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Abstract

We study two versions of the single sink buy-at-bulk network design problem. We are
given a network and a single sink, and several sources which demand a certain amount
of flow to be routed to the sink. We are also given a finite set of cable types which
have different cost characteristics and obey the principle of economies of scale. We wish
to construct a minimum cost network to support the demands, using our given cable
types. We study a natural integer program formulation of the problem, and show that
its integrality gap is O(k), where k is the number of cables. As a consequence, we also
provide an O(k) approximation algorithm.
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1 Introduction

1.1 Motivation

We study two network design problems which often arise in practice. Consider a network
consisting of a single server and several clients. Each client wishes to route a certain amount
of flow to the server. The cost per unit flow along an edge is proportional to the edge length.
However, we can reduce the cost per unit flow of routing by paying a certain fixed cost (again
proportional to the length of the edge). We call the problem of finding a minimum cost
network supporting the required flow the deep-discount problem.

Alternatively, at each edge we might be able to pay for and install a certain capacity, and
then route flow (up to the installed capacity) for free. The problem of finding a minimum
cost network in this scenario is called the buy-at-bulk network design problem [SCR+].

1.2 Our results

The two problems are in fact equivalent up to a small loss in the value of the solution. In
this paper, we focus on the deep-discount problem. We study the structure of the optimum
solution, and show that an optimal solution exists which is a tree. We provide a natural IP
formulation of the problem, and show that it has integrality gap of the order of the number
of cables. We also provide a polynomial time approximation algorithm by rounding the LP

relaxation.

1.3 Previous work

Mansour and Peleg [MP] gave an O(log n) approximation for the single cable type case of the
single sink buy-at-bulk problem for a graph on n nodes. They achieved this result by using
a low-weight, low-stretch spanner construction [ADD+].

Designing networks using facilities that provide economies of scale has also attracted in-
terest in recent years. Salman et al [SCR+] gave an O(log D) approximation algorithm for
the single sink buy-at-bulk problem in Euclidean metric spaces, where D is the total de-
mand. Awerbuch and Azar [AA] gave a randomized O(log?n) approximation algorithm for
the buy-at-bulk problem with many cable types and many sources and sinks, where n is the
number of nodes in the input graph. This improves to O(logn loglogn) using the improved
tree metric construction of Bartal [Bar]. Salman et al also gave a constant approximation
in [SCR+] for the single cable type case using a LAST construction [KRY] in place of the
spanner construction used in [MP]. The approximation ratio was later improved by Hassin,
Ravi and Salman [HRS].

Andrews and Zhang [AZ] studied a special case of the single-sink buy-at-bulk problem



which they call the access network design problem and gave an O(k?) approximation, where
k is the number of cable types. As in the deep-discount problem, they use a cost structure
where each cable type has a buying and a routing cost, but they assume that if a cable type
is used, the routing cost is at least a constant times the buying cost.

An improved approximation to the problem we study was obtained simultaneously but
independently by Guha, Meyerson and Munagala [GMM1], who designed a constant factor
approximation algorithm. Their algorithm is combinatorial and is based on their prior work
on the access network design problem [GMM2], as opposed to our focus on the LP relaxation
and its integrality gap.

2 Problem definitions and preliminaries

2.1 The deep-discount problem

Let G = (V,E) be a graph with edge-lengths [ : E — IRT. We are given source vertices
{v1,...,vm} =8 CV and a sink vertex ¢t € V. The source vertices require {dem,...,demy,}
units of flow to be routed to the sink respectively. We also have a set of k& cable types
{k0,K1,-..,kk—1} available for us to purchase and install. Each cable x; has an associated
fixed cost p; and a variable cost r;. If we install cable k; at edge e and route f. flow through
it, the contribution to our cost is le(p; + fer;). We may therefore view the installation of cable
k; at an edge as paying a fixed cost p;l, in order to obtain a discounted rate r; of routing
along this edge. The problem is to route the flow at minimum cost.

Let us order the rates as 9 > 1 > ... > rp_1. The rate rp = 1 and the price pg = 0
correspond to not using any discount. (We may scale our cost functions so that this is true
in general.) Without loss of generality, po < p1 < ... < pg—_1.

2.2 The buy-at-bulk problem with k-cable types

As before, we have sources with flow routing demands and a sink. We have available to us
k different cable types, each having capacity u; and cost ¢;. We wish to buy cables such
that we have enough capacity to support the simultaneous flow requirements. There is no
flow cost; our only cost incurred is the purchase price of cables. The problem of finding a
minimum cost feasible network is the buy-at-bulk problem with k-cable types (BB for short).
It is NP-hard even when £ =1 [SCR+].

2.3 Approximate equivalence of BB and DD

Suppose we are given a BB instance BB = (G, ¢, u) on a graph G with k cable types having
costs and capacities (1, 1), (c1,%1),-- -, (Ck—1,Up_1). We transform it into an instance of DD by



w=t), and call this DD(BB).

setting edge costs (fixed and per-unit) (0, 1), (¢, Z—ll), N (T
Conversely, given a DD instance DD = (G,p,r), we transform it into a BB instance

BB(DD) with cable types having costs and capacities (1, 1), (p1, %), ey (DE—1, f”::i )-

It is easy to see that BB(DD(BB)) = BB and DD(BB(DD)) = DD, that is, the two
transformations are inverses of each other. For a problem instance X, we abuse notation to
let X also denote the cost of a feasible solution to it. Let X* denote the cost of an optimal
(integer) solution to X. We then have the following lemmas.

Lemma 2.1 BB < DD(BB)*.
Lemma 2.2 DD < 2BB(DD)*.

Together, the above two Lemmas imply that BB(DD)* < BB(DD) < DD* < DD <
2BB(DD)*, so that a p approximation algorithm for BB gives a 2p approximation algorithm
for DD. Similarly, a p approximation to DD is a 2p approximation to BB.

2.4 Structure of an optimum solution to the deep-discount problem

Suppose in an optimal solution, an edge e uses discount-i (Clearly we will use only one
discount type on an edge.). Define a new length function I, := r;l.. Once the fixed cost for
the discount is paid, the routing cost is minimized if we route along a shortest path according
to the length function I’. Therefore, there is an optimum which routes along shortest paths
according to such a length function I’. As a result, we can assume that the support graph of
the flow is a tree (in particular, a shortest path tree under [’).

The cost of routing f units of low on an edge e using discount-i is lo(p; + r;f). So the
discount type corresponding to minimum cost depends only on f and is given by type(f) :=
minarg;{p; + r; f|0 < i < k}. As a consequence, we can prove the following.

Lemma 2.3 The function type(f) defined above is non-decreasing in f.

Theorem 2.4 There exists an optimum solution to the deep-discount problem which satisfies

the following properties.
1. The support graph of the solution is a tree.

2. The discount types are non-decreasing along the path from a source to the root.

Similar results were proved independently (but differently) by [AZ] and [GMM1].



3 Linear program formulation and rounding

3.1 Overview of the algorithm

First we formulate the deep-discount problem as an integer program. We then take the linear
relaxation of the IP, and solve it to optimality. We now use the LP solution to construct our
solution. We have already seen that the solution is a layered tree. We construct a tree in a
top-down manner, starting from the sink. We iteratively augment the tree by adding cables
of the next available lower discount type. At each stage we use an argument based on the
values of the decision variables in our optimal LP solution to charge the cost of building our
tree to the LP cost. We next bound the routing costs by an argument which essentially relies
on the fact that the tree is layered and that distances obey the triangle inequality.

3.2 Integer program formulation

We begin by replacing each undirected edge by a pair of anti-parallel directed arcs, each
having the same length as the original (undirected) edge. We introduce a variable z¢ for each
e € F and for each 0 < ¢ < k, such that, zé = 1 if we are using discount-i on edge e and
0 otherwise. The variable fg;i is the flow of commodity j on edge e using discount-i. For a
vertex set S (or a singleton vertex v), we define 61 (S) to be the set of arcs leaving S. That
is, 07(S) = {(u,v) € E:u € S,v ¢ S}. Analogously, 6~ (S) = {(u,v) e E:u ¢ S,v € S}.

k—1 k-1 .
min YN pizile 4+ Y »» demiflrile

el i=0 v;ES e€E i=0
subject to:
E-1
@ > D fl >t Yo; € S
e€ét(v;) =0
E—1 k-1
(’L’L) Z ng;i = Z fg;i VUGV\{Uj’t}a]-SjSm
e€d—(v) i=0 e€ét(v) i=0
E—1 k-1
@) Y DS < X0 Dt 0<g<kVYoeV\{y,t}1<j<m
e€d—(v) i=¢ ecdt(v) i=q
() fL; <z Vee E,0<i<k
k=1
(v) z: >1 Vee E
i=0
(vi) =, f non-negative integers

The first term in the objective function is the cost of purchasing the various discount types
at each edge; we call this the building cost. The second term is the total cost (over all vertices



v;) of sending dem; amount of flow from vertex v; to the sink; we call this the routing cost
of the solution. These two components of the cost of an optimal solution are referred to as
OPTyy1q and OPT,pye respectively.

The first set of constraints ensures that every source has an outflow of one unit which is
routed to the sink. The second is the standard flow conservation constraints, treating each
commodity separately. The third set of constraints enforces the path monotonicity discussed
in Theorem 2.4(2), and is therefore valid for the formulation. The fourth simply builds
enough capacity, and the fifth ensures that we install at least one cable type on each arc.
Note that this is valid and does not add to our cost since we have the default cable available
for installation at zero fixed cost.

Relaxing the integrality constraints (vi) to allow the variables to take real non-negative
values, we obtain the LP relaxation. This LP has a polynomial number of variables and
constraints, and can be therefore solved in polynomial time. The LP relaxation gives us a

lower bound which we use in our approximation algorithm.

4 The rounding algorithm

4.1 Pruning the set of available cables.

We begin by pruning our set of available cables, and we show that this does not increase the
cost by more than a constant factor. This pruning is useful in the analysis.

Let OPT be the optimum value when the rates are rg,r1,...,7r_1 and the corresponding
prices are pg,p1,-...,pe—1. Let € € (0,1) be a real number. Assume that €1 > rp_; > €.
Now let us create a new instance as follows. Let the new rates be 1,¢,..., e~ 1. For each i,
let the price corresponding to €’ be pj, where r; is the largest rate not bigger than €', Let
OPT’ be the optimum value of this new problem. We then have the following.

Lemma 4.1 OPT},,. < 1OPT,ouse.

oute

Since OPT}, ;4 < OPTyyiig, we have as a consequence that OPT' < %OPT. Hereafter
we assume that the rates ro,r1,...,r5_1 decrease by a factor at least € for some 0 < e < 1,
thereby incurring a factor of 1/€ in the value of the solution we obtain. We may therefore
prune the cable set before we set up and solve the LP.

4.2 Building the solution: Overview

Recall that G is our input graph, and & is the number of cable types. We also have a set of
parameters {a, (3,7, 9, €}, the effect of which will be studied in the analysis in Section 5.
We build our tree in a top-down manner. We begin by defining T}, to be the singleton

vertex {t}, the sink. We then successively augment this tree by adding cables of discount



type ¢ to obtain Tj, for ¢ going down & — 1,k — 2,...,1,0. Our final tree T is the solution
we output.

Our basic strategy for constructing the tree T; from T;,; is to first identify a subset of
demand sources that are not yet included in T;1, by using information from their contribu-
tions to the routing cost portion of the LP relaxation. We build a ball B(v,R) = {u € V :
d(u,v) < R} of radius R (computed using the LP solution) centered at vertex v for each such
vertex, where d(u,v) is the length of a shortest u — v path. We order these candidate nodes
in non-increasing order of the radius of their balls.

We then choose a maximal set of non-overlapping balls going forward in this order. This
intuitively ensures that any ball that was not chosen can be charged for its routing via the
smaller radius ball that overlapped with it that is included in the current level of the tree.
We contract each ball and the root component into singleton vertices.

After choosing such a subset of as yet unconnected nodes, we build an approximately
minimum building cost Steiner tree with these nodes as terminals and the (contracted) tree
T;41 as the root. The balls used to identify this subset now also serve to relate the building
cost of the Steiner tree to the fractional optimum.

Finally, in a third step, we convert the approximate Steiner tree rooted at the contracted
Ti41 to a LAST (light approximate shortest-path tree). This ensures that all nodes in the
tree are within a constant factor of their distance from the root Tj;; in this LAST without
increasing the total length (and hence the building cost) of the tree by more than a constant
factor. We use a result by Khuller, Raghavachari and Young [KRY] which converts a minimum
spanning tree in a graph to a tree costing (at most) « times more, but where the path to any
node is no more than 8 times its shortest path in the original graph, for some constants o
and 3. This step is essential to guarantee that the routing cost via this level of the tree does
not involve long paths and thus can be charged to within a constant factor of the appropriate
LP routing cost bound.

We install type—i cables on the edges in this LAST. When we un-contract the root com-
ponent, we break up the LAST into a forest where each subtree is rooted at some node in
the un-contracted T; ;. Now T; is simply defined to be the union of T;,; and our LAST.

In the last stage, we connect each source v; not in 711 to T7 by a shortest path using
discount—0, thereby extending 77 to Tj.

5 Analysis

5.1 Building cost

We analyze the total price paid for installing discount-i cables when we augment the tree
Tt to T;.



Algorithm Deep-discount(G, K, o, 3,7, 0, €)
G: input graph
K: set of cables
a, 3,7, 4, €: parameters
Prune the set of available cables as described in 4.1.
Solve the LP relaxation of the IP described in 3.2 to get (z, f)
Ty, = {t}.
fori=k—-1,k—-2,...,1
Define S; := 0
Vuj ¢ Tiv1:
Ry = GEtG Ghere i = ¥, f il
If Ti1 N B(vj, YRE) # 0,
proxy;(v;):= any (arbitrary) vertex in T; 41 N B(vj, vR})
S; == S; U{v;}.
Order the remaining vertices, say L, according to nondecreasing radii.
While L # (:
Let B(vj, fyR;) be the smallest radius ball in L.
Vu € L N B(vj,vR;):
proxy;(u) = vj

Ll

L= L\ {u}
Li= I\ {u;}
S; = 5;U {Uj}

Comment: S; is the set of sources chosen to be connected at this level.
Contract T;41 to a singleton node ;4.
Build a Steiner tree ST; with S; U {t;11} as terminals.
Use cable type ¢ for these edges.
Convert ST; into an (o, 8)-LAST, denoted LAST;.
Define T; := T;+1 U LAST;.
5. For every source vertex v; ¢ Ti:
Compute a shortest path P from v; to T7.
Augment T; by including the edges in P.
Use cable type 0 on the edges in P.
Ty :=T1.
6. Route along shortest paths in Ty. This is the solution we output.

Figure 1: The algorithm




Note that in building LAST; from the Steiner tree ST;, we incur a factor of at most o in the
building cost. We argue that the cost of building the tree at the current stage is O(OPTyyi1q)-
Thus, putting all the & stages together, we get that the total building cost is O(k - O PTyyi14)-

For any source vertex v, the following Lemma proves that there is sufficient fractional z-
value crossing a ball around v to allow us to pay for an edge crossing the ball. Since the LP
optimum pays for this z, we can charge the cost of our edge to this fractional z and hence

obtain our approximation guarantee.

Lemma 5.1 Let S C V be a set of vertices such that t ¢ S and B(vj, 5R§) C S. Then,

—t

k—1
g=i ecs+(S)
We build a LAST which used discount-i. So the building cost of the LAST is p; times the
length of the LAST. The following Lemma gives a bound on this cost.

Lemma 5.2 The cost of the LAST built is O(OPTyyi14)-

Proof. 1f we scale up the z-values in the optimum by a factor /(6 — 1), Lemma 5.1 indicates
that we have sufficient z-value of types ¢ or higher to build a Steiner tree connecting the balls
B(vj, (SR;) to T;41. If we use the primal dual method, we incur an additional factor of 2 in
the cost of the Steiner tree as against the LP solution z-values. Thus, its cost will be at most

§ = 8
2mpiZZzZ < Q(S_—IOPTbuild-

After un-contracting the balls, we extended the forest to centers v; by direct edges be-
tween v; and the vertices in B(v;, 6R}) that were included in the forest. We can account
for this extension by using the following observation. For a center v;, the cost of exten-
sion is at most % times the cost of the forest inside B(v;,yR}). Furthermore, during the
selection of the vertices, we ensured that for any two selected vertices v; and v;, the balls
B(v;,yR}) and B(vj,fyRé) are disjoint. Thus the total cost of the extended tree is at most
1+ 7%5 times the cost of the previous forest. Hence the cost of the Steiner tree built is at
most 2 % %OPTbuild. Subsequently, the cost of the LAST built from this tree is at most
2025 527 OPThyiq. [

The total building cost is the sum of building costs at each of the & stages.

Lemma 5.3 The total building cost is O(k - OPTyyi14)-



proxy,(v) -
proxy, (V). ",
proxy, (V). CH
v=u

Figure 2: Analysis for routing cost.

5.2 Routing cost

After constructing the tree, for each source vertex v;, we route the corresponding commodity
along the unique (v;,t) path on the tree. Let OPT; =3, Cj denote the routing cost per unit

flow for v; in the optimum.

Lemma 5.4 For any source vertex vj, the cost of routing unit amount of its corresponding
commodity is O(k - OPT}).

Proof. Let the (vj;,t) path along Ty be v; = ug,u1,...,ux = t such that the sub-path
(ui, uiy1) uses discount-i for 0 < 4 < k (refer Figure 2). The wu;’s need not be distinct. Let
dr(u;, uiy1) be the distance between u; and u;y; in the tree Ty. Then, for v;, the routing
cost per unit flow is >, rydr(ui, uit1)-

For 1 <4 < k, let proxy;(v;) denote the proxy of v; in stage k — 4. Moreover, for all
j, define proxy, (v;) = t. We have d(v;, proxy, (v;)) < 272%;%02 < 27%1. We also
know that ridr(ui, uiy1) < B - rid(u;, proxy, , (v;)) because when we constructed the LAST
in stage k — 1, d(u;, u;y1) was at most 3 times the shortest path connecting u; to T;41. Also
this shortest path is shorter than d(u;, proxy; ,(v;)), as proxy; ;(v;) was in Tj 4.

By induction on ¢ we prove that, r;dr(u;, ui+1) < M - OPT; for some constant M.

For the base case when ¢ = 0, v; was connected by a shortest path to T;. Hence rodr(ug, u1) <
rod(vj, proxy; (v;)) <o - 2’)/%? < 2yOPT; < M - OPTj} for sufficiently large M.

Now assume ridr(u;, wi+1) < M - OPT; for all | < i. Using triangle inequality and the
induction hypothesis, we get



i - dr(ui, uip1) < B-ri-d(ui, proxy,; (v;))

i—1
< B-r Zd(uq;uq—l—l) +B-r; -d(uo,proxyi+1(vj))
g=0
i1
= B vy dluguga) + B - ri - d(vj, proxy;, (v;)
g=0"9
i-1
< BY €79-M-OPT; +B-2yOPT;
g=0
Be
< ({7 M +267)OPT;
—€
< M-OPFPT;

where M > %% This completes the induction. Summing over all edges in the path

from v; to ¢, we get the statement of the Lemma. n
Summing the routing cost bound over all source vertices v;, we obtain that the total routing
cost i8 O(k - OPTyoyute)-

6 Conclusion

The exact approximation factor of our algorithm depends on the parameters. If we set
(o, B,7,9,€) to be (7, %,3,2, %) respectively, we obtain an approximation factor of 60k for
both components of the cost function. We contrast this with the approximation factor of
around 2000 obtained by Guha, et al. [GMM]1]. We note that we can adapt a technique
used by them to cut down the approximation ratio of our building cost to a constant. The
constant works out to roughly 525 if we use the same values for our parameters. The running
time of our algorithm is dominated by the time to solve an LP with O(mnk) constraints and
variables.

Our main open question is the exact integrality gap of this problem, whether it is a constant,
O(k), or something in between. The question of getting even better approximation ratios for
this problem of course remains open. The problem can be generalized to allow different source-

sink pairs; for this problem the current state of the art is a polylogarithmic approximation
[AA].
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