Repairing Faulty Mixture Models using Density Estimation

Peter Sand
Andrew W. Moore

PSAND@CS.CMU.EDU
AWM@CS.CMU.EDU

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

Previous work in mixture model clustering
has focused primarily on the issue of model
selection. Model scoring functions (including
penalized likelihood and Bayesian approxi-
mations) can guide a search of the model pa-
rameter and structure space. Relatively lit-
tle research has addressed the issue of how
to move through this space. Local optimiza-
tion techniques, such as expectation maxi-
mization, solve only part of the problem; we
still need to move between different local op-
tima. The traditional approach, restarting
the search from different random configura-
tions, is inefficient. We describe a more di-
rected and controlled way of moving between
local maxima. Using multi-resolution kd-
trees for fast density estimation, we search
by modifying models within regions where
they fail to predict the datapoint density. We
compare this algorithm with a canonical clus-
tering method, finding favorable results on a
variety of large, low-dimensional datasets.

1. Introduction

Gaussian Mixture Models (GMMs) (Duda & Hart,
1973) are commonly used, both for discovering clus-
ters in data and for summarizing multidimensional dis-
tributions, because of their statistical soundness and
their ability to represent complex relationships in data.

Given a set of mixture probabilities p;, where p; > 0
and > p; = 1, we can define the general form a mixture
model distribution with K components:

f(z) = Zpifﬁi(l‘)

In the case of Gaussian mixture models, x is a real-
valued vector and each component ¢;(z) is a normal
distribution with mean y; and covariance ;. Learning
a GMM means finding, in this space of structures and

parameters, the model that best describes a dataset’s
distribution. The traditional solution is repeated local
optimization from various initial configurations. We
present a new approach that builds GMMs more effi-
ciently by repairing faulty models, rather than throw-
ing them out and starting over.

2. Previous work
2.1 Local GMM optimization

The foundation for most GMM clustering algorithms
is Expectation Maximization (EM) (Dempster et al.,
1977). EM provides iterative improvements to given
GMM parameters (3;, p#;, and p;), eventually converg-
ing to a local likelthood maximum. It is much faster
than, for example, gradient descent, but the computa-
tional cost should not be taken lightly. Many iterations
of EM are needed for convergence, and each iteration
must touch each datapoint-Gaussian pair once, where
each of those touches involves non-trivial computation.

Fortunately, recent work (Priebe, 1994; Bradley et al.,
1999; Meng & van Dyk, 1997; Jamshidian & Jennrich,
1997; Moore, 1999) has shown that this can be ac-
celerated by approaches such as one-pass incremental
algorithms, controlled subsampling, and quasi-Newton
accelerators. Many of these methods can be used in
conjunction with our algorithm, but for the sake of a
fair comparison with existing algorithms we will use
standard, slow EM in the results (Section 4).

2.2 Global GMM optimization

EM solves only part of the clustering problem. The
quality of the local maximum found by EM depends
heavily on the positions of the clusters used to initialize
EM (Bradley & Fayyad, 1998). We need some way to
choose among the different local maximafound by EM.

2.2.1 MODEL SELECTION CRITERIA

The standard approach to global GMM optimization
1s to guide the model selection using a scoring function

that allows comparisons between models with different
values of K (number of clusters) and between different
local maxima within a given value of K.

The likelihood of the data given the model i1s not an
acceptable score function because it will continue to
increase as we add more components; we need a crite-
rion that favors concise models.

Recent work suggests that cross-validation is effec-
tive (Smyth, 2000). By building the model using a set
of training data and evaluating the model using the
likelihood of a separate set of testing data, we avoid
the problem of building excessively complex models.
Unfortunately, to do this in a robust manner, the cross-
validation needs to use many partitions of the data, re-
sulting in a computational cost much larger than that
of other scoring methods.

Among the fastest scoring criteria are penalized like-
lihood functions. These compute the likelihood on
a single training set and give a penalty for model
complexity. One such method is the Akaike Infor-
mation Criterion (AIC) (Akaike, 1974). This is a
function of the log-likelihood of the data D given the
model M and the number of model parameters Mp:

AIC(M) = loglike(D | M) — Mp.!

Use of AIC scoring generally results in a good fit to
the dataset’s density distribution, but it often causes
an overestimation of the number of components. To
address this problem, the Bayesian Information Crite-
rion (BIC) (Schwarz, 1978) provides a larger penalty
based on the number of datapoints N:

BIC(M) = loglike(D | M) — w
MCLUST-EM (Fraley & Raftery, 1998) uses BIC
to choose between different values of K and between
different parameterizations of the covariance model.
For each covariance model and each value of K,
MCLUST-EM uses hierarchical agglomeration (Fra-
ley, 1998) to create a set of initial cluster centers,
then runs EM to find a local maximum. MST-
HMCLUST-EM (Posse, 1998) uses a minimum span-
ning tree to reducing the cost of the distance matrix
used to perform hierarchical agglomeration.

The AutToCrass algorithm (Cheeseman & Stutz,
1995) specifies a prior distribution for each model pa-
rameter. Since each prior multiplies the joint proba-
bility by a value less than 1, the AuTOCLASS scoring

YAIC is sometimes defined as having the reverse sign of
the formulation given here; the convention throughout this
paper is that we seek to maximize, not minimize our score
functions

function acts like a penalized likelihood. Rather than
looping over values of K| AUTOCLASS samples values
of K from a log-normal distribution fit to scores for
previous values of K.

The minimum message length (MML) (Wallace &
Dowe, 2000) score function is defined as the number of
bits required to encode both the model and the data
given the model. Minimizing the length of this encod-
ing is equivalent to maximizing the probability of the
model given data.

2.2.2 MODEL INITIALIZATION AND MODIFICATION

The algorithm we present in this paper can use any
of the scoring functions described above. The choice
of the best GMM selection methods for clustering and
density estimation is a hotly debated topic (Keribin,
1997; Geiger et al., 1998), but is also an orthogonal
issue to the topic of this paper—once you have a cri-
terion, how do you search for a structure that scores
well by the criterion?

The typical answer to this question (the approach
used by AUTOCLASS and others) is repeated trials
based on randomly sampling data. Experiments have
shown that other common methods for initializing EM,
such as hierarchical agglomerative clustering, perform
no better than the naive approach of random sam-
pling (Meila & Heckerman, 1998).

A new method (Bradley & Fayyad, 1998), one that
does perform better than the naive approach, is based
on clustering of clusters. A number of small samples
are taken to estimate locations of high datapoint den-
sity (potential cluster centers), which are then com-
bined and smoothed using K-MEANs (Duda & Hart,
1973). This method increases the probability that EM
converges to a good model, but it does not provide a
way to proceed if the model is not good enough; the
process must restart, rather than recycle the structure
found by the previous optimization.

Reversible-jump Markov chain Monte Carlo (MCMC)
(Green, 1995) methods have been used to improve
GMMs by splitting and merging clusters (Williams,
2000). This technique is like ours in that it makes
structural changes to improve faulty clusterings, rather
than forcing the search to restart from a new initial
model. While the MCMC approach provides a strong
theoretical framework for mixture model search, our
emphasis is computational efficiency.

The REFINEMODELACCURACY algorithm (Shanmu-
gasundaram et al., 1999) has much in common with
our work. The algorithm repeatedly adds clusters to
regions in which a previous model underpredicts the

data. We extend this approach by placing it within a
hill-climbing search framework, where we add and re-
move clusters guided by an externally specified GMM
evaluation criterion.

2.3 Clustering with other models

The focus of this paper is constructing Gaussian mix-
ture models, but we will briefly mention a few other
forms of clustering that share common elements with
our approach.

Numerous algorithms have been developed that do
clustering via combining and separating clusters. This
occurs not just in the context of hierarchical cluster-
ing; for example, the X-MEANS algorithm (Pelleg &
Moore, 2000) splits and merges groups of clusters as
part of a hill-climbing search for a good value of K for
K-MEANS clustering.

The BIRCH algorithm (Zhang et al., 1996) summa-
rizes data in a compact, balanced tree with sufficient
statistics to compute a variety of cluster and inter-
cluster properties. BIRCH is very efficient on large
and high-dimensional datasets, but the models it pro-
duces are quite different in nature than GMMs. A
BIRCH model (like a K-MEANs model) does not rep-
resent complex distributions, such as those containing
clusters within clusters or unusually shaped clusters
(Gaussians with full covariance).

The CF-KERNEL (Zhang et al., 1999) method for den-
sity estimation uses a BIRCH tree structure to create
what is effectively a Gaussian mixture model. Like
other common kernel approaches, this uses spheri-
cal Gaussians, which can be advantageous in high-
dimensions, but reduces model flexibility in low dimen-
sions. Because the CF-kernel algorithm is aimed at the
problem of density estimation, it does not address the
issue of selecting the correct number of components for
a concise representation of data clusters.

3. Clustering via Model Repair

The KD-CLusT algorithm performs clustering by re-
cycling previously learned models. To conserve com-
putation, we focus on repairing models only where they
are damaged, rather than repeatedly rebuilding mod-
els from scratch.? The primary tool used for our model
repair work is density estimation: we modify a model
at regions where there is a large residual between the
model’s predicted density and the actual data density.

20ur motivation is similar to the idea behind boost-
ing, used for supervised learning of numeric and symbolic
functions (Freund & Schapire, 1996)

On large, low-dimensional datasets, we can per-
form this density estimation efficiently using multi-
resolution kd-trees (see (Moore, 1999)). A kd-tree
groups data spatially, using a hierarchy of hyper-
rectangles. Each node of the tree includes a bounding
box that specifies a subset of the data. The children
of a kd-node are smaller bounding boxes, generated by
splitting along the parent’s widest axis.

3.1 Adding clusters

Given an existing model, we seek to add clusters to re-
gions where the model underpredicts the actual num-
ber of datapoints. In a given region R, we compute
the residual between Dgata(R), the density given by
the data, and Dpoqel(R), the density predicted by the
model. We wish to ignore regions with negative un-
derprediction (i.e. overprediction), so we define under-
prediction in the following form:

U(R) = max(Dgata(R) — Dmodel (1), 0)

3.1.1 DENSITY ESTIMATION WITH kD-TREES

While underprediction is defined on any region in the
dataspace, we consider only regions consisting of the
hyper-rectangles of a kd-tree. This provides an effi-
cient partitioning of a low-dimensional dataspace and
allows value of Dgata(R) to be stored in nodes of the
tree. For each node, while building the kd-tree, we
compute the data density from N(R), the number of
points in the node’s region, and V(R), the volume of
the node’s region:?

Ddata(R) = T oy

The use of hyper-rectangular regions also provides
a simple way to estimate the predicted density,
Diodel (R). For a model M, the predicted number of
points in a region R is a function of the total number
of datapoints, N, and the model’s pdf:

N [, pdf, dR
Dmodel(R) = Rv(iR;W

We use a pseudo-trapezoidal approximation to this in-
tegration by taking the average of the model’s pdf
at each corner of the hyper-rectangle and multiply-
ing by the rectangle’s volume. A d-dimensional hyper-
rectangle has 2¢ corners, so when clustering in high di-
mensions, a different integral approximation must be

3This biases Dyata(R) toward higher densities since the
region defined by a kd-node is actually a bounding box.

used (for example averaging the values at the center
of each face of the hyper-rectangle; this requires just
2d values).

This level of approximation will suffice because we are
seeding model components that will later be optimized
with EM. This allows us to use a crude model to guide
the construction of a good model.

3.1.2 CREATING A NEW CLUSTER

Given the underprediction U(R) for each region R, we
can now decide where to place a new cluster. We could
simply choose the region with the greatest underpre-
diction, but, in order to consider several different lo-
cations for placing a new cluster, we choose one region
at random, where the probability of selection is pro-
portional to the region’s underprediction.

We place a new Gaussian at the center of the se-
lected region’s hyper-rectangle. The Gaussian is given
a spherical covariance, where the radius is based on
the number of existing Gaussians (we create smaller
Gaussians when the model already has a large number
of Gaussians). We then stretch the sphere according
to the width of the data in each dimension.

The mixture weight for the new cluster is tentatively
assigned to be %, where K is the number of clusters
(including the new cluster). The total mixture weight
is then renormalized to equal 1.

After adding the cluster, we optimize all of the param-
eters (Gaussian center, covariance, and weight) using
a sequence of EM steps. Thus we can maintain a high
level of statistical robustness, despite our simplistic
methods for determining the initial parameters of our
new cluster.

3.1.3 HANDLING LARGE DATASETS

The accuracy of the underprediction function U(R)
depends on the size of the regions we consider. If a
region is too small, we may find that it contains so
few datapoints that the data density Dgata(R) is dom-
inated by noise. If a region is too large, we may find
that the majority of a Gaussian lies within it, causing a
large underestimation of the model density Dioder (R)
because our integral approximation considers only the
region’s corners.

Given enough data, we can avoid both of these prob-
lems. To obtain regions that are neither too small
nor too large, we consider only leaf nodes in a kd-tree
which has been pruned such that each node has a cer-
tain minimal fraction of the datapoints. This method

is robust in that the same pruning factor can be used
for a wide range of datasets.

By pruning based on a fraction of the dataset size, we
can traverse the tree in constant time with respect to
the number of datapoints. This allows us to quickly
estimate underprediction on very large datasets. The
bottleneck then becomes the sequence of EM steps
performed after every model modification. However,
as mentioned in section 2.1, various methods exist for
performing high-speed EM on large datasets.

3.2 Removing clusters

A GMM constructed for clustering (as opposed to a
GMM built for density modelling) should concisely de-
scribe groupings of data. The importance of model
simplicity is reflected in many of the scoring functions
described in Section 2.2.1. Thus, in order to maximize
our score, we provide a method of model pruning.

Our cluster removal criterion is based on the following
intuitive reasoning: if EM determines that a cluster
is unimportant, it will assign the cluster a small mix-
ture weight (p;). Thus, to prune a GMM, we remove
one cluster, where the probability of removal is propor-
tional to the inverse mixture weight. We then rescale
the remaining mixture weights to sum to 1. This re-
moval operation is quite fast because it does not con-
sider any datapoints (it simply uses the existing set of
clusters).

3.3 Structure Search

The KD-CrLusT algorithm combines these cluster ad-
dition and cluster removal operations using a hill-
climbing search algorithm that seeks to maximize a
given scoring function. The search moves through the
GMM parameter and structure space by adding clus-
ters, removing clusters, and performing sequences of
EM steps. If a change to the model results in a lower
score, we revert to the previous model and try a dif-
ferent change. This repeats until time expires.

A single iteration of the KD-CLUST search can be sum-
marized as follows:

1. We first choose whether to move towards the current
local maximum or to jump to a different local maxi-
mum. With a probability of Pjump, we select the later.
Otherwise, we skip to step 3.

2. If we choose to jump to a different local maximum, we
add or remove one cluster. If we improved the model
last time we added a cluster, we add again; other-
wise we remove a cluster. (Likewise, if we improved
the model last time we removed a cluster, we remove
again; otherwise we add a cluster.)

3. We perform a sequence of EM iterations. Ideally we
would run EM to convergence, but to save time, we
run a small number of iterations (Njers).

4. The resulting model is evaluated using a given score
function. If the score is greater than the previous
score, we keep the model; otherwise, we revert to the
previous model.

Because the algorithm is given no initial knowledge
of the correct number of clusters, we start with an
empty model containing no clusters. In order to move
efficiently toward a better model, we begin our search
by making many quick changes to the model. As the
search progresses, we move more slowly, spending more
time using EM to refine the model.

To do this, we vary Piump from 1 to 0 and Niers from 1
to 10, both linearly as a function of time. We could use
a simulated-annealing approach, where these parame-
ters vary with an exponentially decaying temperature
parameter, but instead we choose linear variation to
reduce the algorithm’s quantity of ad-hoc external pa-
rameters.

4. Results
4.1 Datasets

In order to evaluate our algorithm on a wide variety of
GMMs, we use datasets generated by sampling from
artificially constructed mixture models. We create a
semi-random GMM by combining a set of K inde-
pendently generated Gaussians, using uniform mixture
weights: p; = % Each Gaussian has a mean within
the unit square and a covariance matrix with diago-
nal elements between 0 and ¢ (where ¢ determines the
expected width of the Gaussian) and non-diagonal el-
ements that ensure semi-positive definiteness.

For this paper we consider three artificial datasets: Dy,
generated from a set of 50 two-dimensional Gaussians
(with ¢ = 0.0016), D5, generated from a set of 100
two-dimensional Gaussians (with ¢ = 0.0004), and Ds,
generated from a set of 50 three-dimensional Gaussians

(with ¢ = 0.0004).

Real-world clustering applications are abundant, rang-
ing from web-page grouping to tissue segmentation.
We consider three real-world datasets: D4, which is
generated from the density function implied by a pro-
tein gel experiment, Dy, which gives the spatial distri-
bution of a set of galaxies within a region in the sky,
and Ds, which is sampled from an image in a large
astronomical dataset.

The datasets are summarized in Table 1. Datasets D,
and Dy are shown in Figure 7.

4.2 Comparison with AuToCLASS

We compare KD-CLUsT with AUTOCLASS-C version
3.3.3. We choose AuT0CLASS as our basis of com-
parison because it is well-known, fully-developed, and
well-documented. Furthermore, AUTOCLASS gener-
ates results that are said (Wallace & Dowe, 2000) to be
comparable with the results generated by other GMM
clustering algorithms.

Both KD-CrLusT and AuT0oCLASS were compiled from
C source code with optimization enabled. The algo-
rithms were configured to terminate each trial after
3000 seconds. Both algorithms were run on the same
dedicated machine, where the OS and other process
accounted for less than 1% of the clock time.

We configured KD-CrLusT and AUTOCLASS to use
GMMs with full covariance matrices. We set KD-
CLUST to use the log-likelihood of a holdout set (30%
of the training set) for internal scoring. For the sake of
a fair comparison, we used the standard EM algorithm
for KD-CLusT, the same as used by AUTOCLASS.

The algorithms were scored using 10-fold likelihood
cross-validation. A model was generated for each
training set and the log-likelihood was computed for
that model on the corresponding test set. We show a
95% confidence interval on the mean value of the score
for each algorithm on each dataset.

The results are summarized in Table 2. For five of
the six datasets, KD-CLUST obtained a larger test-set
likelihood than AuToCLAss. On the sixth dataset,
the results were inconclusive. As a another point of
comparison, we give training set BIC scores in Table 3.

As previously noted, the choice of a GMM evalua-
tion criterion is widely debated. We believe that the
use of cross-validated likelihood is a reasonable way to
compare GMM algorithms because it avoids the com-

Figure 7. Datasets D (left) and D4, each shown with a
sampling of 10,000 datapoints.

it

Figure 1: A dataset generated from a mixture of 4 Figure 2: A plot of the estimated density based on a
Gaussians, shown with a clustering generated from 3 kd-tree; the thin white lines correspond to gaps be-
random cluster centers, after EM has converged to a tween leaf nodes of the kd-tree, i.e. regions between

local maximum. neighboring bounding boxes.

Figure 3: A plot of the density predicted by the model, Figure 4: Underprediction is defined as the residual

using a kd-tree with approximate integration. between the actual density (Figure 2) and predicted
density (Figure 3). Note that most of the underpre-

diction density is concentrated in the upper left where
a single cluster in the model is trying to fit two actual
clusters.

Figure 5: Using the underprediction function, we ran- Figure 6: After a series of EM steps, the model fits
domly select a location for a new cluster. the data much better than the 3-cluster model shown
in Figure 1.

Table 1: Datasets

Table 2: Mean test-set log-likelihood

Table 3: Mean training-set BIC

Dser PoinTs Dims DseT AuToCLAss KD-CrLusT DseT AuToCLAss KD-CrLusT
Dy 50000 2 Dy 7631 + 161 7995 + 44 Dy 74056 + 669 78362 £ 310
D 50000 2 D 8438 + 682 9420 + 88 D 78544 + 5054 89707 4+ 1039
D3 20000 3 D3 10366 £ 495 11056 & 141 D3 89354 £ 7350 107403 £ 1775
Dy 50000 2 Dy 13691 & 135 14382 4+ 112 Dy 137375 &+ 1312 140965 + 1274
Ds 11195 2 Ds —11297 £ 183 —9434 4 29 Ds —95501 £+ 57 —96147 £+ 156
De 50000 2 De 21279 + 325 21323 + 134 De 211903 + 418 212202 £ 229

plicated issues surrounding penalized likelihood and
Bayesian approximations. Nonetheless, because each
algorithm is trying to optimize it’s own model selection
criterion, the comparison is not strictly fair.

4.3 Model repair in action

This section provides an illustration of KD-CLUST’s
ability to repair models generated by other algorithms.
We seek simply to provide a proof of concept, so we
consider just one dataset, D;. Half of the dataset is
used as a training set and half is used as a test-set.
From the training set we create a set of initial mod-
els using BIRCH, K-MEaANs, AuToCrLass, and KD-
CrusT. We then run KD-CrusT for 1000 seconds on
each of these initial models. We compute the test-
set log-likelihood of each model to determine whether
KD-CLUST has made an improvement.

To create initial models from AuToCLASS and KD-
CLusT, we use the same configuration as used in the
previous experiments. For BIRCH and K-means, we
need to perform some sort of model conversion.

While AuToCLass and KD-CLUST automatically de-
termine the number of clusters, for simplicity, we in-
struct BIRCH to find exactly 50 clusters. We convert
the BIRCH output to a GMM by placing a Gaus-
sian at each BIRCH centroid. Mixture weights are
assigned according to the fraction of datapoints that
BIRCH assigned to each cluster. Each Gaussian is
given a spherical covariance with a variance equal to
the squared mean distance from the centroid to the
cluster’s datapoints. We use this statistic because it
1s provided directly by BIRCH; the GMM parameters
(including the covariance size and shape) are subse-
quently optimized by running EM to convergence.

We run K-MEANS with K = 50 and convert the re-
sults to a GMM following the same steps used for the
BIRCH model, including a sequence of EM iterations
to put the model into a locally optimal state.

The results are given in Table 4. For BIRCH and
K-MEANS, the initial score is computed after running
EM to convergence.

5. Conclusion

Within this set of experiments, the KD-CLUST per-
forms quite well. Unfortunately, on high-dimensional
datasets, the performance suffers due to the computa-
tional limitations of kd-trees. We have, nonetheless,
demonstrated the feasibility of this model repair ap-
proach to clustering, and this concept does not depend
on kd-trees. Using different techniques for localizing
the regions of disparity between a dataset and a mix-
ture model, this model repair framework may be just
as useful in higher dimensions.

In the future we intend to address this dimensionality
issue. The problem of high-dimensional density esti-
mation is difficult (Scott, 1992), but not devoid of po-
tential solutions. Recent work suggests that random
projection (Dasgupta, 2000) is an effective and efficient
way to leverage low-dimensional clustering algorithms
into higher dimensions. This and other methods of
dimensionality reduction (such as (Talavera, 1999))
could allow our current kd-tree approach to be used
on a much wider range of datasets. Another approach
could be to replace kd-trees with a different mecha-
nism for spatially representing data distribution, such
as a CF-kernel tree (Zhang et al., 1999) or a general-
ized metric tree (for example (Moore, 2000)). A third
solution could be to modify the smoothed subsampling
approach (Bradley & Fayyad, 1998) so that instead of
finding cluster centers, we find regions in need of model
repair (perhaps by filtering the sample sets according
to the model pdf in order to remove points already
explained by the model).

Table 4: Test-set log-likelihood,

before and after model repair.

INITIAL INITIAL FINAL
ALGORITHM SCORE SCORE
BIRCH 39721 39746
K-MEANS 39808 39830
AuToCLAss 39615 39807
KD-CrLusT 39843 39882

References

Akaike, H. (1974). A new look at Statistical Model Identi-
fication. IFEF Transactions on Automatic Control, 19.

Bradley, P., & Fayyad, U. (1998). Refining Initial Points
for K-Means Clustering (Technical Report). Microsoft
Research.

Bradley, P., Fayyad, U., & Reina, C. (1999). Scaling clus-
tering algorithms to large databases. Proceedings Fourth
International Conference on Knowledge Discovery and

Data Mining. AAAI Press.

Cheeseman, P., & Stutz, J. (1995). Bayesian Classifica-
tion (AutoClass): Theory and Results. In U. Fayyad,
G. Piatesky-Shapiro, P. Smyth and R. Uthurusamy
(Eds.), Advances in Knowledge Discovery and Data Min-
ing. AAAT Press.

Dasgupta, S. (2000). Experiments with Random Projec-
tion. Proceedings of the 16th conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, Series B, 39,
1-38.

Duda, R. O., & Hart, P. E. (1973). Pattern Classification
and Scene Analysis. John Wiley & Sons.

Fraley, C. (1998). Algorithms for model-based Gaussian hi-
erarchical clustering. SIAM Journal on Scientific Com-
puting.

Fraley, C., & Raftery, A. E. (1998). MCLUST: Software for
Model-Based Cluster and Discriminant Analysis (Tech-
nical Report). University of Washington.

Freund, Y., & Schapire, R. E. (1996). Experiments with a
new boosting algorithm. Proceedings of the 13th Interna-
tional Conference on Machine Learning (pp. 148-156).
Morgan Kaufmann.

Geiger, D., Heckerman, D., King, H., & Meek, C. (1998).
Stratified Exponential Families: Graphical Models and
Model Selection (Technical Report). Microsoft Research.

Green, P. (1995). Reversible jump Markov chain Monte
Carlo computation and Bayesian model determination.
Biometrica, 82, 711-732.

Jamshidian, M., & Jennrich, R. 1. (1997). Acceleration
of the EM Algorithm by using Quasi-Newton Methods.
Journal of the Royal Statistical Society, 59, 569-587.

Keribin, C. (1997). Consistent Estimation of the Order of
Migture Models (Technical Report). Université d’Evry-
Val d’Essonne.

Meila, M., & Heckerman, D. (1998). An FEzperimen-
tal Comparison of Several Clustering and Initialization

Methods (Technical Report). Microsoft Research.

Meng, X., & van Dyk, D. (1997). The EM Algorithm—An
Old Folk-Song Sung to a Fast New Tune. Journal of the
Royal Statistical Society, 59, 511-567.

Moore, A. W. (1999). Very fast mixture-model-based clus-
tering using multiresolution kd-trees. Advances in Neu-
ral Information Processing Systems 10 (pp. 543-549).
San Francisco: Morgan Kaufmann.

Moore, A. W. (2000). The Anchors Hierarchy: Using
the triangle inequality to survive high dimensional data.
Twelfth Conference on Uncertainty in Artificial Intell:-
gence. AAAI Press.

Pelleg, D., & Moore, A. W. (2000). X-means: Extending
K-means with efficient estimation of the number of clus-
ters. Proceedings of the Seventeenth International Con-
ference on Machine Learning. San Francisco: Morgan
Kaufmann.

Posse, C. (1998). Hierarchical Model-Based Clustering for
Large Datasets (Technical Report). University of Min-
nesota.

Priebe, C. (1994). Adaptive Mixtures. Journal of the
American Statistical Association, 89, 796-806.

Schwarz, G. (1978). Estimating the dimension of a model.
Annals of Statistics, 6, 461-464.

Scott, D. W. (1992). Multivariate Density Estimation. Wi-
ley.

Shanmugasundaram, J., Fayyad, U., & Bradley, P. (1999).
Compressed Data Cubes for OLAP Aggregate Query
Approximation on Continuous Dimensions. Proceedings
Fifth International Conference on Knowledge Discovery

and Data Mining. ACM.

Smyth, P. (2000). Model Selection for Probabilistic Clus-
tering Using Cross-validated Likelihood. Statistics and
Computing, 10, 63-72.

Talavera, L. (1999). Feature Selection as a Preprocess-
ing Step for Hierarchical Clustering. Proceedings of the
16th International Conference on Machine Learning (pp.
389-397). Morgan Kaufmann.

Wallace, C. S., & Dowe, D. L. (2000). MML Clustering
of Multi-state Poisson, von Mises Circular and Gaussian
distributions. Statistics and Computing, 10, 73-83.

Williams, C. K. . (2000). A MCMC approach to Hier-
archical Mixture Modelling. Advances in Neural Infor-
mation Processing Systems 12 (pp. 680-686). Morgan
Kaufmann.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996).
BIRCH: An Efficient Data Clustering Method for Very
Large Databases. Proceedings of the Fifteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems : PODS 1996. ACM.

Zhang, T., Ramakrishnan, R., & Livny, M. (1999). Fast
Density Estimation Using CF-kernel for Very Large
Databases. Proceedings Fifth International Conference
on Knowledge Discovery and Data Mining. ACM.

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

