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ABSTRACT

This paper proposes and evaluates Prefetching BT -Trees
(pB"’—Tlrees)7 which use prefetching to accelerate two im-
portant operations on Bt-Tree indices: searches and range
scans. To accelerate searches, pBT-Trees use prefetching to
effectively create wider nodes than the natural data trans-
fer size: e.g., eight vs. one cache lines or disk pages. These
wider nodes reduce the height of the B¥-Tree, thereby de-
creasing the number of expensive misses when going from
parent to child without significantly increasing the cost of
fetching a given node. Our results show that this technique
speeds up search and update times by a factor of 1.2-1.5 for
main-memory Bt-Trees. In addition, it outperforms and is
complementary to “Cache-Sensitive Bt-Trees.” To accel-
erate range scans, pBt-Trees provide arrays of pointers to
their leaf nodes. These allow the pBT-Tree to prefetch ar-
bitrarily far ahead, even for nonclustered indices, thereby
hiding the normally expensive cache misses associated with
traversing the leaves within the range. Our results show
that this technique yields over a sizfold speedup on range
scans of 10004 keys. Although our experimental evaluation
focuses on main memory databases, the techniques that we
propose are also applicable to hiding disk latency.

1. INTRODUCTION

As the gap between processor speed and both DRAM and
disk speeds continues to grow exponentially, it is becoming
increasingly important to make effective use of caches to
achieve high performance on database management systems.
Caching exists at multiple levels within modern memory hi-
erarchies: typically two or more levels of SRAM serves as
caches for the contents of main memory in DRAM, which in
turn is a cache for the contents on disk. While database re-
searchers have historically focused on the importance of this
latter form of caching (also known as the “buffer pool”),
recent studies have demonstrated that even on traditional
disk-oriented databases, roughly 50% or more of execution
time is often wasted due to SRAM cache misses [1, 2, 10,
18]. For main-memory databases, it is even clearer that
SRAM cache performance is crucial [19]. Hence several re-
cent studies have revisited core database algorithms in an
effort to make them more cache friendly [5, 17, 19, 20, 21].
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Figure 1: Execution time breakdown for index op-
erations (B4+ = B'-Trees, CSB+ = CSB*'-Trees).

1.1 Cache Performance of B-Tree Indices

Index structures are used extensively throughout database
systems, and they are often implemented as BT-Trees. While
database management systems perform several different op-
erations that involve Bt -Tree indices (e.g., selections, joins,
etc.), these higher-level operations can be decomposed into
two key lower-level access patterns: (i) searching for a par-
ticular key, which involves descending from the root to a leaf
node using binary search within a given node to determine
which child pointer to follow; and (ii) scanning some portion
of the index, which involves traversing the leaves through a
linked-list structure for a non-clustered index. (For clus-
tered indices, one can directly scan the database table after
searching for the starting key.) While search time is the key
factor in single value selections and nested loop index joins,
scan time is the dominant effect in range selections.

To illustrate the need for improving the cache performance
of both search and scan on Bt-Tree indices, Figure 1 shows
a breakdown of their simulated performance on a state-of-
the-art machine. For the sake of concreteness, we pattern
the memory subsystem after the Compaq ES40 [8]—details
are provided later in Section 4. The “search” experiment in
Figure 1 looks up 100,000 random keys in a main-memory
B*-Tree index after it has been bulkloaded with 10 million
keys. The “scan” experiment performs 100 range scan oper-
ations starting at random keys, each of which scans through
1 million (key, tupleID) pairs retrieving the tupleID val-
ues. (The results for shorter range scans—e.g., 1000 tuple
scans—are similar). The BT -Tree node size is equal to the
cache line size, which is 64 bytes. Each bar in Figure 1 is
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1.2 Previous Work on Improving the Cache
Performance of Indices

In an effort to improve the cache performance of index
searches for main-memory databases, Rao and Ross pro-
posed two new types of index structures: “Cache-Sensitive
Search Trees” (CSS-Trees) [19] and “Cache-Sensitive B*-
Trees” (CSB*-Trees) [20]. The premise of their studies is
the conventional wisdom that the optimal tree node size is
equal to the natural data transfer size, which corresponds to
the disk page size for disk-resident databases and the cache
line size for main-memory databases. Because cache lines
are roughly two orders of magnitude smaller than disk pages
(e.g., 64 bytes vs. 4 Kbytes), the resulting index trees for
main-memory databases are considerably deeper. Since the
number of expensive cache misses is roughly proportional
to the height of the tree, it would be desirable to somehow
increase the effective fanout (also called the branching fac-
tor) of the tree, without paying the cost of additional cache
misses that this would normally imply.

To accomplish this, Rao and Ross [19, 20] exploit the fol-
lowing insight: by restricting the data layout such that the
location of each child node can be directly computed from
the parent node’s address (or a single pointer), we can elim-
inate all (or nearly all) of the child pointers. Assuming that
keys and pointers are the same size, this effectively doubles
the fanout of cache-line-sized tree nodes, thus reducing the
height of the tree and the number of cache misses. CSS-
Trees [19] eliminate all child pointers, but do not support
incremental updates and therefore are only suitable for read-
only environments. CSBT-Trees [20] do support updates by
retaining a single pointer per non-leaf node that points to
a contiguous block of its children. Although CSB*-Trees
outperform BT-Trees on searches, they still perform signifi-
cantly worse on updates [20] due to the overheads of keeping
all children for a given node in sequential order within con-
tiguous memory, especially during node splits.

Returning to Figure 1, the bar labeled “CSB+4” shows
the execution time of CSBT-Trees (normalized to that of
B+—Trees) for the same index search experiment. As we see
in Figure 1, CSB*-Trees eliminate 20% of the data cache
stall time, thus resulting in an overall speedup’ of 1.15 for
searches. While this is a significant improvement, over half
of the remaining execution time is still being lost to data
cache misses; hence there is significant room for further im-
provement. In addition, these search-oriented optimizations
provide no benefit to scan accesses, which are suffering even
more from data cache misses.

1.3 Our Approach: Prefetching B+-Trees

Modern microprocessors provide the following mechanisms
for coping with large cache miss latencies. First, they allow
multiple outstanding cache misses to be in flight simultane-
ously for the sake of exploiting parallelism within the mem-
ory hierarchy. For example, the Compaq ES40 [8] supports
32 in-flight loads, 32 in-flight stores, and eight outstanding
off-chip cache misses per processor, and its crossbar mem-
ory system supports 24 outstanding cache misses. Second,
to help applications take full advantage of this parallelism,
they also provide prefetch instructions which enable software
to move data into the cache before it is needed. Previous
studies (which did not target databases specifically) have
demonstrated that for both array-based and pointer-based
program codes, prefetching can successfully hide much of
the performance impact of cache misses by overlapping them

! Throughout this paper, we report performance gains as speedup: i.e.
the original time divided by the improved time.

with computation and other misses [13, 16]. Hence for mod-
ern machines, it 1s not the number of cache misses that dic-
tates performance, but rather the amount of exposed miss
latency that cannot be successfully hidden through tech-
niques such as prefetching.

In this paper, we propose and study Prefetching Bt - Trees
(pB"’—Tlrees)7 which use prefetching to limit the exposed miss
latency. Tree-based indices such as BT-Trees pose a major
challenge for prefetching search and scan accesses since both
access patterns suffer from the pointer-chasing problem [13]:
The data dependencies through pointers make it difficult to
prefetch sufficiently far ahead to limit the exposed miss la-
tency. For index searches, pBT-Trees reduce this problem
by having wider nodes than the natural data transfer size,
e.g., eight vs. one cache lines (or disk pages). These wider
nodes reduce the height of the tree, thereby decreasing the
number of expensive misses when going from parent to child.
The key observation is that by using prefetching, the wider
nodes come almost for free: all of the cache lines in a wider
node can be fetched almost as quickly as the single cache
line of a traditional node. To accelerate index scans, we in-
troduce arrays of pointers to the BT -Tree leaf nodes which
allow us to prefetch arbitrarily far ahead, thereby hiding the
normally expensive cache misses associated with traversing
the leaves within the range. Of course, indices may be fre-
quently updated. Perhaps surprisingly, we demonstrate that
insertion and deletion times actually decrease with our tech-
niques, despite any overheads associated with maintaining
the wider nodes and the arrays of pointers.

1.4 Contributions of This Paper

This paper makes the following contributions. First, to
our knowledge, this is the first study to explore how prefetch-
ing can be used to accelerate search and scan operations on
BT -Tree indices. We propose and study the Prefetching BT -
Tree (pB+—Tree). Second, we demonstrate that contrary to
conventional wisdom, the optimal BT-Tree node size on a
modern machine is often wider than the natural data trans-
fer size, since we can use prefetching to fetch each piece of
the node simultaneously. Our approach offers the follow-
ing advantages relative to CSBT-Trees: (i) we achieve bet-
ter search performance because we can increase the fanout
by more than the factor of two that CSBT-Trees provide
(e.g., by a factor of eight); (i) we achieve better (rather
than worse) performance on updates relative to BT -Trees,
because our improved search speed more than offsets any
increase in node split cost due to wider nodes; and (iii) we
do not require fundamental changes to the original BT -Tree
data structures or algorithms. In addition, we find that
our approach is complementary to CSBT-Trees. Third, we
demonstrate how the pBT-Tree can effectively hide over 90%
of the cache miss latency suffered by (non-clustered) index
scans, thus resulting in a factor of 6.5-8.7 speedup over a
range of scan lengths. While our experimental evaluation
is performed within the context of main memory databases,
we believe that our techniques are also applicable to hiding
disk latency, in which case the prefetches will move data
from disk into main memory.

The remainder of this paper is organized as follows. Sec-
tions 2 and 3 discuss how pBT-Trees use prefetching to ac-
celerate index searches and scans, respectively. To quantify
the benefits of these techniques, we present experimental
results in Section 4. Finally, we discuss further issues and
conclude in Sections 5 and 6, respectively.
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Figure 2: Performance of various Bt-Tree searches
where a cache miss to memory takes 150 cycles, and
a subsequent access can begin 10 cycles later [8].

2. PREFETCHING INDEX SEARCHES

Recall that during a Bt-Tree search, we start from the
root, performing a binary search in each non-leaf node to
determine which child to visit next. Upon reaching a leaf
node, a final binary search returns the key position. Re-
garding the cache behavior, we expect at least one expen-
sive cache miss to occur each time we move down a level
in the tree. Hence the number of cache misses is roughly
proportional to the height of the tree (minus any nodes that
might remain in the cache if the index is reused). Thus,
having wider tree nodes for the sake of reducing the height
of the tree might seem like a good idea. Unfortunately, in
the absence of prefetching (i.e. when all cache misses are
equally expensive and cannot be overlapped), making the
tree nodes wider than the natural data transfer size—i.e. a
cache line for main-memory databases (and a disk page for
disk-resident databases)—actually hurts performance rather
than helps it, as has been shown in previous studies [19, 20].
The reason for this is that the number of additional cache
misses at each node more than offsets the benefits of reduc-
ing the number of levels in the tree.

As a small example, consider a main-memory Bt-Tree
holding 1000 keys where the cache line size is 64 bytes and
the keys, child pointers, and tupleIDs are all four bytes. If
we limit the node size to one cache line, then the B¥-Tree
will contain at least four levels. Figure 2(a) illustrates the
resulting cache behavior, where the four cache misses cost
a total of 600 cycles on our Compaq ES40-based machine
model [8]. If we double the node width to fwo cache lines,
the height of the BT-Tree can be reduced to three levels.
However, as we see in Figure 2(b), this would result in siz
cache misses, thus increasing execution time by 50%.

With prefetching, however, it becomes possible to hide
the latency of any miss whose address can be predicted suf-
ficiently early. Returning to our example, if we prefetch the
second half of each two-cache-line-wide tree node so that
it is fetched in parallel with the first half—as illustrated
in Figure 2(c)—we can achieve significantly better (rather
than worse) performance compared with the one-cache-line-
wide nodes in Figure 2(a). The extent to which the misses
can be overlapped depends upon the implementation details
of the memory hierarchy, but the trend is toward support-
ing greater parallelism. In fact, with multiple cache and
memory banks and crossbar interconnects, it is possible to
completely overlap multiple cache misses. Figure 2(c) il-

Table 1: Terminology used throughout this paper.

| Variable | Definition |

w # of cache lines in an index node

m # of child pointers in a one-line-wide node

N # of (key, tuplelD) pairs in an index

d # of child pointers in non-leaf node (= w X m)

T full latency of a cache miss

Thext latency of an additional pipelined cache miss

B normalized memory bandwidth <B = T—j:;)

k # of nodes to prefetch ahead

c # of cache lines in jump-pointer array chunk
pYBT-Tree | plain pBT-Tree with w-line-wide nodes
pYBF-Tree | p”B¥-Tree with esternal jump-pointer arrays
p%“B"’—Tree pYBT_-Tree with internal jump-pointer arrays

lustrates the timing on our Compaq ES40-based machine
model, where back-to-back misses to memory can be ser-
viced once every 10 cycles, which is a small fraction of the
overall 150 cycle miss latency. Therefore even without per-
fect overlap of the misses, we can still potentially achieve
large performance gains (a speedup of 1.25 in this example)
by creating wider than normal B*-Tree nodes.

Hence the first aspect of our pBt-Tree design is to use
prefetching to “create” nodes that are wider than the natu-
ral data transfer size, but where the entire miss penalty for
each extra-wide node is comparable to that of an original
B*-Tree node.

2.1 Modifications to the Bf-Tree Algorithm

We consider a standard BT-Tree node structure: Each
non-leaf node is comprised of some number, d > 1, of
childptr fields, d — 1 key fields,? and one keynun field that
records the number of keys stored in the node (at most d—1).
(All notation is summarized in Table 1.) Each leaf node is
comprised of d—1 key fields, d —1 associated tupleID fields,
one keynum field, and one next-1leaf field that points to the
next leaf node in key order. Our first modification is to store
the keynum and all of the keys prior to any of the pointers
or tupleIDsin a node. This simple layout optimization al-
lows the binary search to proceed without waiting to fetch
all the pointers. Our search algorithm is a straightforward
extension of the standard B¥-Tree algorithm, and we now
describe only the parts that change.

Search: Before starting a binary search, we prefetch all of
the cache lines that comprise the node.

Insertion: Since an index search is first performed to locate
the position for insertion, all of the nodes on the path
from the root to the leaf are already in the cache before
the real insertion phase. The only additional cache
misses are caused by newly allocated nodes, which we
prefetch in their entirety before redistributing the keys.

Deletion: We perform lazy deletion as in Rao and Ross [20].
If more than one key is in the node, we simply delete
the key. It is only when the last key in a node is deleted
that we try to redistribute keys or delete the node.
Since index search is also performed prior to deletion,
the entire root-to-leaf path is in the cache. Key re-
distribution 1is the only potential cause of additional
misses; hence when all keys in a node are deleted, we
prefetch the sibling node from which keys will be re-
distributed.

?Throughout this paper, we consider for simplicity fized-size keys,
tuplelIDs, and pointers. We also assume that tupleIDs and pointers
are the same size.



Prefetching can also be used to accelerate the bulkload of
a BT-Tree. However, because this is expected to occur in-
frequently, we focus instead on the more frequent operations
of search, insertion and deletion.

2.2 Qualitative Analysis

As discussed earlier in this section, we expect search times
to improve through our scheme because it reduces the num-
ber of levels in the BY-Tree without significantly increasing
the cost of accessing each level. What about the perfor-
mance impact on updates? Updates always begin with a
search phase, which will be sped up. The expensive op-
erations only occur either when the node becomes too full
upon an insertion and must be split, or when a node becomes
empty upon a deletion and keys must be redistributed. Al-
though node splits and key redistributions are more costly
with larger nodes, the relative frequency of these expensive
events should decrease. Therefore we expect update perfor-
mance to be comparable to, or perhaps even better than,
B*t-Trees with single-line nodes.

The space overhead of the index is strictly reduced with
wider nodes. This is primarily due to the reduction in the
number of non-leaf nodes. For a full tree, each leaf node
contains d—1 (key, tupleID) pairs. The number of non-leaf
nodes is dominated by the number of nodes in the level im-
mediately above the leaf nodes, and hence is approximately

N As the fanout d increases with wider nodes, the

aa—1y -
nf)de )size grows linearly but the number of non-leaf nodes
decreases quadratically, resulting in a near linear decrease
in the non-leaf space overhead.

Finally, an interesting consideration is to determine the
optimal node size, given prefetching. Should nodes simply
be as wide as possible? There are two system parameters
that affect this answer. The first is the extent to which the
memory subsystem can overlap multiple cache misses. We
quantify this as the latency of a full cache miss (77) divided
by the additional time until another pipelined cache miss
would also complete (Thext). We call this ratio (i.e. T )

Thext
the normalized bandwidth (B). For example, in our Compaq

ES40-based machine model, 77 = 150 cycles, Thext = 10
cycles, and hence B = 15. The larger the value of B, the
greater the system’s ability to overlap parallel accesses, and
hence the greater likelihood of benefiting from wider index
nodes. In general, we do not expect the optimal number of
cache lines per node (woptimal) to exceed B, since beyond
that point we could have completed a binary search and
moved down to the next level in the tree. The second system
parameter that potentially limits the optimal node size is the
size of the cache, although in practice this does not appear
to be a limitation given realistic values of B.

Let us now consider a more quantitative analysis of the
optimal node width wgptimal. A pBt-Tree with N (key,

tupleID) pairs contains at least [logd (dNTl) —|—1—‘ levels.

With our data layout optimization of putting keys before
child pointers, % of the node is read on average. Hence the
average memory stall time for a search in a full tree is

[toga 2% + 1] 5 (T 4 ([%] = 1) x Thext)

1
Ty ¢ flog i +1] % (B4 2] 1)
By computing the value of w that minimizes this cost, we can
find weptimal. For example, in our simulations where m = 8
and B = 15, by averaging over tree sizes N = 10?,...,10°,
we can compute from equation (1) that weptimal = 8. If the
memory subsystem bandwidth increases such that B = 50,
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Figure 3: Cache behaviors of index range scans.

then wgpgimal iIncreases to 22.

In summary, comparing our pB¥-Trees with conventional
BT -Trees, we expect better search performance, comparable
or somewhat better update performance, and lower space
overhead. Having addressed index search performance, we
now turn our attention to index range scans.

3. PREFETCHING INDEX SCANS

Given starting and ending keys as arguments, an index
range scan returns a list of either the tupleIDs or the tuples
themselves with keys that fall within this range. First the
starting key is searched in the B*-Tree to locate the start-
ing leaf node. Then the scan follows the next-1eaf pointers,
visiting the leaf nodes in order. As the scan proceeds, the
tupleIDs (or tuples) are copied into a return buffer. This
process stops when either the ending key is found or the re-
turn buffer fills up. In the latter case, the scan procedure
pauses and returns the buffer to the caller (often a join node
in a query execution plan), which then consumes the data
and resumes the scan where it left off. Hence a range se-
lection involves one key search and often multiple leaf node
scan calls. Throughout this section, we will focus on range
selections that return tupleIDs, although returning the tu-
ples themselves (or other variations) is a straightforward ex-
tension of our algorithm, as discussed in the full paper [7].

As we saw already in Figure 1, the cache performance of
range scans is abysmal: 84% of execution time is being lost
to data cache misses in that experiment. Figure 3(a) illus-
trates the problem: a full cache miss latency is suffered for
each leaf node. A partial solution is to use the technique
described in Section 2: If we make the leaf nodes multi-
ple cache lines wide and prefetch each component of a leaf
node in parallel, we can reduce the frequency of expensive
cache misses, as illustrated in Figure 3(b). While this is
helpful, our goal is to fully hide the miss latencies to the
extent permitted by the memory system, as illustrated in
Figure 3(c). In order to do that, we must first overcome the
pointer-chasing problem.

3.1 Solving the Pointer-Chasing Problem

Figure 4(a) illustrates the pointer-chasing problem, which
was observed by Luk and Mowry [13, 14] in the context of
prefetching pointer-linked data structures (i.e. linked-lists,
trees, etc.) in general-purpose applications. Assuming that
three nodes worth of computation are needed to hide the
miss latency, then when node n; in Figure 4(a) is visited,
we would like to be launching a prefetch of node n;ys. To
compute the address of node n;ys3, we would normally follow
the pointer chain through nodes n;4y1 and n;y2. However,
this would incur the full miss latency to fetch n;4+1 and then
to fetch n; 42, before the prefetch of n;ys could be launched,
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thereby defeating our goal of hiding the miss latency of n; 4.

Luk and Mowry proposed two solutions to the pointer-
chasing problem that are applicable to linked lists [13, 14].
The first scheme (data-linearization prefetching) involves ar-
ranging the nodes in memory such that their addresses can
be trivially calculated without dereferencing any pointers.
For example, if the leaf nodes of the B*-Tree are arranged
sequentially in contiguous memory, they would be trivial to
prefetch. However, this will only work in read-only situa-
tions, and we would like to support frequent updates. The
second scheme (history-pointer prefetching) involves creat-
ing new pointers—called jump pointers—which point from
a node to the node that it should prefetch. For example,
Figure 4(b) shows how node n; could directly prefetch node
n;+s using three-ahead jump pointers.

In our study, we will build upon the concept of jump
pointers, but customize them to the specific needs of B¥-
Tree indices. Rather than storing jump pointers directly in
the leaf nodes, we instead pull them out into a separate ar-
ray, which we call the jump-pointer array, as illustrated in
Figure 4(c). To initiate prefetching, a back-pointer in the
starting leaf node is used to locate the leaf’s position within
the jump pointer array; then based on the desired prefetch-
ing distance, an array offset is adjusted to find the address of
the appropriate leaf node to prefetch. As the scan proceeds,
the prefetching task simply continues to walk ahead in the
jump-pointer array (which itself is also prefetched) without
having to dereference the actual leaf nodes again.

Jump-pointer arrays are more flexible than jump pointers
stored directly in the leaf nodes. We can adjust the prefetch-
ing distance by simply changing the offset used within the
array. This allows dynamic adaptation to changing perfor-
mance conditions on a given machine, or if the code migrates
to different machines. In addition, the same jump-pointer
array can be reused to target different latencies in the mem-
ory hierarchy (e.g., disk latency vs. memory latency).

From an abstract perspective, one might think of the
jump-pointer array as a single large, contiguous array, as il-
lustrated in Figure 5(a). This would be efficient in read-only
situations, but in such cases we could simply arrange the leaf
nodes themselves contiguously and use data-linearization
prefetching [13, 14]. Therefore a key issue in implementing
jump-pointer arrays is to handle updates gracefully.

Figure 5: External jump-pointer arrays.

3.2 Implementing Jump-Pointer Arrays to
Support Efficient Updates

Let us briefly consider the problems created by updates
if we attempted to maintain the jump-pointer array as a
single contiguous array as shown in Figure 5(a). When a
leaf is deleted, we can simply leave an empty slot in the
array. However, insertion can be very expensive. When a
new leaf is inserted, an empty slot needs to be created in the
appropriate position for the new jump pointer. If no nearby
empty slots could be located, this could potentially involve
copying a very large amount of data within the array in
order to create the empty slot. In addition, for each jump-
pointer that is moved within the array, the corresponding
back-pointer from the leaf node into the array also needs
to be updated, which could be very costly too. Clearly we
would not want to pay such a high cost upon insertions.

We improve upon the naive contiguous array implemen-
tation in the following three ways. First, we break the con-
tiguous array into a chunked linked list—as illustrated in
Figure 5(b)—which allows us to limit the impact of an in-
sertion to its corresponding chunk. (We will discuss the
chunk size selection later in Section 3.3).

Second, we actively attempt to interleave empty slots within
the jump-pointer array so that insertions can proceed quickly.
During bulkload or when a chunk splits, the jump pointers
are stored such that empty slots are evenly distributed to
maximize the chance of finding a nearby empty slot for in-
sertion. When a jump-pointer is deleted, we simply leave an
empty slot in the chunk.

Finally, we alter the meaning of the back-pointer in a leaf
node to its position in the jump-pointer array such that it
is merely a hint. The pointer should point to the correct
chunk, but the position within that chunk may be impre-
cise. Therefore when moving jump pointers in a chunk for
inserting a new leaf address, we do not need to update the
hints for the moved jump pointers. We only update a hint
field when: (i) the precise position in the jump-pointer array
is looked up during range scan or insertion, in which case the
leaf node should be already in cache and updating the hint
is almost free; and (ii) when a chunk splits and addresses
are redistributed, in which case we are forced to update the
hints to point to the new chunk. The cost of using hints,
of course, i1s that we need to search for the correct location
within the chunk in some cases. In practice, however, the



hints appear to be good approximations of the true posi-
tions, and searching for the precise location is not a costly
operation (e.g., it should not incur any cache misses).

In summary, the net effect of these three enhancements is
that nothing moves during deletions, typically only a small
number of jump pointers (between the insertion position
and the nearest empty slot) move during insertions, and
in neither case do we normally update the hints within the
leaf nodes. Thus we expect jump-pointer arrays to perform
well during updates.

3.3 Algorithm and Qualitative Analysis

Having described the data structure to facilitate prefetch-
ing, we now describe our prefetching algorithm. Recall that
the basic range scan algorithm consists of a loop that visits
a leaf on each iteration by following a next-leaf pointer.
To support prefetching, we add prefetches both prior to this
loop (for the startup phase), and inside the loop (for the
steady-state phase). Let k be the desired prefetching dis-
tance, in units of leaf nodes (we discuss below how to select
k). During the startup phase, we issue prefetches for the
first k leaf nodes.® These prefetches proceed in parallel, ex-
ploiting the available memory hierarchy bandwidth. During
each loop iteration (i.e. in the steady-state phase), prior to
visiting the current leaf node in the range scan, we prefetch
the leaf node that is k nodes after the current leaf node. The
goal is to ensure that by the time the basic range scan loop
is ready to visit a leaf node, that node is already prefetched
into the cache. With this framework in mind, we now de-
scribe further details of our algorithm.

First, in the startup phase, we must locate the jump
pointer of the starting leaf within the jump-pointer array.
To do this, we follow the hint pointer from the starting leaf
to see whether it is precise—i.e. whether the hint points to
a pointer back to the starting leaf. If not, then we start
searching within the chunk in both directions relative to the
hint position until the matching position is found. As dis-
cussed earlier, the distance between the hint and the actual
position appears to be small in practice.

Second, we need to prefetch the jump-pointer chunks as
well as the leaf nodes, and handle empty slots in the chunks.
During the startup phase, both the current chunk and the
next chunk are prefetched. When looking for a jump pointer,
we test for and skip all empty slots. If the end of the cur-
rent chunk is reached, we will go to the next chunk to get
the first non-empty jump-pointer (there is at least one non-
empty jump pointer or the chunk should have been deleted).
We then prefetch the next chunk ahead in the jump-pointer
array. Because we always prefetch the next chunk before
prefetching any leaf nodes pointed to by the current chunk,
we expect the next chunk to be in the cache by the time we
access it.

Third, although the actual number of tupleIDsin the leaf
node is unknown when we do range prefetching, we will as-
sume that the leaf is full and prefetch the return buffer area
accordingly. Thus the return buffer will always be prefetched
sufficiently early.

We now discuss how to select the prefetching distance and
the chunk size.

Selecting the prefetching distance k. The prefetch-
ing distance (k, in units of nodes to prefetch ahead) is se-

3Note that the buffer area to hold the resulting tupleIDs needs also to
be prefetched; to simplify presentation, when we refer to “prefetch-
ing a leaf node” in the range scan algorithm, we mean prefetching
the cache lines for both the leaf node and the buffer area where the
tuplelIDs are to be stored.

lected as follows. Normally this quantity is derived by divid-
ing the expected worst-case miss latency by the computa-
tion time spent on one leaf node (similar to what has been
done in other contexts [16]). However, because the com-
putation time associated with visiting a leaf node during a
range scan is quite small relative to the miss latency, we will
assume that the limiting factor is the memory bandwidth.
Roughly speaking, we can estimate this bandwidth-limited
prefetching distance as
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w

where B is the normalized memory bandwidth and w is the
number of cache lines per leaf node, as defined in Table 1.
In practice, there is no problem with increasing k a bit to
create some extra slack, because any prefetches that cannot
proceed are simply buffered within the memory system.*

Selecting the chunk size ¢.  Chunks must be suf-
ficiently large to ensure that we only need to prefetch one
chunk ahead to hide the miss latency of accessing the chunks
themselves. Recall that during the steady-state phase of a
range scan, when we get to a new chunk, we immediately
prefetch the next chunk ahead so that we can overlap its
fetch time with the time it takes to prefetch the leaf nodes
associated with the current chunk. Since the memory hier-
archy only has enough bandwidth to initiate B cache misses
during the time it takes one cache miss to complete, the
chunks would clearly be large enough to hide the latency
of fetching the next chunk if they contained at least B leaf
pointers (there is at least one cache line access for every leaf
visit). For a full tree with no empty leaf slots and no empty
chunk slots, each cache line can hold 2m leaf pointers (since
there are only pointers and no keys), in which case we can
estimate the minimum chunk size in units of cache lines as

c= [%} . @)

To account for empty chunk slots, we can multiply the de-
nominator in equation (3) by the occupancy of chunk slots
(a value similar to the bulkload factor), which would increase
¢ somewhat. Another factor that could (in theory) dictate
the minimum chunk size is that each chunk should contain
at least k leaf pointers so that our prefetching algorithm can
get sufficiently far ahead. However, since k < B from equa-
tion (2), the chunk size in equation (3) should be sufficient.
Increasing ¢ beyond this minimum value to create some ex-
tra slack for empty leaf nodes and empty chunk slots does
not hurt performance in practice.*

Remarks. Given sufficient memory system bandwidth,
our prefetching scheme hides the full memory latency expe-
rienced at every leaf node visited during range scan opera-
tions. With the data structure improvements in Section 3.2,
we also expect good performance on updates.

However, there is a space overhead associated with the
jump-pointer array. Since the jump pointer array only con-
tains one pointer per leaf node, the space overhead is rela-
tively small. Since a next-leaf pointer and a back-pointer are
stored in every leaf, there are at most d — 2 (key, tupleID)
pairs in every leaf nodes (d is defined in Table 1). So the
jump pointer for a full leaf node only takes m as much
space as the leaf node. Given our technique described earlier
in Section 2 for creating wider BT-Tree nodes, the resulting
increase in the fanout d will help reduce this overhead. How-

*Details are in the full paper [7].
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Figure 6: Internal jump-pointer arrays.

ever, if this space overhead is still a concern, we now describe
how it can be reduced further.

3.4 Internal Jump-Pointer Arrays

So far we have described how a jump-pointer array can be
implemented by creating a new esternal structure to store
the jump pointers (as illustrated earlier in Figure 5). How-
ever, there is an existing structure within a BT-Tree that
already contains pointers to the leaf nodes, namely, the par-
ents of the leaf nodes. We will refer to these parent nodes as
the bottom non-leaf nodes. The child pointers within a bot-
tom non-leaf node correspond to the jump-pointers within a
chunk of the external jump-pointer array described in Sec-
tion 3.2. A key difference, however, is that there is no easy
way to traverse these bottom non-leaf nodes quickly enough
to perform prefetching. A potential solution is to connect
these bottom non-leaf nodes together in leaf key order us-
ing linked-list pointers. (Note that this is sometimes done
already for concurrency control purposes [22].)

Figure 6 illustrates the internal jump-pointer array. Note
that leaf nodes do not contain back-pointers to their posi-
tions within their parents. It turns out that such pointers
are not necessary for this internal implementation, because
the position will be determined during the search for the
starting key. If we simply retain the result of the bottom
non-leaf node’s binary search, we will have the position to
initiate the prefetching appropriately.

This approach is attractive with respect to space over-
head, since the only overhead is one additional pointer per
bottom non-leaf node. The overhead of updating this pointer
should be insignificant, because it only needs to be changed
in the rare event that a bottom non-leaf node splits or is
deleted. One potential limitation of this approach, however,
is that the length of a “chunk” in this jump-pointer array
is dictated by the Bt-Tree structure, and may not be eas-
ily adjusted to satisfy large prefetch distance requirements
(e.g., for hiding disk latencies).

In the remainder of this paper, we will use the nota-
tions “p.BT-Tree” and “p;BT-Tree” to refer to pBY-Trees
with external and internal jump-pointer arrays, respectively.
Further details on the algorithms using external and internal
Jjump pointer arrays can be found in the full paper [7].

4. EXPERIMENTAL RESULTS

To facilitate comparisons with CSBT-Trees, we present
our experimental results in a main-memory database en-
vironment. We begin by describing the framework for the
experiments, including our performance simulator and the
implementation details of the index structures that we com-
pare. The three subsections that follow present our exper-
imental results for index search, index scan, and updates.
Finally, we present a detailed cache performance study for
a few of our earlier experiments.

4.1 Experimental Framework
Machine Model. We evaluate the performance im-
pact of Prefetching BT -Trees through detailed simulations

Table 2: Simulation parameters.

I Pipeline Parameters I
Clock Rate 1 GHz
Tssue Width 4 insts/cycle
Functional Units 2 Integer, 2 FP,
2 Memory, 1 Branch

Reorder Buffer Size 64 insts
Integer Multiply /Divide 12/76 cycles
All Other Integer 1 cycle
FP Divide/Square Root 15/20 cycles
All Other FP 2 cycles
Branch Prediction Scheme gshare [15]
[ Memory Parameters I
Line Size 64 bytes

64 KB, 2-way set-assoc.
64 KB, 2-way set-assoc.
32 for data, 2 for inst.

2 MB, direct-mapped

15 cycles (plus any delays
due to contention)

150 cycles (plus any delays
due to contention)

1 access per 10 cycles

Primary Data Cache
Primary Instruction Cache
Miss Handlers

Unified Secondary Cache
Primary-to-Secondary
Miss Latency
Primary-to-Memory

Miss Latency

Main Memory Bandwidth

of fully-functional executables running on a state-of-the-art
machine. Since the gap between processor and memory
speeds is continuing to increase dramatically with each new
generation of machines, it is important to focus on the per-
formance characteristics of machines in the near future rather
than in the past. Hence we base our memory hierarchy on
the Compaq ES40 [8] (one of the most advanced computer
systems announced to date), but we update it slightly to
include a dynamically-scheduled, superscalar processor sim-
ilar to the MIPS R10000 [23] running at a clock rate of
1 GHz. The simulator performs a cycle-by-cycle simula-
tion, modeling the rich details of the processor including
the pipeline, register renaming, the reorder buffer, branch
prediction, branching penalties, the memory hierarchy (in-
cluding all forms of contention), etc. Table 2 shows the key
parameters of the simulator.

Given the parameters in Table 2, one can see that the nor-
malized memory bandwidth (B)—i.e. the number of cache
misses to memory that can be serviced simultaneously—is:

T 150
= —— =15. 4
Taexs 10 “)

This is slightly pessimistic compared with the actual Com-
paq ES40 [8], where B = 16.25, and is intended to reflect
other recent memory system designs [3]. As shown in the full
paper [7], small variations in B do not substantively alter
the results of our studies.

We compiled our C source code into MIPS executables
using version 2.95.2 of the gcc compiler with optimization
flags enabled. We added prefetch instructions to the source
code by hand, using the gcc ASM macro to translate these
directly into valid MIPS prefetch instructions.

B =

B*t-Trees Studied and Implementation Details. Our
experimental study compares pBT-Trees of various node widths
w with BT -Trees and CSB1-Trees. We consider both p?Bt-
Trees and p¥ Bt -Trees (described earlier in Sections 3.2-3.3
and Section 3.4, respectively). We also consider the combi-
nation of both pBT-Tree and CSBT-Tree techniques, which
we denote as a pCSBT-Tree.

We implemented bulkload, search, insertion, deletion, and
range scan operations for: (i) standard BT-Trees; (ii) p”B*-
Trees for node widths w = 2,4,8, and 16; (iii) p?B*-Trees;
and (iv) pEBT-Trees. For these latter two cases, the node



width w = 8 was selected because our experiments showed
that this choice resulted in the best search performance (con-
sistent with the analytical computation in Section 2). We
also implemented bulkload and search for CSB*-Trees and
pCSB*-Trees. Although we did not implement insertion or
deletion for CSB*-Trees, we conduct the same experiments
as in Rao and Ross [20] (albeit in a different memory hierar-
chy) to facilitate a comparison of the results. Although Rao
and Ross present techniques to improve CSB*-Tree search
performance within a node [20], we only implemented stan-
dard binary search for all the trees studied because our focus
is on memory performance (which is the primary bottleneck,
as shown earlier in Figure 1).

Our pBT-Tree techniques improve performance over a range
of key, pointer, and tupleID sizes. For concreteness, we
report experimental results where the keys, pointers, and
tuplelDs are 4 bytes each, as was done in previous stud-
ies [19, 20]. As discussed in Section 2, we use a standard
BT -Tree node structure, consistent with previous studies.
For the BY-Tree, each node is one cache line wide (i.e. 64
bytes). Each non-leaf node contains a keynum field, 7 key
fields and 8 childptr fields, while each leaf node contains a
keynum field, 7 key fields, 7 associated tupleID fields, and
a next-leaf pointer. The nodes of the pBt-Trees are the
same as the BT-Trees, except that they are wider. So for
eight-cache-line-wide nodes, each non-leaf node is 512 bytes
and contains a keynum field, 63 key fields, and 64 childptr
fields, while each leaf node contains a keynum field, 63 key
fields, 63 associated tupleIDfields, and a next-leaf pointer.
For the p®BT-Tree, non-leaf nodes have the same struc-
ture as for the pBt-Tree, while each leaf node has a hint
field and one fewer key and tupleID fields. The only dif-
ference with a p8BT-Tree compared to a pBT-Tree is that
each bottom non-leaf node has a next-sibling pointer, and
one fewer key and childptr fields. For the CSB¥-Tree and
the pCSB*-Tree, each non-leaf node has only one childptr
field. For example, a CSBT-Tree non-leaf node has a keynum
field, 14 key fields, and a childptr field. All tree nodes are
aligned on a 64 byte boundary when allocated.

For the p®Bt-Tree and p?BT-Tree experiments, we need
to select the prefetch distance (for both) and the chunk size
(for the former). According to equations (2) and (4), we
should select k = [g] = [%1 = 2. However, as discussed
in Section 3, it is often advantageous to slightly increase k
in order to create some extra slack. We set k = 3, to create
extra slack for the prefetching of chunks and non-leaf nodes.
(Our sensitivity analysis in [7] showed that selecting k& = 2,
3, or 4 results in similar scan performance.) As for the chunk
size, according to equation (3) and the discussion that fol-
lows, we should select ¢ to be at least [%] = [%1 =1. We
conservatively select ¢ = 8—i.e. each chunk is 8 cache lines
wide—so that each chunk contains 126 leaf pointer fields.
(Our sensitivity analysis [7] showed that selecting ¢ = 1
through 32 results in similar scan performance.)

4.2 Search Performance

We first evaluate index search performance for Bt-Trees,
CSB*-Trees, p”B*-Trees (where w = 2, 4, 8, and 16), and
p?CSB*-Trees (which combine our prefetching approach with
CSB*-Trees).

Varying the number of leaf nodes. Figure 7 shows
the execution time of 100K random searches after bulkload-
ing 10K, 30K, 100K, 300K, 1M, 3M, and 10M keys into the
trees (nodes are 100% full except the 1r00t).5 In the experi-

5Note that throughout this paper, “K” and “M” correspond to 1000
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Figure 7: 100K searches after bulkloading 10K-10M
keys.

Table 3: The number of levels in trees for Figure 7.

| Number of Keys |
[T0K [ 30K [ 100K [ 300K [ IM [ 3M [ T0M ]

Tree Type
Bt-Tree 5 6 6 7 7 8 8
CSBF-Tree 4 5 5 5 6 6 7
p°BT-Tree 4 4 5 5 6 6 6
p BT -Tree 3 3 4 4 4 5 5
ptBT -Tree 3 3 3 4 4 4 4
p BTt -Tree 2 3 3 3 3 4 4
pCSBF-Tree 3 3 3 3 3 4 4

ments shown in Figure 7(a), search operations are performed
one immediately after another (the “warm cache” case);
whereas in the experiments shown in Figure 7(b), the cache
is cleared between each search (the “cold cache” case). De-
pending on the operations performed between the searches,
the real-world performance of an index search would lie in
between the two extremes: closer to the warm cache case for
index joins, while often closer to the cold cache case for single
value selections. From these experiments, we see that: (i)
the BT-Tree has the worst performance; (ii) the trees with
wider nodes and prefetching support (pB"’—Tlrees7 pCSBT-
Tree) all perform better than their non-prefetching coun-
terparts (BT-Tree, CSB*-Tree); and (iii) the p®B*t-Tree is
comparable to or better than all other pBT-Trees over the
entire range of tree sizes. For warm caches, the speedup of
the p®Bt-Tree over the BT-Tree is between a factor of 1.27
to 1.47. The warm cache speedup of the p®B¥-Tree over
the CSB*-Tree is between a factor of 1.14 to 1.28 once the
tree no longer fits in the 1.2 cache. Likewise, the cold cache
speedups are 1.32 to 1.55 and 1.14 to 1.34, respectively.
The cold cache curves provide insight into the index search
performance. The trend of every single curve is clearly
shown in the cold cache experiment: the curves all increase
in discrete large steps, and within the same step they in-
crease only slightly. The large steps for a curve occur when
the number of levels in the tree increases. This can be ver-
ified by examining Table 3, which depicts the number of
levels in the tree for each data point plotted in Figure 7.
Within a step, additional leaf nodes result in more keys in
the root node (the other nodes in the tree remain full), which
in turn increases the cost to search the root. The step-up
trend is blurred in the warm cache curves because the top
levels of the tree may remain in the cache. For different
curves, we can see that generally the higher the tree struc-
ture, the larger the search cost; when trees are of the same
height, the smaller node size yields better performance. We

and 1,000,000, respectively, except for when we refer to the size of a
memory structure (e.g., a cache), in which case they correspond to
1024 and 1,048,576, respectively.
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Figure 8: 100K searches after bulkloading 3M keys
with various bulkload factors.

conclude that the performance gains for wider nodes stem
mainly from the resulting decrease in tree height.

Another observation worth mentioning is that when the
number of levels are the same, the p?’B1-Tree and the CSB*-
Tree have very similar performance. This is because the
second cache line in a p?B7-Tree node stores pointers, and
the cost of retrieving these second lines is partly hidden by
the key comparisons. By eliminating all but one pointer,
the CSB*-Tree has almost the same number of keys as the
p’B*t-Tree, resulting in similar key comparison costs.

Varying the bulkload factor. Figure 8 shows the ef-
fect on search performance of varying the bulkload factor.
All the trees are bulkloaded with 3M (key, tupleID) pairs,
with bulkload factors of 60%, 70%, 80%, 90%, and 100%.
Because the actual number of used entries in leaf nodes in
an experiment is the product of the bulkload factor and the
maximum number of slots (rounded to the nearest integer),
we computed and used the true percentage of used entries
when plotting the data—hence they may not be aligned with
the target bulkload factors. As in the previous experiments,
Figure 8 shows that: (i) the B¥-Tree has the worst per-
formance; (ii) the trees with wider nodes and prefetching
support (pB"’—Tlrees7 pCSB+—Tree) all perform better than
their non-prefetching counterparts (B"’—Tlree7 CSB"’—Tree);
and (iii) the p®BY-Tree is the best of all the pBt-Trees.

In the cold cache experiment, we see a step-down pattern
in the curves: the steps correspond to the number of levels
in the trees, since the tree height decreases (in a step-wise
fashion) as the bulkload factor increases. Within a step,
however, the curves increase slightly. This is because in our
bulkload algorithms, the bulkload factor also determines the
number of keys in non-leaf nodes. So the larger the bulkload
factor, the larger the number of keys in each non-root node,
and hence the larger the key comparison cost.

In the full paper [7], we also present experimental results
for mature trees [20], created by bulkloading 10% of the
(key, tupleID) pairs and then inserting the remaining 90%.
We find similar performance for mature trees as for trees
immediately after bulkloads.

Searches on trees with jump-pointer arrays. Our
next experiment determines whether the different structures
for speeding up range scans have an impact on search perfor-
mance. We use node width w = 8 for these experiments, be-
cause the p® BT -Tree resulted in the best search performance
among the pB*-Trees. Figure 9 compares the search perfor-
mance of the p® BT -Tree, the p® Bt-Tree, and the pd BT -Tree.
The same experiments as in Figure 7 were performed. Re-
call that both the p®BT-Tree and the p®Bt-Tree consume
space in the tree structures relative to the p®Bt-Tree: the
maximum number of keys in leaf nodes is one fewer for the

entries in leaf nodes

(b) cold cache

entries in leaf nodes

(a) warm cache

Figure 9: 100K searches after bulkloading 10K to
10M keys into p?Bt-Trees with and without jump-
pointer arrays.
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Figure 10: Range scan performance.

piBT-Tree, and the maximum number of keys in bottom
non-leaf nodes is one fewer for the p{B*-Tree. Figures 9(a)
and 9(b) show that these differences have a negligible impact
on search performance. In one cold cache case, when 10M
keys are in the tree, the pd B*-Tree suffers from having one
more level than the other two trees, but otherwise both the
warm and cold cache performances are basically the same
for all three trees, over the entire range of 10K to 10M keys.

4.3 Range Scan Performance

In our next set of experiments, we evaluate the effective-
ness of our techniques for improving range scan performance.
We compare BT -Trees, p Bt -Trees, p¢ Bt-Trees, and piB*-
Trees. Asindicated above, we restrict our attention to node
width w = 8 because this is the best width for searches,
which are presumed to occur more frequently than range
scans. As discussed in Section 4.1, we set the prefetching
distance to 3 nodes and the chunk size to 8 cache lines.

Varying the range size and the bulkload factor.
Figure 10 shows the execution time of range scans while
varying (a) the number of tupleIDs to scan per request (i.e.
the size of the range), or (b) the bulkload factor. Because
of the large performance gains for pB*-Trees, the execution
time is shown on a logarithmic scale. In Figure 10(a), the
trees are bulkloaded with 3M (key, tupleID) pairs, using
a 100% bulkload factor. Then 100 random starting keys
are selected, and a range scan is requested for m tupleIDs
starting at that starting key value, for m = 10, 100, 1K,
10K, 100K, and 1M. The execution time plotted for each
m is the total for the 100 starting keys. In Figure 10(b),
the trees are bulkloaded with 3M (key, tupleID) pairs, with
bulkload factors of 60%, 70%, 80%, 90%, and 100%. 100
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random starting keys are then selected, and a range scan is
requested for 1000 tuple I1Ds starting at that value. Between
the range scan requests, the caches are cleared to more accu-
rately reflect scenarios in which range scan requests are in-
terleaved with other database operations or application pro-
grams (which would tend to evict any cache-resident nodes).
As we see in Figure 10, p2BT-Trees and pfB*-Trees achieve
a factor of 6.5 to 8.7 speedup over standard BY-Trees for
range scans of 1K to 1M tupleIDs. As the bulkload fac-
tor decreases, the number of leaf nodes to be scanned in-
creases (since we must skip an increasing number of empty
slots), and hence our prefetching schemes achieve even larger
speedups. Figure 10 also shows the contribution of both as-
pects of our pBT-Tree design to overall performance. First,
extending the node size and simultaneously prefetching all
cache lines within a node while scanning (and performing the
initial search)—similar to what was illustrated earlier in Fig-
ure 3(b)—results in a speedup of 3.5 to 3.7, as shown by the
difference between p®*B*-Trees and B¥-Trees in Figure 10.
Second, by also using jump-pointer arrays to prefetch ahead
across the (extra-wide) leaf nodes, we see an additional speed-
up of roughly 2 in this case, as shown by the improvement of
both p8BT-Trees and p?B*t-Trees over p®Bt-Trees in Fig-
ure 10. Since both pBT-Trees and piBT-Trees achieve
nearly identical performance, there does not appear to be
a compelling need to build an external (rather than an in-
ternal) jump-pointer array, at least for these system param-
eters. (Note that this conclusion depends upon the ratio of
w and k; in other scenarios with different ratios—e.g., when
prefetching to hide disk as well as memory latencies—the
flexibility of an external jump-pointer array may be needed.)
When scanning far fewer than 1K tupleIDs, however, the
startup cost of our prefetching schemes becomes noticeable.
For example, when scanning only 100 tupleIDs, pB*-Trees
are only twice as fast as standard BY-Trees. When scan-
ning only 10 tupleIDs, p® BT -Trees are only slightly faster
than BT-Trees, and p®B*t-Trees and p?Bt-Trees are actu-
ally slower. This suggests a scheme where jump-pointer ar-
rays are only exploited for prefetching if the expected num-
ber of tupleIDs within the range is significant (e.g., 100 or
more). This estimate of the range size could be computed
either by using standard query optimization techniques such
as histograms, or else by simultaneously searching for both
the starting and ending keys to see how far apart they are.

Large segmented range scans. We now consider the
behavior of large range scans. In practice, these large scans
are often broken up into smaller segments either to permit
other operations and queries to proceed, or else to avoid
overflowing the return buffer. For example, an indexed scan
providing sorted input to a sort-merge join operator will
have its return buffer consumed at a rate dependent on
the data profile of the other input to the join. Figure 11
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shows the execution time for performing segmented range
scans: each scan consists of a search for the starting key
followed by 1000 range scan requests, each of which scans
(and places into the return buffer) the next segment of 1000
(key, tupleID) pairs, resulting in a total of 1M pairs. The
trees are bulkloaded with 3M (key, tupleID) pairs, with
bulkload factors ranging from 60% to 100%. The reported
execution times are the total for 100 segmented range scans,
starting from 100 randomly selected starting keys. As we
see in Figure 11, the performance gains for segmented range
scans are similar to what we saw earlier in Figure 10 for
non-segmented range scans.

4.4 Update Performance

In addition to improving search and scan performance,
another one of our goals is to achieve good performance on
updates, especially since this had been a problem with earlier
cache-sensitive index structures [19, 20]. To quantify the im-
pact of pBT-Trees on update performance, Figure 12 shows
the execution time for 100K random insertions or deletions
on a tree bulkloaded with 3M (key, tupleID) pairs, with
bulkload factors ranging from 60% to 100%, and with warm
caches. (The cold cache results exhibit the same trends [7].)
As we see in Figure 12, all three pB*-Tree schemes (i.e.
p®BT-Trees, p2BT-Trees, and p?B"’—Trees) perform roughly
the same, and all are significantly faster than the B*-Tree.
For example, when the bulkload factor is 100%, the pB*-
Trees achieve at least a 1.24 speedup over the BT -Tree for
both insertions and deletions. This result may appear some-
what surprising, given the additional overheads of maintain-
ing the external jump-pointer arrays for pEB¥-Trees.

There are two primary factors contributing to the faster
update times for pBT-Trees compared with the Bt-Tree.
First, search is an integral part of both insertion and dele-
tion, and our pBt-Trees enjoy faster search times due to
their wider nodes (as we saw earlier in Section 4.2). Second,
node splits occur less frequently for wider nodes. Let us
start by considering trees that are not full—.e. with bulk-
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load factors ranging from 60% to 90%. Figure 13(a) shows
that when the bulkload factor is within this range, the num-
ber of the 100K insertions that cause node splits is extremely
small for each of the pBT-Trees, and is even less than 10%
for BT-Trees. Given that Figures 12(a) and (b) show similar
trends to Figure 8 within this range of bulkload factors, we
conclude that the dominant effect is improved search time
for these less-than-full trees.

In contrast, when the trees are full, many insertions will
cause node splits, as shown in Figure 13(b). Due to their
smaller nodes, Bt-Trees suffer far more node splits than
pBT-Trees, and over 40% of the insertions result in multiple
splits due to splitting non-leaf nodes. Hence although the
cost of each node split in a pB¥-Trees is greater, this cost
is more than offset by the reduced frequency of node splits
and the improved search times.

Turning our attention to deletion performance in Fig-
ure 12(b), since both pB*-Trees and BT -Trees use lazy dele-
tion, very few deletions result in a deleted node or a key
redistribution. Hence the performance gains for pBT-Tree
deletions are due solely to faster search times.

45 Cache Performance

Finally, our last set of experiments present a more de-
talled cache performance study, using two representative
experiments: one for index search and one for index range
scan. A central claim of this paper is that the demonstrated
speedups for pBt-Trees are obtained by effectively limiting
the exposed miss latency of previous approaches. In these
experiments, we confirm that claim.

Our starting point is the experiments presented earlier in
Figure 1 which illustrated the poor cache performance of
existing B*-Trees on index search and scan. We reproduce
those results now in Figure 14, along with several variations
of our pBt-Trees. The bars on the left (labeled “search”)
correspond to the experiment shown earlier in Figure 7(a)
with 10M (key, tupleID) pairs bulk-loaded, and the bars
on the right (labeled “scan”) correspond to the experiment
shown earlier in Figure 10(a) with 1M tupleIDs scanned.

Each bar in Figure 14 represents execution time normal-
ized to a B*-Tree, and is broken down into the following
three categories that explain what happened during all po-
tential graduation slots.® The bottom section (busy) is the
number of slots where instructions actually graduate. The
other two sections are the number of slots where there is no
graduating instruction, broken down into data cache stalls
and other stalls. Specifically, the top section (dcache stalls)
is the number of such slots that are immediately caused by
the oldest instruction suffering a data cache miss, and the

8The number of graduation slots is the issue width (4 in our simu-
lated architecture) multiplied by the number of cycles. We focus on
graduation slots rather than issue slots to avoid counting speculative
operations that are squashed.

middle section (other stalls)is all other slots where instruc-
tions do not graduate. Note that the dcache stalls section
is only a first-order approximation of the performance loss
due to data cache misses: these delays also exacerbate subse-
quent data dependence stalls, thereby increasing the number
of other stalls.

As we see in Figure 14, pBT-Trees significantly reduce the
amount of exposed miss latency (i.e. the dcache stalls com-
ponent of each bar). For the index search experiments, we
see that while CSB¥-Trees eliminated 20% of the data cache
stall time that existed with BT -Trees, p? Bt-Trees eliminate
45% of this stall time, thus resulting in an overall speedup
of 1.47 (compared with 1.15 for CSB*-Trees). A signifi-
cant amount of data cache stall time still remains for index
searches, since we still experience the full miss latency each
time we move down a level in the tree (unless the node is al-
ready in the cache due to previous operations). Eliminating
this remaining latency appears to be difficult, as we will dis-
cuss in the next section. In contrast, we achieve nearly ideal
performance for the index range scan experiments shown
in Figure 14, where both p8BT-Trees and pf BT -Trees elimi-
nate 97% of the original data cache stall time, resulting in an
impressive eightfold overall speedup. These results demon-
strate that the pBT-Tree speedups are indeed primarily due
to a significant reduction in the exposed miss latency.

5. DISCUSSION

We now discuss several possible improvements to pB7T-
Trees and related issues. While our approach of using pre-
fetching to create wider nodes improves search performance
by a factor of 1.2-1.5, we still suffer a full cache miss la-
tency at each level of the tree. Unfortunately, this is a very
difficult problem to solve given: (i) the data dependence
through the child pointer; (ii) the relatively large fanout of
the tree nodes; and (iii) the fact that it is equally likely that
any child will be visited (assuming uniformly distributed
random search keys). While one might consider prefetching
the children or even the grandchildren of a node in parallel
with accessing the node, there is a duality between this and
simply creating wider nodes. Compared with our approach,
prefetching children or grandchildren suffers from: (i) addi-
tional storage overhead for the children and grandchildren
pointers, and (ii) the restriction that the “size” of a node
(i-e. the number of cache lines prefetched) can only grow by
multiples of the tree fanout.

Extending the idea of adding pointers to the bottom non-
leaf nodes, it is possible to use no additional pointers at all.
Potentially, we could retain all the pointers from the root to
the leaf during the search, and then keep moving this set of
pointers, sweeping through the entire range prefetching the
leaf nodes. Note that with wider nodes, trees are shallower
and this scheme may be feasible.

Lehman and Carey, in an early paper on index structures
for main memory databases, proposed and studied the T-
Tree [11, 12]. At the time of their study (the mid-80’s), the
T-Tree outperformed the Bt-Tree, and was considered the
index structure of choice for main memory databases for over
a decade. However, more recent studies have shown that the
B*-Tree outperforms the T-Tree on modern processors [19],
due in large part to the exponential growth these past 15
years in cache miss latency relative to processor speed.

Previous work has also considered key compression schemes
(e.g., [4, 6, 9]), in order to pack more keys into an index
node. As with CSBT-Trees, these techniques can be used in
conjunction with our approach, as desired.

Although our discussions and experiments have focused



on main memory databases, pBT-Trees can also be used to
improve both the I/O performance and the memory perfor-
mance of disk-resident databases. Because the index node
size for a disk-resident database is typically a disk page of
4KB, the fanout is much larger than with main memory
indices. This may effect the benefits of using even wider
nodes for searches. However, our range scan prefetching
techniques applied to pages would likely continue to have a
significant benefit. Furthermore, main memory performance
is important even for disk-resident databases, so it would be
interesting to apply our methods for both cache lines and
pages, and quantify the overall performance gains.

6. CONCLUSIONS

While eliminating child pointers through data layout tech-
niques has been shown to significantly improve main mem-
ory B¥-Tree search performance, a large fraction of the ex-
ecution time for a search is still spent in data cache stalls,
and index insertion performance is hurt by these techniques.
Moreover, the cache performance of index scan (another im-
portant Bt-Tree operation) has not been studied. In this
paper, we explored how prefetching could be used to improve
the cache performance of index search, update, and scan op-
erations. We proposed the Prefetching B - Tree (pB+—Tree)
and evaluated its effectiveness in modern memory systems.

We showed that the optimal Bt-Tree node size is often
wider than a cache line on a modern machine, when prefetch-
ing is used to retrieve the pieces of a node, effectively over-
lapping multiple cache misses. Our results can be summa-
rized as follows:

e For index search, this prefetching technique achieves a
speedup of 1.27 to 1.55 over the BT-Tree, by decreasing
the height of the tree.

o For index updates (insertions and deletions), the tech-
nique achieves a speedup of 1.24 to 1.52 over the BT-
Tree, due to the faster search and the less frequent
node splits with wider nodes.

e Forindex scan, the technique achieves a speedup of 3.5
to 3.7 over the B*-Tree, again due to the faster search
and wider nodes. Moreover, we proposed jump-pointer
arrays, which enable effective range scan prefetching
across node boundaries. Overall, the pBT-Tree achieves
a speedup of 6.5 to 8.7 over the BT-Tree for range
scans. We proposed two alternative implementations
of jump-pointer arrays, with comparable performance.

From our results, we conclude that the cache performance
of BY-Tree indices can be greatly improved by exploiting
the prefetching capabilities of state-of-the-art computer sys-
tems. We believe that this work makes an important con-
tribution towards applying prefetching techniques to advan-
tage throughout a DBMS.
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