Faster Kinetic Heaps and Their Use in Broadcast Scheduling

(Extended Abstract)

Haim Kaplan*

Abstract

We describe several implementations of the kinetic heap,
a heap (priority queue) in which the key of each item, in-
stead of being fixed, is a linear function of time. The ki-
netic heap is a simple example of a kinetic data structure
of the kind considered by Basch, Guibas, and Hersh-
berger. Kinetic heaps have many applications in compu-
tational geometry, and previous implementations were
designed to address these applications. We describe an
additional application, to broadcast scheduling. Each
of our kinetic heap implementations improves on previ-
ous implementations by being simpler or asymptotically
faster for some or all applications.

1 Introduction

1.1 Problem Definition A parametric heap is a
heap (priority queue) in which the key (priority) of an
item, instead of being constant, is a linear function of
a single parameter t. Specifically, a parametric heap
supports the following operations:

make-heap(h): Create a new, empty heap h.
insert(i,a,b,h): Insert item i, with key at + b, into heap
h, assuming ¢ is not already in h. Here a and b are real
numbers.

delete(i,h): Delete item i from heap h, assuming i is in
h.

find-min(h,t): Return an item in heap h whose key is
minimum for the given value of ¢.

delete-min(h,t): Find an item in heap h whose key is
minimum for the given value of ¢, delete this item from
h, and return it.

The delete-min operation is a combination of find-
min and delete; some applications require only make-
heap, insert, and delete-min.

If 7 is an item in a parametric heap, we denote the

~ *School of computer science, Tel Aviv University, Tel Aviv
69978.

TInterTrust Technologies, 460 Oakmead Parkway, Sunnyvale,
CA 94086, and Department of Computer Science, Princeton Uni-
versity, Princeton, NJ 08544. Research at Princeton University
partially supported by the NSF, Grant No. CCR-9626862.

iDepartment of Computer Science, Princeton University,
Princeton, NJ 08544. Research at Princeton University partially
supported by the NSF, Grant No. CCR-9626862.

Robert E. Tarjan'

Kostas Tsioutsiouliklis*

key of i by a;t + b;; a; is the key coefficient and b; is the
key constant.

A Fkinetic heap is a parametric heap whose opera-
tions satisfy the following monotonicity condition: suc-
cessive t-values of find-min and delete-min operations
are nondecreasing. For a kinetic heap, we think of the
parameter ¢ as time; we define the current time t. to be
the value of ¢ for the most recent find-min or delete-min
operation, or —oo if no such operation has occured.

We sometimes allow the following additional oper-
ation on a kinetic heap:
decrease-key(i,a,b,h): Replace the key of item 7 in heap
h by at + b, assuming that ¢ is in h and that, for any
time ¢ > t., the new key of 7 is no greater than the old
key.

A decrease-key operation can be performed as a
delete followed by an insert, but, as we shall see, some
kinetic heap implementations allow decrease-key to be
performed faster. If delete or decrease-key or both are
supported, we assume that each item in a heap has
stored with it a pointer to its location in the data
structure, so that this location can be found in constant
time, without a search.

A semi-dynamic (parametric or kinetic) heap is one
in which the insert operation is not supported, but the
make-heap operation is extended to allow creation of an
initial heap containing an arbitrary set of items with
specified keys.

Parametric and kinetic heaps as we have defined
them are min-heaps: a query operation returns a
minimum-key item. Equivalently, we can define a
parametric or kinetic maz-heap by replacing find-min,
delete-min, and decrease-key by the operations find-
maz, delete-maz, and increase-key, respectively, each
having the appropriate definition. We can convert a
min-heap to a max-heap, or vice versa, merely by negat-
ing all keys. The broadcast scheduling application that
we shall consider requires a max-heap.

1.2 Previous work Parametric and kinetic heaps
have a large assortment of applications in computational
geometry [12, 11, 6]. The problem of maintaining a
parametric heap is equivalent to that of maintaining the
lower envelope of a collection of lines in the Euclidean

plane, subject to insertions and deletions of lines. The
projective dual of this problem is that of maintaining
the convex hull of a collection of points in the plane,
subject to insertions and deletions of points. For either
of these problems, one may allow queries other than the
one corresponding to find-min. See [12, 11, 6].

Most of the previous work on parametric and ki-
netic heaps was done in the computational geometry
setting. We restate the previous results in our data
structure setting. To our knowledge, Overmars and van
Leeuwen [12] presented the first efficient implementa-
tion of parametric heaps. Their structure supports a
find-min query on an n-item heap in O(logn) time, a
make-heap in O(1) time, and each of the other oper-
ations in O(log® n) time, worst-case. Hershberger and
Suri [11] and independently Chazelle [8] described an
implementation of semi-dynamic parametric heaps that
is a variant of the Overmars-van Leeuwen structure.
Their structure supports find-min queries in O(logn)
time, worst-case. The time for an n-item make-heap
operation is O(nlogn), and the total time for up to n
deletions is O(nlogn). Chan [6] applied the dynamiza-
tion technique of Bentley and Saxe [4] and other ideas
to the Hershberger-Suri-Chazelle structure to obtain an
implementation of parametric heaps that supports find-
min in O(logn) worst-case time and insert and delete
in O(log't®n) amortized time for an arbitrary positive
€. Very recently, Brodal and Jacob [5] have described
an implementation of parametric heaps that reduces the
amortized insertion time to O(logn log loglogn) and the
amortized deletion time to O(lognloglogn). We de-
scribe a similar result, obtained concurrently with and
independently of the work of Brodal and Jacob, in Sec-
tion 3.

Kinetic heaps, being a special case of parametric
heaps, can be supported using any implementation of
parametric heaps, but they may have simpler or more
efficient implementations. Chan [7] described a simpli-
fied version of his parametric heap structure that sup-
ports kinetic heaps in the same amortized time bounds.
Basch, Guibas, and Hershberger [3] treat the kinetic
heap as an instance of a kinetic data structure, one in
which the data, instead of being fixed, change smoothly
over time. Their major focus was on the generality of
the kinetic paradigm and on data structures more com-
plicated than kinetic heaps. They did, however, give
a method for maintaining a static n-item kinetic heap
(no insertions or deletions) with a total time bound of
O(nlog® n) plus O(1) per find-min. Basch in his Ph.D.
thesis [2] describes two additional kinetic heap data
structures that support insertions and deletions. The
first structure, called the Kinetic Heater, is based upon
treaps. Using the Kinetic Heater one can perform a se-

quence of n insertions and deletions, interspersed with
find-min operations in O(na(n)log®n) expected amor-
tized time. The second structure, called the Kinetic
Tournament is deterministic, and supports a sequence
of n insertions and deletions, interspersed with find-min
operations in O(na(n) log® n) amortized time. All of the
data structures so far mentioned, as well as all of our
own, require space linear in the number of items.

1.3 Our Results Our interest in kinetic heaps
was triggered by the observation that various policies
for broadcast scheduling [17, 1] can be implemented
efficiently using kinetic max-heaps. In this application,
increase-key occurs very frequently, so it is important
to make it especially efficient. Furthermore the key
coefficients are integers whose sizes are related to the
number of increase-key operations. As we shall see,
these facts can be exploited in the design of efficient
kinetic heaps for use in broadcast scheduling.

This paper describes the results of our system-
atic exploration of better ways to implement kinetic
heaps. We present four different implementations, each
of which has some advantage over previous implemen-
tations and none of which is dominated by the others in
all situations. We also show how to use kinetic heaps to
implement broadcast scheduling policies.

The paper contains six sections in addition to this
introduction. In Section 2 we describe the simple kinetic
heap. This structure is based on the kinetic paradigm of
Basch, Guibas, and Hershberger. It consists of a single
balanced tree: it supports make-heap in O(1) worst-
case time, find-min in O(1) amortized time, and insert
and delete in O(log® n) amortized time. Although our
other structures are more efficient asymptotically, the
simplicity of this structure may make it the best choice
in an actual application such as broadcast scheduling.

In Section 3 we describe the balanced kinetic heap.
This structure extends the development thread from
Overmars and van-Leeuwen [12], through Hershberger
and Suri [11] and Chazelle [8], to Chan [6]. It is
simpler than Chan’s structure in some ways and more
complicated in others. The amortized time per find-
min or insert is O(logn) and the amortized time per
deletion is O(lognloglogn). The bound for find-min
can be reduced to O(1) at the cost of a little additional
complication. This is our most efficient structure for
the case of keys with arbitrary real-valued coefficients,
assuming that decrease-key is not explicitly supported.
This is the only one of our structures that extends to the
parametric heap problem. We discuss this extension,
and the relation of our work to that of Brodal and Jacob
[5], in Section 3.

In Section 4 we describe the Fibonacci kinetic

heap (F-kinetic heap). This structure was designed to
support decrease-key operations especially efficiently;
it is based on the Fibonacci heaps of Fredman and
Tarjan [10]. The structure has amortized time bounds
of O(logn) for find-min, insert, and decrease-key, and
O(log® n) for delete. These bounds are a log factor
worse than those of Fibonacci heaps with constant
keys. As in the case of balanced kinetic heaps, we
can reduce the amortized time per find-min to O(1)
at the cost of a little additional complication. In
Section 5 we describe in detail the broadcast scheduling
application. In Section 6 we present the incremental
kinetic heap, which exploits the constraints that arise
in the broadcast scheduling application to reduce the
amortized time bound for every operation to O(logn).
We conclude in Section 7 with some remarks and open
problems. We present the data structures in Sections
2,3, and 4 as min-heaps; we present the structure in
Section 6 as a max-heap, since this is what is required
for broadcast scheduling.

2 Simple Kinetic Heaps

Our first data structure, the simple kinetic heap, is
based on the kinetic paradigm of Basch, Guibas, and
Hershberger. The structure is a binary tournament on
the items, with winners determined by key (smaller key
wins). As time advances, winners become invalid and
must be recomputed. Following the kinetic paradigm,
we maintain a heap to allow access to the earliest
invalid winner. In our structure this heap is a second
tournament on the same underlying binary tree. This
double tournament idea works for any ordering of the
items in the external nodes of the tree. We exploit this
freedom by ordering the items by key coefficient. This
ordering, in combination with using one tree for both
tournaments, leads to an especially simple and efficient
structure; our bounds for a fully dynamic kinetic heap
match those of Basch et al. for a static kinetic heap.
Here is a more detailed description. A simple kinetic
min-heap is a balanced binary tree (such as a red-black
tree [14]) in which the items are stored in the external
nodes, ordered left-to-right in decreasing key coeflicient
order, with a tie broken by key constant. That is, item
i is to the left of item j if and only if a; > a; or a; = q;
and b; > b;. With this ordering, as ¢ increases the
position of the item or items of minimum key moves
right. We store additional information in the internal
nodes of the tree. Each internal node contains a pointer
to its predecessor, which is the rightmost external node
in its left subtree. These pointers allow insertion of a
new item in its correct position, by searching from the
root doing appropriate comparisons to decide whether
to branch left or right. Each node contains a winner,

which is the item in its subtree of minimum key at the
current time f.. The winner is defined recursively as
follows: if z is an external node, then the winner in
z is the item in z. If z is an internal node, with left
child y having winner ¢ and right child z having winner
Jj, then the winner in z is ¢ if a;t. + b; < ajt. + by,
and is j otherwise. Each internal node z has a swap
time s, = (b; — b;)/(a; — a;) if a; # aj, s, = —©
otherwise, where 7 is the winner in the left child of
z and j is the winner in the right child of z. This
swap time is the time at which the winner in x switches
from i to j. Finally, each node z has a minimum future
swap time f;, which is the smallest swap time among
those of it and its descendants that is greater than ¢,
or oo if there is no such swap time. The minimum
future swap time is defined recursively as follows: if
z is an external node, f; = oco; if is an internal node,
fz = min{max{t.,t;}, max{t., f, }, max{¢t., f,}} if this
value exceeds t., f; = oo otherwise, where y and z are
the children of z.

Having the winner in the root allows a find-min
query to be answered in O(1) time if the query does
not cause the current time to change. An insertion or
deletion of an item can be performed as in a standard
balanced search tree; the extra information (predeces-
sors, winners, swap times, and minimum future swap
times) can be updated bottom-up along the single path
in the tree affected by the insertion or deletion (includ-
ing any needed rotations for rebalancing; see [14]). Thus
the time for an insertion or deletion is O(logn).

The only part of the implementation that is not
straightforward is advancing the current time, which
must be done if a query occurs whose time is later
than that of the previous query. To advance the current
time, say from ¢, to t,, we search down from the root,
using minimum future swap times to locate all nodes
having a swap time greater than {. but less than or
equal t,. The paths from the root to these nodes
form a subtree. We recompute winners, swap times,
and minimum future swap times for all nodes in this
subtree, working bottom-up. The cost of this search and
recomputation is proportional to the size of the affected
subtree, which is O(logn) per node whose swap time
changes from future to past or present. Although the
worst-case cost for advancing the current time is ©(n),
we can charge this cost to the insertions and deletions
by using a potential function that is O(logn) times the
number of nodes whose swap times are in the future.
(In this extended abstract we omit the details of the
analysis, which uses the standard “potential function”
paradigm of amortized analysis [15].) The result is an
amortized bound of O(1) per find-min and O(log® n)
per insert and delete. (Each update can increase the

4

potential by O(log®n); advancing the current time
decreases the potential by an amount that pays for the
advance.)

A variant of this data structure has the items stored
in the internal nodes of a balanced binary tree, in sym-
metric order by decreasing key coefficient. Then the
winners are (in general) determined by three-way com-
parisons (among the key of the item in a node and the
keys of the winners in its two children) instead of two-
way comparisons, and swap times must be appropriately
redefined.

3 Balanced Kinetic Heaps

To obtain an asymptotically more efficient data struc-
ture, we start with the parametric kinetic heap of Over-
mars and van Leeuwen, which as it happens is related
to the structure of Section 2. To obtain the Overmars-
van Leeuwen data structure we modify the structure of
Section 2 as follows. Instead of computing a single win-
ner for each node z, we compute the sequence W(z) of
winners for all possible times. This sequence is ordered
not only by time (each item in the sequence is a winner
for a single continuous interval of time) but by key co-
efficient (smallest to largest time corresponds to largest
to smallest key coefficient). Furthermore, the sequence
of winners of a node z is formed from the sequences of
winners of its left child y and right child z in a simple
way: W (z) consists of a prefix of W (y) catenated with
a suffix of W(z). Furthermore, given W (y) and W(z),
we can compute W (z), and the parts of W (y) and W(z)
not in W(z) in logarithmic time, if W (y) and W (z) are
represented as balanced trees.

The Overmars-van Leeuwen structure consists of
a balanced binary tree with the items in the external
nodes in decreasing order by key coefficient. The root
contains its winner sequence, represented as a balanced
tree, along with the split point between the parts coming
from each of its children. Each non-root node contains
the part of its winner sequence not part of its parent
winner sequence, represented as a binary search tree, as
well as information about how its own winner sequence
is split between its children. A find-min query can be
performed in O(logn) time by doing binary search on
the winner sequence of the root. An update (either an
insertion or a deletion) is done by following the path
down through the tree to the insertion/deletion point,
concurrently splitting the winner sequences of nodes
along the search path and reassembling the winner
sequences of their children. Once the insertion/deletion
point is found and the desired item is inserted or deleted,
a walk back up the search path is done, including
reassembly of winner sequences of nodes along the path
by splitting from the winner sequences of their children.

Any necessary rebalancing is done along the way. With
this method, an insertion or deletion takes O(log®n)
time; one factor of logn comes from the length of a
search path and the other comes from the time to
split and reassemble winner sequences at each node
by splitting and catenating the corresponding balanced
binary trees.

We use a variant of the Overmars-van Leeuwen
structure as a semi-dynamic kinetic (deletions only).
Specifically, we represent each winner sequence or sub-
sequence by a finger search tree [16] instead of a search
tree. This allows us to perform a split of a winner se-
quence in time logarithmic in the size of the smaller
split part, as compared to logarithmic in the size of the
entire sequence if an ordinary search tree is used. We
combine this with the observation of Hershberger and
Suri [11] and Chazelle [8] that, if there is no rebalancing,
deletions only cause winning items to move up the tree,
never down. We also slightly modify the Overmars-van
Leeuwen deletion algorithm. By combining these ideas,
we are able to obtain a semi-dynamic kinetic heap with
an amortized O(n) initialization time for an n-item heap
(assuming the items are given in key-coefficient order),
O(lognloglogn) amortized time for delete, and O(1)
amortized time for find-min. To handle find-min, we
split the winner sequence of the root at the item that
is the winner at the current time. (In this extended
abstract we omit the amortization argument.)

In this way we improve on the initialization time
of the Hershberger-Suri and Chazelle structures, reduc-
ing their O(nlogn) bound to O(n), while increasing
the amortized time of delete to O(lognloglogn). This
trade-off is advantagous for the next step, in which we
add the ability to handle insertions by applying the dy-
namization technique of Bently and Saxe [4]. We use
a simple binary counting scheme in which there are up
to logn separate semi-dynamic structures, each corre-
sponding to a different power of two. Insertion is done
by creating a new single-node structure and then if nec-
essary repeatedly combining structures (corresponding
to a binary addition of one), until there is again at
most one structure for each power of two. Combining
two structures requires merging their item lists in key-
coefficient order, forming a new binary tree, and assem-
bling and splitting winner sequences, working bottom-
up through the tree. This all takes linear time, includ-
ing amortized time charged against the initialization
for later deletions. Overall, a given item participates
in O(logn) initializations, which results in an O(logn)
amortized time for insertion. The amortized deletion
time remains O(logn loglogn). The amortized find-min
time is O(logn), because O(logn) structures must be
queried, but this can be reduced to O(1) by adding an

additional top-level structure. (We omit the details in
this extended abstract.)

Chan’s kinetic heap structure [7] is similar to ours
except that he uses doubly-linked lists instead of finger
search trees to obtain a semi-dynamic structure, and his
bound for updating this structure is the same as that
of Hershberger and Suri [11] and Chazelle [8], namely
O(nlogn) for initialization and any number of deletions.
To obtain his O(log'™¢ n) update bound for a fully dy-
namic structure, he uses non-binary dynamization and
a constant number (related to €) of bootstrapping re-
cursions of the entire structure. Thus, though his semi-
dynamic structure is simpler than ours, his fully dy-
namic structure is more complicated and asymptotically
slower.

Our semi-dynamic kinetic heap becomes a semi-
dynamic parametric heap by omitting the split at the
current time of the winner sequence at the root. The
worst-case query time is O(logn). Brodal and Jacob in-
dependently obtained a semi-dynamic parametric heap
with the same time bounds. Instead of using finger
search trees to represent winner sequences, they split
such a sequence into blocks of size logn, each repre-
sented by a balanced tree, with the overall sequence
represented as a doubly-linked list of blocks. Applying
dynamization as decribed above to either our structure
or their structure results in a fully dynamic parametric
heap with O(log® n) worst-case find-min time, O(logn)
amortized insert time, and O(logn loglogn) delete time.
By adding an additional top level structure as well as
some bootstrapping, one can reduce the find-min time
to O(log n), but apparently at the cost of increasing the
amortized insert time to O(lognlogloglogn). Details
can be found in [5]; see also [6].

4 Fibonacci Kinetic Heaps

In this section we develop the Fibonacci kinetic heap
(F-kinetic heap), which supports find-min, insert and
decrease-key in O(logn) amortized time and delete in
O(log”® n) amortized time. The Fibonacci kinetic heap
is based on the Fibonacci heap (F-heap), which is a
heap structure for items of fixed key [10]. In this
section we shall assume familiarity with F-heaps, but
we review the key properties that underly our F-kinetic
heap structure.

A Fibonacci heap consists of a collection of heap-
ordered Fibonacci trees (F-trees) whose nodes store the
heap items. Each node has a non-negative integer rank
that is O(logn). An atomic operation on such trees is
linking, which combines two trees by making the root of
larger key a child of the root of the smaller key, breaking
a tie arbitrarily. We only link trees whose roots have
equal rank.

Our implementation of the F-kinetic heap has an
F-heap as the underlying structure, but we delay doing
links until we can be sure that the outcomes of the cor-
responding comparisons are guaranteed not to change
in the future. Delaying the links in this way requires
two auxiliary structures: one keeps track of trees with
roots of the same rank that cannot yet be linked; the
other keeps track of times at which links can be done.

Our data structure for an F-kinetic heap consists
of a collection of whose nodes are the items. These F-
trees are grouped into sets S, 0 < r < clogn, for an
appropriate positive constant ¢. Set S, contains every
F-tree of root rank r. Within each set S, the trees are
totally ordered by the key of the root and stored in a
sorted list in increasing root-key order at the current
time t,. We implement each of these sorted lists as a
balanced tree such as a red-black tree [14]. We shall
denote an F-tree whose root is item ¢ by T;. Within
each sorted list S, we maintain the property that each
pair of consecutive trees T; and T} satisfy a; > a; and
b; < b;. (Recall that the keys of ¢ and j are a; t + b;
and a; t + b;, respectively.) This property implies that
we can use the key coefficients of the root items rather
than their keys to search the lists S,.. For each such
pair T;, T;, we compute the time ¢;; at which their keys
switch order by the formula ¢;; = (b; —b;)/(a;—a;). The
ordering relationships on S, imply that ¢;; > t., where
t. is the current data-structure time. We maintain a
separate heap H containing each pair T;, T} occurring
consecutively in some S,, with ¢;; as the key of the pair
in H. Since time only increases, the heap H is actually
a monotone heap [9]. (We do not use this property in
our results.)

Two atomic operations on this data structure are to
insert a new F-tree into the appropriate set S,, and to
delete two consecutive F-trees from some set S, and link
them to form a new F-tree of rank r + 1. One of these
operations can trigger the other, and this process can
cascade. In particular, suppose we are given a set U of
F-trees that we wish to insert into the structure, while
preserving the ordering properties. We can do this by
repeating the following steps until U is empty: Delete
from U some tree, say T; of rank r. Insert T; into S,
by searching in S, using the key coefficients of the root
items. If tree T} follows T} in S, and t;; < t., delete T;
and Tj from S, link them, and insert the new tree into
U. Otherwise, if tree Ty precedes T; in S, and t5; < ¢,
delete Tj, and T; from S,., link them, and insert the new
tree into U. In addition, as trees are inserted into and
deleted from the sets S, update H correspondingly:
each insertion of a tree into a set S, requires up to one
deletion from and two insertions into H; each deletion
of a tree from a set S, requires up to two deletions from

and one insertion into H.

The time required for this process is O((u+v) logn),
where u is the initial size of U and v is the number of
links done: each insertion of an item into or deletion of
an item from a set S, requires O(logn) time, including
the needed updates to H; each link reduces the total
number of F-trees in the structure by one. This allows
us to amortize away the cost of the links, by assigning a
potential of ¢logn for an appropriate constant ¢ to each
F-tree. Then the amortized cost of the cascading tree
insertion process is O((1 + u) logn).

We can implement the various kinetic heap opera-
tions using cascading insertion. The running time anal-
ysis is essentially the same as for F-heaps, except that
we multiply the potential by logn. (We omit the amor-
tized analysis in this extended abstract.)

To perform find-min(h,t), we first advance the
current time to ¢ and then return the smallest item
among the roots of the first trees in the respective sorted
sets S,.. We advance the current time to ¢ as follows. We
initialize U to be empty and repeat the following steps
until every pair T3, T in H has t;; > t: delete from H
a pair T, T; with t;; < ¢, delete T; and T} from the set
S, containing them (updating H appropriately), link T;
and T}, and add the new tree to U. Once every pair T3,
T; in H has ¢;; > t, do cascading insertion on U. The
find-min operation takes O(logn) amortized time.

To perform insert(i,a, b, h), we create a new, one-
node F-tree T;, give item i key at+b, initialize U = {T;},
and do cascading insertion on U. This takes O(logn)
amortized time.

To perform decrease-key(i,a,b,h), we determine
whether ¢ is the root of some F-tree or not. If it is,
say of T;, we delete T; from the set S, containing it
(updating H appropriately), assign i its new key, set
U = {T;}, and do cascading insertion on U. This takes
O(logn) amortized time. If, on the other hand, ¢ is not
the root of some thin tree, we do a decrease-key on the
F-tree containing ¢ as described in [10]. This results in a
set of new F-trees, one of which has root 7. We initialize
U to contain these trees. In addition, the rank of the
root of the tree previously containing i may drop by
one. If this happens, we delete this tree from the set S,
containing it (updating H appropriately) and add this
tree to U. Then we do cascading insertion on U. This
case of decrease-key also takes O(logn) amortized time.

The last operation on heaps with time is delete.
To perform delete(i, h), we do an decrease-key on i in
the F-tree containing it, collecting all the newly formed
F-trees into a set U. If the decrease-key decreases
the rank of the tree previously containing i, we delete
this tree from the set S, containing it (updating H
appropriately) and add this tree to U. We delete T;

from U, delete the root of T; (which is 7), and add to
U each new tree rooted at an old child of i. Finally, we
do cascading insertion on U. Deletion takes O(log® n)
amortized time.

We mention one final implementation detail. Each
node must contain not only its rank r but also a pointer
to the corresponding set S, to allow insertion of a F-
tree into the correct set S,. Since the rank of a node
only changes by one (up or down), maintaining this
information takes only O(1) time per rank change.

By adding an additional top-level structure (details
omitted in this extended abstract), we can reduce the
amortized time of find-min to O(1).

5 Broadcast Scheduling via a Kinetic Heap

Broadcast scheduling is the following communication
problem. We are given a collection of items (such as
web pages) and a single channel, over which we can
send one item at a time, simultaneously to all interested
parties. Requests for various items arrive from time-to-
time. When the channel is free, we select one among
the requested items to broadcast over the channel; this
transmission satisfies all existing unsatisfied requests for
the item. Such a system requires a policy for deciding,
on-line (that is, without knowledge of future requests)
which item to send next. One promising scheduling
policy is Longest Wait First (LWF) [17] in which an
item receives a score that is the sum of the waiting
times of all its unsatisfied requests, and an item of
maximum score is sent. A related scheduling policy is
RxW [1], in which the score of an item is the number
of unsatisfied requests times the waiting time of the
earliest unsatisfied request; again, an item of maximum
score is sent.

It has been argued [1, 17] that LWF is impractical
because of high overhead to determine the next item to
send. Indeed, RxW was proposed as a lower-overhead
alternative to LWF. Nonetheless, even RxW can be
expensive to implement [1], a problem addressed in [1]
by using a parameterized family of easier-to-compute
approximations to RxW. Both LWF and RxW have the
property that the relative order of items by score can
change with time, even in the absence of new requests,
which means that standard heap (priority queue) data
structures [14] cannot be used in any obvious way to
keep track of maximum-score items. The scheduling
algorithms described in the literature scan all or many
of the requested items each time a maximum-score
item is to be found, resulting in linear or almost-
linear scheduling time per broadcast. In contrast, our
results allow both LWF and RxW to be implemented in
logarithmic time per item request.

We can use a kinetic max-heap h to implement a

scheduling policy such as LWF or RxW. We call an
item active if it has at least one unsatisfied request.
The items in the heap h are exactly the active items,
with keys equal to their scores. We explicitly make
the following assumptions, which are implicit in the
previous papers on the problem. First, we assume that
the time to perform a heap operation is small compared
to the time to broadcast an item, and therefore one can
ignore the fact that the item scores change during the
heap operation. Second, we assume that requests arrive
in an input queue and do not contribute to the scores
until removed from the queue and processed.

We implement LWF as follows. Initially there are
no active items, and h is empty. Suppose a request for
an item i occurs at time t,. If ¢ is currently inactive, we
perform insert(i, 1, —ts, h), making ¢ active; otherwise,
we perform increase-key(i,a+1,b—1ts, h), where at+bis
the key of item ¢ before the update. Suppose a broadcast
slot becomes available at time t;. We perform delete-
max(h,ts) and broadcast the item returned.

We implement RxW in the same way, the only
difference being in the third parameter of increase-key:
to handle an additional request for an active item 4, we
perform increase-key(i,a+1, (a+1)b/a, h), where at+b
is the key of item ¢ before the update.

In this implementation, the only deadline-driven
operation is delete-maz: when a broadcast slot becomes
available, we want to choose as rapidly as possible
an item to broadcast. The other operations can all
proceed concurrently with the current broadcast. In
our implementations of kinetic heaps in Sections 2, 3,
4, and 6, the actual time for delete-maz may be long
when the time difference from a previous delete-maz or
find-maz is long. In these situations the current time of
the kinetic heap is far behind the time of the operation,
and we may need to invest a considerable amount of
work to advance it. We can avoid such situations in
an actual implementation by periodically performing
find-mazx operations to advance the current time of the
kinetic heap. This way when a broadcast is due the
actual time of the delete-maz is not likely to be long.
We can also break the delete-maz operation into a find-
maz followed by a delete; The broadcast can begin once
the find-maz is complete.

6 Incremental Kinetic Heaps

In this section we describe the incremental kinetic
heap, which exploits extra constraints in the broadcast
scheduling application. Specifically, we make the fol-
lowing assumption, which holds for that scheduling ap-
plication.

ASSUMPTION 6.1. When an item i is inserted into the

heap, a; = 1, and each increase-key on i increases a; by
ezxactly one.

We develop a data structure for a kinetic max-
heap obeying Assumption 6.1 that has the following
amortized time bounds: O(1) (worst-case) for find-min,
O(1) for insert, O(logmin{k,n}) for the k" increase-
key on a given item, and O(logn) for delete or delete-
min. Note that we describe here a max-heap rather than
a min-heap as in previous sections since that is what
needed for broadcast scheduling. The main idea we use
is to group items by the value of their key coefficient,
using a separate heap B, for each value a of a key
coeflicient. The heaps B, are F-heaps for constant keys.
To reduce the time for increase-key operations, we use
the fact that F-heaps support the operation of moving
an F-tree from one heap to another in O(1) time. This
movement of trees among the heaps B, means that the
grouping of items by the value of their key coeflicient
is not perfect: items can become displaced from their
home heaps, to be moved home later.

The data structure consists of two parts. One part
is a collection of F-heaps B,, for various integer values a.
Each item is in exactly one of the heaps B,. The home
heap of an item ¢ with a; = a is B,. Item 7 is displaced
if it is not in its home heap. A heap B, exists in the
structure if B, is non-empty or if some displaced item
has B, as its home heap. For each item, we maintain a
pointer to its home heap. We also maintain with each
heap a count of the number of items for which it is home.
We maintain the existing heaps B, in a doubly-linked
list L in increasing order on a. The size of L is at most
2n, since each item can account for at most two existing
heaps B, (one its home and one containing it). Because
of Assumption 6.1, we can use the list of heaps to find in
constant time the heaps needing updating in ¢nsert and
increase-key operations. For insert, we need to find By,
or create and insert it if it does not exist. For increase-
key, given an item with a home heap B,, we need to
find Bgy1, or create and insert it if it does not exist.

We maintain certain invariants on the heaps B,.
At most one F-tree root in B, is displaced. Such a
displaced root is a maximum-key item and is indicated
by the maximum pointer of B,. If an item j is a child
of item ¢ in heap By, then a; < a; and the key of ¢ is no
smaller than the key of j (at the current time and hence
at all future times). Finally, if i is a displaced item in
heap B,, then a; > a if 7 is a root and a; < a if 7 is
a non-root. A displaced root has a pointer to the heap
B, containing it.

The second part of the structure is a doubly-linked
list M of some (or all) of the maximum-key items of the
heaps B,. An item ¢ is on M if and only if the key of
i at the current time is greater than the key of every

other item j such that a; < a;. (We assume that ties
are broken consistently, say by a total ordering of the
items.) Items on M are ordered in decreasing order by
key and hence in increasing order on a. The first item
on M is thus the item of globally maximum key. For
each item on M other than the first, we maintain the
time t; at which the key of ¢ and that of its predecessor
on M switch order. Each such ¢; is greater than the
current time £..

To represent M, we use a heterogeneous red-black
finger search tree with a finger at the front [16]; the
leaves are the elements of M. We store cumulative
information about the #;-values in this tree, as follows.
Each tree node except for those on the left spine
(leftmost path) contains the minimum #;-value among
its leaves. Each tree node on the left spine contains
the minimum ¢; value among the leaves that follow it
in symmetric order. With this structure, we can insert
or delete an item ¢ in O(log min{a;,n}) amortized time.
We can also delete k predecessors of an item 7 in M in
O(k+log min{a;,n}) amortized time. (Item ¢ is at most
a; places from the front, and there are at most n items.)

Having described the data structure, we proceed
to explain how to perform the kinetic heap operations.
To perform find-min(h,t), we repeat the following step
until every item ¢ in M other than the first has ¢; > #:
Find an item ¢ in M with ¢#; minimum. Delete from M
the item preceding ¢, and any additional predecessors
with keys no greater than that of i. Then we return the
first item on M.

To perform insert(i,1,b,h), we create a new, one-
node F-tree with root ¢ having key ¢ + b, and insert it
into By, first creating By and adding it to L if necessary.
If i becomes the maximum-key item in By, we update M
by inserting ¢ if necessary. In addition, if the previous
maximum-key item in B, is displaced, we move it, along
with its entire F-tree, to its home heap B,. This may
require updating the maximum pointer of B,; and, if
this happens, moving home the F-tree rooted at the
previous maximum-key item of B,. Thus the movement
of displaced roots home can cascade: each movement
shifts an F-tree from one heap to another of smaller
index and may trigger another movement home.

To perform increase-key(i,a,b,h), we create a new
empty heap B, if it does not exist and insert it into
L. If i is the maximum-key item of some heap B, (for
a' < a— 1), we merely insert i into M if necessary and
delete predecessors of ¢ in M if necessary to restore the
invariant on M. In this case 7 becomes displaced, if it
was not displaced already. If, on the other hand, 7 is not
the maximum-key item in the heap containing it, then
we do an ordinary F-heap increase-key on ¢ as described
in [10]. This makes ¢ a root if it was not one already, and

it may create some other new F-tree roots via cascading
cuts (see [10]). We move ¢ and each other new root,
along with its entire F-tree, to its home heap, updating
the maximum pointer of that home heap. If i is now in
heap B, and is now the maximum-key item in B,, we
ingert 7 into M if necessary and delete predecessors of i
in M until the invariants on M are restored. Moving the
other roots home does not require updating M, because
such a root was not maximum-key in its previous heap,
and it moves to a heap of smaller index, which means
that it cannot force a change to M. On the other hand,
a root moved home may become the new maximum-key
item in its home heap. If the previous maximum-key
item is displaced, it must be moved home along with its
entire tree. A movement home of this kind can trigger
a cascade of movements home, just as in the case of
an insertion. We perform all such cascading movements
home. We complete the increase-key by deleting B,
from L if it is now empty and home to no items. Such
a deletion can occur whether or not ¢ was initially a
maximum-key item.

The operation delete(i, h) has two cases, depending
on whether ¢ is the maximum-key item in the heap B,
containing it. If so, we begin by deleting ¢ from M if
1 is in M. Item 7 is the root of an F-tree in B,. We
delete item ¢ from this tree, resulting in a new tree for
each previous child of 4. If any of these new roots is
displaced, we move it and its tree to its home heap, say
By, updating the maximum pointer of B, if necessary.
The invariants on heap B, imply that ¢’ < a. We do
not yet update M to reflect a change in the maximum
pointer of B/, but if this change triggers a cascade of
additional movements home as in insert and increase-
key, we perform these movements home. In heap B, we
proceed as in ordinary F-heap deletion (see [10]), linking
trees with roots of equal rank until no such linking is
possible and then resetting the maximum pointer of B,.
Finally, we process the heaps in L starting with B, and
proceeding through heaps of smaller indices (working
toward the front of L), updating M if necessary to
reflect any changes in the maximum pointers of these
heaps. (In particular, the new maximum item of B,
may need to be inserted into M.)

On the other hand, if ¢ is not the maximum-key
item in B,, we begin the deletion by doing an ordinary
F-heap increase-key on ¢ in B,. This makes ¢ a tree
root if it was not already, and may create additional
new roots. We delete i, making each of its children a
new root. We move each new root home, along with its
entire tree, updating the maximum pointer of the home
heap if necessary but not updating M (no updating is
necessary). We perform cascading movements home if
necessary, as in insert, increase-key, and the other case

of delete.

An amortized analysis, which we omit from this
extended abstract, yields the claimed time bounds for
the operations.

7 Remarks

The asymptotically fastest known kinetic heap struc-
ture not explicitely supporting the decrease-key opera-
tion is obtained by applying dynamization to either our
semi dynamic structure from Section 3 or to the semi-
dynamic structure of Brodal and Jacob. Either struc-
ture obtained in this way supports insert in O(logn)
amortized time and delete in O(lognloglogn) amor-
tized time. An immediate open question is to find
a structure that supports delete as well as insert in
O(logn) amortized time. Designing a semi-dynamic
kinetic heap with O(n) amortized initialization time
and O(logn) amortized deletion time would immedi-
ately yield such a result via dynamization.

If decrease-key is explicitly supported in (logn)
amortized time and there are no additional assumptions
on the keys, the best structure is our Fibonacci kinetic
heap. This structure supports delete in O(log® n)
amortized time. Whether this bound can be improved
is another immediate open question.

Both our semi-dynamic parametric heap struc-
ture of Section 3 and the structure of Brodal and
Jacob yield (via the use of complicated additional
structures and dynamization [6, 5]) a parametric heap
structure supporting find-min in O(logn) time, in-
sertion in O(lognlogloglogn) time, and deletion in
O(lognloglogn) time. Whether these bounds for in-
sertion or deletion can be improved is yet another open
question.

The simplicity of the data structure in Section 2 is
appealing and leads to additional open questions. Can
a splay tree [13] be used in place of a balanced tree
without affecting the bounds 7 Is there a semi-dynamic
version of this structure with an O(logn) amortized
deletion time 7 Is there an efficient version of the
structure in which the items need not be ordered by
key coefficient ?

We have studied how to implement broadcast
scheduling policies such as LWF and RxW efliciently
using kinetic heaps. Another interesting question to ask
of such policies is how well they perform as compared
to an optimum off-line schedule (computed with knowl-
edge of the future), with respect to a criterion such as
minimum total waiting time.

Acknowledgment

We thank Andrew Goldberg for insightful discussions.

References

(1]

(2]
(3]

[4]

(5]

(6]

[7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Aksoy and M. Franklin. Scheduling for large-
scale on-demand data broadcasting. In Proc. IEEE
INFOCOM Conf., San Francisco, CA, pages 651-659.
IEEE, 1998.

J. Basch Kinetic Data Structures. PhD thesis, Stan-
ford University, June 1999.

J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. In Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 747-756, New Orleans, Louisiana,
5-7 January 1997.

J. Bentley and J. Saxe Decomposable searching prob-
lems I: Static-to-dynamic transformation”. J. of algo-
rithms, 1:301-358, 1980.

G. Brodal and R. Jacob. Dynamic planar convex
hull with optimal query time and O(logn - loglog n)
update time. In Proc. 7th Scandinavian Workshop on
Algorithm Theory, Lecture Notes in Computer Science.
Springer Verlag, Berlin, 2000.

T. M. Chan Dynamic planar convex hull operations
in near-logarithmic amortized time. In Proc. 40th
IEEE Annual Symposium on Foundations of Computer
Science, pages 92-99. IEEE, 1999.

T. M. Chan Remarks on k-level algorithms in the
plane. draft, 1999.

B. Chazelle. On the convex layers of a planar set.
IEEE1 Transactions on Information Theory, 31, 1985.
B. V. Cherkassky, A. V. Goldberg, and C. Silverstein.
Buckets, heaps, lists, and monotone priority queues.
SIAM J. Computing, 28:1326-1346, 1999.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps
and their uses in improved network optimization algo-
rithms. Journal of the ACM, 34(3):596-615, 1987.

J. Hershberger and S. Suri. Applications of a semidy-
namic convex hull algorithm. BIT, 32:249-267, 1992.
M. H. Overmars and J. van Leeuwen Maintenance of
configurations in the plane. J. Comp. and Syst. Sci.,
23:166-204, 1981.

D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. Journal of the ACM, 32:652—686, 1985.
R. E. Tarjan. Data Structures and Network Algorithms
CBMS 44. Society for Industrial and applied mathe-
matics, Philadelphia, PA, 1983.

R. E. Tarjan. Amortized computational complexity.
SIAM J. on Algebraic and Discrete Methods, 6(2):306—
318, 1985.

R. E. Tarjan and C. J. Van Wyk. An O(nloglogn)-
time algorithm for triangulating a simple polygon.
Siam J. Computing, 17(1):143-173, 1988.
J. W. Wong. Broadcast delivery.
76(12):1566-1577, 1988.

Proc. IEEE,

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

