reduced cost among this set is at most ﬁ in expectation,
proving the theorem. O
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