Scheduling and Reliable Lead Time Quotation for
Orders with Availability Intervals and Lead Time

Sensitive Revenues

Pinar Keskinocak R. Ravi Sridhar Tayur

February 1999; Revised February 2000

Abstract

Motivated by applications in the manufacturing and service industries, we con-
sider two models for co-ordinating scheduling with lead time quotation: a basic
model with a single customer type, and an enhanced model where an additional
second customer type expects immediate service or production. In both mod-
els, revenues obtained from the customers are sensitive to the lead-time, there is
a threshold of lead-time above which the customer does not place an order and
the quoted lead times are 100% reliable. These models are related to well-known
scheduling problems, which have been studied in both the off-line and on-line set-
tings.

We introduce the immediate quotation case and study it along with the (tra-
ditional) on-line version. We provide complexity results for the off-line case, and
perform competitive analysis for the on-line cases. A natural question of bridging
the gap between the on-line and quotation models leads us to the delayed quota-
tion model, which we study briefly. The analysis of these models provides useful

qualitative insights as well.

Keywords: Lead Time Quotation, On-line algorithms, Competitive ratio, Com-

plexity, Scheduling.

1 Introduction

In this paper, we study the problem of scheduling and reliable lead time quotation for
orders with availability intervals and lead time sensitive revenues (SLTQ). Each order
has an arrival time, or release time, and a latest acceptable start time for processing; the
difference between the two times is the availability interval or the maximum acceptable
lead time. We use the term ‘lead time’ to denote the time between starting the processing
of the order and the order’s arrival time. Revenues from orders decrease as the (quoted)
lead times increase. Our basic model has one type of customer, while the enhanced model

has a second (“urgent”) type of customer as well.

For both the basic and enhanced models, we consider four versions of SLTQ based on

what information is known and when a decision has to be made.

Off-line (F-SLTQ): In the off-line model, all information about the orders is known
in advance. This might be the case if the demand process is very predictable leading

to good forecasts, or if most customers place their orders in advance.

On-line (O-SLTQ): Orders arrive over time. The decisions about accepting, reject-
ing or scheduling an order have to be made only based on the information about the
orders that arrived so far, without any knowledge of future orders. This would be
the case if the demand is not known in advance, and if forecasting is very difficult.
The decisions about an order can be made anywhere between the order’s arrival

time and latest acceptable start time. This is the traditional on-line version.

Quotation (Q-SLTQ): This is a stringent on-line model, where the decision about
accepting/rejecting an order must be made and a lead time must be quoted imme-
diately when the order arrives. The quoted lead times are 100% reliable, i.e. the

processing of the order has to start within the quoted lead time.

Delayed Quotation (D-SLTQ): This is also a stringent on-line model, in which deci-
sions about accepting/rejecting an order and lead time quotation have to be made
within ¢ time units after the order arrives, where ¢ is smaller than the maximum

acceptable lead time. This model is between the on-line and the quotation models.

To be clear, O-SLTQ, Q-SLTQ and D-SLTQ are all on-line, i.e. orders arrive over time
and decisions are made without any knowledge of future orders. Any quotation algorithm
is a delayed quotation algorithm, which in turn is a traditional on-line algorithm, and

this is a one-way inclusion.

The off-line model is studied by methods from mathematical programming. To evaluate
the performance of algorithms for the three on-line models, we use competitive analysis
[29]. In a competitive analysis, an (deterministic) on-line algorithm A is compared to an
optimal off-line algorithm. An optimal off-line algorithm knows all the information about
the orders in advance and can serve them obtaining the maximum possible total revenue.
Given an instance I, let z4(I) denote the total revenue obtained by using algorithm A,
and let z*(I) denote the revenue obtained by an optimum off-line algorithm for instance

I. For maximization problems, we call an on-line algorithm c-competitive, if
2*(I) < cza(I)+a

for any instance I (see [7] for a review of competitive on-line algorithms). The factor ¢

is also called the competitive ratio of A.

Most of the previous research on the competitive analysis of on-line scheduling algorithms
considers models similar to O-SLTQ, where the scheduling decisions about an order can
be delayed; see [17], [19] and [24]. In many cases, this delay has no bound as the
orders do not have latest acceptable start or completions times. To the best of our
knowledge, quotation models for scheduling problems have not received much attention
within the context of competitive analysis. The importance of co-ordinating scheduling
and quotation cannot be ignored in today’s industrial supply chain management. In fact,
it is well accepted in many industries that “accurate lead time quotation” is as important
as “cost” and “quality” as a performance measure on which customers evaluate suppliers;
see [18] [30].

There is additional value in studying the various versions, off-line and on-line, in an
unified manner. By comparing the on-line and off-line models, we can evaluate the value
of investing in improved information gathering and forecasting methods. Similarly, by
comparing the quotation and delayed quotation models, we can analyze the benefits of

delaying the decision for a while.

Summarizing, our contributions are the following. We model an important problem

within the scheduling framework. We introduce the quotation version in the on-line
setting. For the basic and enhanced models, we find competitive ratios for O-SLTQ, Q-
SLTQ and D-SLTQ. We briefly present some results on polynomially solvable instances
of F-SLTQ. Our analysis also reveals interesting qualitative insights. We now briefly

describe two applications that motivated this work.

1.1 Motivation

We are motivated by the following real-world applications. The issues that are described
in these examples are typical in the industrial supply chains, where the customer is also

a company, rather than an individual consumer.

Consider a company that produces and supplies customized rolls — which are tools
in steel mills — to the rapidly growing segment of mini-mills worldwide which pro-
duce specialty steel. Since the roll-manufacturing processes are mature, and the
production of the different variety of rolls require similar technology, the process-
ing times are nearly deterministic, and within each family of products nearly equal.
The key challenge in managing this business is thus not in manufacturing, but
rather in the interface between manufacturing and customer service representatives
(CSRs), the functional group that accepts orders and guarantees lead times to the
customers who demand customized rolls and whose order process is not predictable
well. Because of the high variety of rolls differing in finish or diameter, no inventory
is kept. Instead, the rolls are built to order. When an order arrives, the CSR quotes
a lead time. For longer lead times, it is common practice to give price breaks, so as
not to lose customers who have secondary options from where to obtain their rolls.
In the past, CSRs have guaranteed lead times without taking into account the shop
floor status leading to, among other things, increased expediting, increased use of
overtime, missing the promised due dates and losing important customers. To rem-
edy this situation, the firm has now decided to co-ordinate the interface between

manufacturing and CSRs. Our model here was motivated to aid in this interface.

A similar problem exists at the customers of these roll-manufacturers as well.

A specialty alloy division of a large company is a major producer and distributer of
steel products and high performance alloys for aerospace, automotive, electronics
and other industries worldwide. The division produces a large number of steel
products to satisfy its customer’s needs. Each product is produced by routing steel
through a series of processing steps needed to give it the desired characteristics.
One thirds of production is made to stock, and two third is made to order. With the
current order inquiry process, the CSR can quote price, lead time etc. immediately,
to the customer if that customer has placed the same order earlier. Otherwise,
the response time can take anywhere between 24 hours to a week, depending on
whether or not a new route must be created. Currently, only about 50% of the
orders get quotes immediately at arrival, and this company would like to provide

quick response to more orders to improve customer service.

Similar examples exist in the automotive supply chains; in the construction industry, in
the paper industry as well as in service companies that provide spare-part kits to cus-
tomers [30]. Many examples also abound at the individual consumer level: dry-cleaning
services, obtaining university transcripts, rush-orders for document services and package
delivery. The models studied here have been motivated by projects and discussions at
plants of GE, ASKO, Sintermet, TRACO and Blazer Diamond among others.

1.2 The Models

Our basic model has a single customer type and is an appropriate model when the
customer orders are similar to each other. Orders arrive over time, and r; is the release
time (earliest start time) or arrival time of order j. We assume that all arrival times are
integers. Each order j of has a processing time p; = p, a maximum acceptable lead time
l; =1 and a penalty (or revenue that is lost) w; = w for each unit of time the order waits
before its processing starts. The function R(d) represents the net revenue for (quoted)

lead time d, if the order is accepted. We concentrate on the following revenue function:

l—d ford <1
R(d) = (Jw for |
0 otherwise

(1)

In this revenue function, d denotes the lead time in the off-line and on-line models, and

the quoted lead time in the quotation and delayed quotation models. If d > [for an

order, then the customer goes to another vendor. From the supplier’s point of view, the
supplier has the option of rejecting an order: if it is not possible or desirable to start
processing a type ¢ order within [— 1 time units of its arrival (due to a busy schedule or
in anticipation of future orders), there is no benefit in accepting the order. (Our results

on alternative non-increasing revenue functions can be found in [21].)

In F-SLTQ and O-SLTQ, revenues from orders linearly decrease as the lead time increases.
In Q-SLTQ and D-SLTQ, revenues linearly decrease as the quoted lead time increases.
In Q-SLTQ and D-SLTQ), the quoted lead times are 100% reliable, i.e. once a lead time
is quoted, the promised product or service has to be started within the quoted lead time.
(Note that in Q-SLTQ and D-SLTQ), although lead times must be quoted immediately
and within ¢ time units after an order arrives, respectively, the actual start time for
processing can be decided later, any time within the quoted lead time. In some cases,
the actual lead time may be shorter than the quoted lead time; however, the revenues
are always based on the quoted lead time.) If an order is accepted, its processing must
be completed without interruption, i.e. preemption is not allowed. Our objective is to
schedule the orders and quote lead times in order to maximize the total revenue. Our
models incorporate, through simplifying assumptions, many features present in the real

world situations that motivated this work.

The enhanced model adds a second type of customer to the basic model. This is motivated
by our observations that in some cases there is an urgent customer class in addition to
the normal customer type. Urgent orders require very short lead times, whereas normal
orders can tolerate relatively longer lead times. We model urgent orders as type 1, which
must be processed immediately upon acceptance (I; = 1). The normal orders are modeled
as type 2, which can wait up to a deadline (I3 > 1) before their processing starts. Also,
urgent orders have a higher unit revenue compared to normal orders (w; > wsy). Orders
within each type have equal processing times, equal maximum acceptable lead times and

equal penalties.

In all models, we assume that there is a single machine or server. Note that SLTQ
(with multiple types of customers) generalizes the well known scheduling problem of
minimizing the sum of weighted completion times subject to release times [21], denoted

by 1|r;| > w;C; (see [15] for taxonomy of scheduling problems).

1.3 Summary of Results

Our main focus is on O-SLTQ and Q-SLTQ and the results are summarized in Table 1.
The special case of p =1 (unit length orders) provides a building block for the general p
case and so is studied first within each model. LB denotes the lower bound and UB de-
notes the upper bound on the competitive ratio of on-line and quotation algorithms. We
construct instances (with “cruel” adaptive adversaries, where at each time the adversary
knows all the actions taken by the online algorithm so far and based on this knowledge
constructs the worst possible input of arrivals so as to maximize the competitive ratio)
to show the lower bounds. We provide algorithms, with analysis, to show the upper
bounds. For a quotation LB entry by ‘*’, we can substitute the on-line lower bound for

Y

that problem. Similarly, for an on-line UB entry ‘*’; we can substitute the quotation

upper bound for that problem.

Table 1: Summary of results for O-SLTQ and Q-SLTQ.

On-line Quotation
Section | Topic LB UB | LB UB
2.1 Basic Model, p =1 1 1 1.5 1.618
2.2 | Basic Model, p > 1 V2 1.618 | 1.5 1.618
3.1 Enhanced Model, p =1, w < { 1.28 1.618 | 1.5 | max{1+ %,1.755}
3.1 Enhanced Model, p =1, w > 1 1 2 2.35
3.2 Enhanced Model, p > 1 max{v/2, 7 * * | max{/2, 1.755%}
DLTQ, Basic Model, p =1 1 1 min{1.618, ﬁ}
DLTQ, Enhanced Model, R’ w/l | 1/a (if¢g >p—1)

Recall that D-SLTQ bridges the gap between O-SLTQ and Q-SLTQ. The results on
D-SLTQ are discussed briefly in Section 4. Our results on polynomially or pseudo-
polynomially solvable instances of F-SLTQ (off-line case, with m types of orders) are
summarized in Table 2; L = max;{l;} stands for the maximum acceptable lead time and

n stands for the number of orders in the problem. A blank box in Table 2 means that

this aspect can be arbitrary. We do not discuss F-SLTQ in depth here because of space

considerations as well as to retain a focus on the three on-line cases; see [21] for details.

Table 2: Polynomially solvable cases of F-SLTQ.

T Di l; w; Result
equal equal equal | O(nlogn)
equal equal O(nb)
li < pi+pj O(n*L?)
1 O(n®)
equal | equal O(n®)

1.4 Some Qualitative Insights

Some insights we gain by studying and comparing the off-line, on-line, quotation and

delayed quotation models are presented below.

1. SLTQ s similar to, but more difficult than some well known scheduling models.
We show that O-SLTQ is quantifiably harder than the on-line version of 1|r;,p; =
1| Z 'lUjCj.

2. Comparing O-SLTQ with F-SLT(). In some cases, on-line scheduling decisions can
be made quite efficiently with good performance guarantees, and sometimes op-
timally. Thus, in these situations we do not require advance information about

future demand.

3. Comparing Q-SLTQ with O-SLTQ. Our results also show that the quotation ver-
sion, where we have to make decisions immediately when an order arrives, can be
much harder than the traditional on-line version. So, the difficulty does not only
lie in not knowing the demand, but in how soon we have to make a decision when

an order arrives.

4. How to manage quotation. In order to obtain high revenues, we need to reserve
capacity — equivalently, leave space — for future orders, even if there is only a single

type of orders.

5. Enhanced model requires a different strategy than the basic model. In case of two
types of customers, we need to reserve capacity in two different ways: (1) we don’t
promise capacity beyond a certain number of periods from now, and (2) within the
periods we promise capacity, we reserve some capacity for high margin customers.
In contrast, in the single type case, it is sufficient not to promise capacity after al
periods, where [is the maximum acceptable lead time of an order (but not reserve

space in the first al periods).

6. Comparing D-SLTQ with Q-SLT(). Partially delaying the quotation decision can
improve performance significantly. We are able to quantify the improvement, as
well as show results that indicate a continuous improvement as delay increases for

our basic model.

7. Sometimes the delay in D-SLTQ has to be significant. We show a threshold rule

for the enhanced model: after a certain delay, there is significant benefit.

An example of a real world implementation where the insights obtained here have been
used is in a laminate plant where quoting accurate lead times and co-ordinating it with
scheduling was central to the plant management strategy. In one of the product lines
(“the rigid line”), the basic model studied here was considered appropriate as the ten
main customers, that accounted for over 80 % of the demand, were nearly homogeneous.
The availability interval was 3 weeks, set by industry standards. Based on our models,
the laminate manufacturer negotiated with the customers a maximum of one-week delay
in quotation. In another product line (“the multi-layer line”), where the enhanced model
was considered appropriate, the manufacturer did not negotiate strongly for a delay in
quotation as it was not possible to delay the quotation to the point where significant
benefits could be realized. Furthermore, the order entry group, that quotes lead time,
now uses the schedule information when deciding on the lead time, in a D-SLTQ set-
ting for rigid line and a Q-SLTQ setting for the multi-layer line. For low volume, low
margin customers, the O-SLTQ model is appropriate, while for replenishing their own

warehouses, since reliable forecasts are available, F-SLT(Q is appropriate. The details of

the implementation, along with other plant improvement activities such as maintenance,
work-force scheduling and re-organization, quality programs and product re-design, are
described in [31].

1.5 Literature Review

Most of the literature in machine scheduling problems focuses on sequencing decisions
only (see [25] for a recent review on machine scheduling problems), assuming that the
due dates are preset and/or there is no availability interval (there may be a release
time, but usually there is no latest start or completion time). Minimizing (weighted)
tardiness, number of tardy jobs, lateness, flow times and completion times are among
common objectives. Once the due dates are set, different rules are used for sequencing
such as earliest due date, minimum slack and critical ratio [2]. In contrast, we consider
the combined problem of due date setting and scheduling, where we need to quote a due
date and then schedule an order to ensure that it is completed before the quoted due
date.

Combined due date setting and sequencing problems are considered in [3], [4], [5], [6], [11],
[13], [23], [26], [32] where the performance of different rules are compared via simulation.
Analytical procedures are discussed in [8], [9], [12] [27], [28], [20], [33]. In all of these
papers it is assumed that the customer will place an order no matter how late the quoted
due date is. In our model, we assume that each order is available for processing within a
certain time interval and an order will be lost if it is not processed within its interval of
availability. See [10] for a review of scheduling research involving due date determination

decisions.

A variant of SLTQ is Scheduling of Intervals (SOI), where | = 1 for all the orders.
The on-line case is studied in [14] and [34] while the off-line version is considered in [1].
Another variant of F-SLTQ is studied in [16], where R;(d) is a positive constant, say K,

if d < l;, and zero otherwise.

10

1.6 Organization of the Paper

The paper is organized as follows. In Section 2, we study the basic model with single
customer type, first with unit-length orders followed by the case of non-unit length orders.
In Section 3, we study the enhanced model with two customer types, first with unit length
orders followed by non-unit length orders. In Section 4, we study the delayed quotation
problem. We conclude in Section 5. Some of the proofs are presented in the appendix

for improved readability.

1.7 Preliminaries

We define some terms that are frequently used in the paper.

Let o denote the schedule generated by an on-line (quotation) algorithm. To do the
competitive analysis, it is sometimes convenient to divide ¢ into “phase”s, where each
phase consists of a sequence of consecutively scheduled orders. Phase ¢ starts at time t;,
if the following conditions hold:

1. An order is scheduled to time ¢; and the arrival time of that order is also ¢;.

2. All the accepted orders which arrived before ¢; are processed before t; (i.e. no more
accepted, but not yet processed orders).

Let B; denote the ordered set of orders scheduled in phase ¢. Note that the orders in
B; are served consecutively, and there may be some idle time after the last order in B;,
before the next phase starts. Let ¢; be the completion time of the last order in B;. Let z}
be the maximum revenue one could make from the orders which arrived in phase ¢ and

z; be the revenue made by the algorithm.

11

2 Basic Model

2.1 On-line and Quotation Results for the Basic Model with

Unit Processing Times

Consider the following algorithm!?.

Algorithm O-HRR: (On-line Highest Remaining Revenue)
Whenever the machine is idle and there are orders available for scheduling, pick an order

J with the largest remaining revenue (denoted by rem;(t) if we are in time ¢) and schedule

it next. In case of ties, choose the order with the largest w;.

We first show that Algorithm O-HRR is an optimum algorithm for O-SLTQ when we
have unit length orders. (Thus, LB and UB are both equal to 1.) We then show a lower
bound of 1.5 for the competitive ratio of any algorithm for Q-SLTQ with unit length
orders. Thus, we show that even in this special case, on-line quotation algorithms are

quantifiably harder to design than traditional on-line algorithms.

We present an on-line quotation algorithm (called Q-FRAC) with competitive ratio at
most 1.618 for Q-SLTQ with unit length orders. We provide an example to show that

our analysis about the performance of this algorithm is tight.

Our first proposition follows from the standard pairwise interchange argument.
Proposition 1 Algorithm O-HRR is optimal for the basic model with unit length orders.

The result of Proposition 1 implies that for the basic model with unit length orders, an
on-line algorithm which does not have any information about future orders is as good as
an optimum off-line algorithm which knows all the data in advance. This is because when
we commit capacity, we do so only for one unit of time and we have all the information
we need. Next, we see that quotation (the Q-SLTQ version), in contrast, can benefit

from more information.

To see the basic trade-off in quotation decisions, let us consider the following scenario.

Suppose that in some period, part of our future capacity is already reserved for the orders

'We use the first letter of the algorithm name as O and Q to denote on-line and quotation algorithms

respectively.

12

which arrived earlier and a new order arrives. Even if we quote the shortest possible lead
time for the newly arrived order, the revenue we will get from this order is not going
to be too high. If we accept this order, we will further utilize our capacity (for a low
revenue). If new orders arrive in the future (which could give us higher revenue provided
that we can quote short lead times) we may not be able to quote short lead times for
those orders. On the other hand, if we do not accept this order now, we lose the revenue
from this order. If we do not receive enough orders in the future, we may end up with

un-utilized capacity.

Based on the above, we create an instance to show a lower bound on the competitive

ratio of quotation algorithms for Q-SLTQ.

Proposition 2 The competitive ratio of any quotation algorithm for Q-SLTQ with unit
length orders is at least 1.5.

Proof Consider an instance where [= 2 and w = 1. At time zero, the machine is
available and two orders arrive. Any optimal algorithm should schedule one of these
orders to time zero. If the algorithm rejects the second order, no more orders arrive, so
we have z*/z = 3/2 = 1.5. If the algorithm decides to accept the second order, then
this order must be scheduled to time 1. In this case, two orders arrive at time 1. One of
them is lost, since the machine is busy at time 1. In general, if the algorithm accepts the
second order which arrived at time ¢, it must be scheduled to time ¢t + 1 and two more
orders arrive at time ¢ + 1. If the algorithm rejects the second order at time ¢, no more
orders arrive. Suppose that the algorithm rejected the second order at ¢ > 1. We have
z=2+tand z* =2(t+1)+1=2t+3. 2*/z > 5/3 for t > 1. Hence, z*/z > 1.5 for
t>0. 0

Thus, the fact that we have to commit capacity at the time an order arrives makes the
problem harder. We now complement this lower bound of 1.5 with an upper bound, by

analyzing the following algorithm.

Algorithm Q-FRAC: (Quotation-FRACtional revenue)
Choose 0 < a < 1. At time t, schedule each order to the earliest available position, only

if a revenue of at least al can be obtained. Reject all the other orders which arrived at

time ¢

13

The main idea of Algorithm Q-FRAC is to accept orders only if they yield a certain
fraction (a) of the maximum possible revenue ([in this case), so as to reserve capacity
for orders that may arrive at a later time and bring more revenue. If we think of the next
[time periods as our planning window, this means that we can promise our capacity for
the first (1 — a)l periods of the planning window, but we should keep the capacity of the
last al periods free for future orders. Our analysis chooses the value of this fraction to

optimize the worst case performance.

Theorem 1 If a = 0.618, then Algorithm Q-FRAC has competitive ratio z*/z < 1/a =
1.618 for the case of single type unit length orders.

Proof Consider an arbitrary phase i. (Refer to Section 1.7 for definition and associated
notation.) Note that for any order accepted by the algorithm, we get a revenue at least
al. We consider two cases:
CASE 1: &, —t; < (1 — a)l
In this case, we have exactly k = t; — t; arrivals during the time interval [¢;,¢;,1), and
the maximum possible revenue one can get is kl. By the choice of the algorithm, we get

revenue at least kal for this time interval.
CASE 2: t) —t; > (1 —a)l
By the choice of the algorithm, we cannot have any arrivals between t; — (1 — a))l and

tir1. The revenue we get during the interval [¢;,¢}) is at least

l(l+1 l(al —1

The first two terms of the right hand side above give us a lower bound for the revenue
of the first (1 —)l orders scheduled in B; (if they all arrived at time ¢;). The last term
gives a lower bound for the revenue of the remaining orders. By rearranging terms, we

have

1—a)? 1
zi > %th#l%—al(tg—ti).

The maximum revenue z one can get from the arrivals in [¢;,¢}) is

Ut —ti— (- a)) + 1

14

During [¢;, t; — (1 —«)l], the maximum revenue one can get is (¢, —t; — (1 —a)l), hence the

first term of the right hand side above. Since there are no arrivals between ¢, — (1 — a)l

and t;, 1, the maximum revenue one can get between t; — (1 —)l and ¢;,; is l(l;rl), which

is the second term of the right hand side above. By rearranging terms, we have

1
<t —)2+ -

To balance the requirements of the two cases, we set

1
o

and obtain o = 0.618. Thus, for @ = 0.618 the ratio z}/z; is at most 1/ = 1.618 for
any phase i, implying that the competitive ratio of this algorithm is at most 1/a. O

Our first example below shows that our analysis of Algorithm Q-FRAC is tight.

Example 1. Consider the case where all the orders are type 2. At time zero, [orders
arrive. At time ¢, t = 1,...,n, only one order arrives. For very large n >> [, the
optimum solution is to schedule only one order at each time, to obtain a total revenue
z* = nl. The algorithm above will schedule at time zero (1 —«)l orders to the first (1 —a)
periods, and then the order which arrives at time ¢ will be scheduled to time ¢ + (1 — «)l,

t =1,...,n. The revenue of this schedule is z = (1_20‘)212 + (1;a)l + aln. The ratio z*/z

approaches 1/« for large n.

2.2 On-line and Quotation Results for the Basic Model with

Non-unit Processing Times

In contrast to the optimal performance of O-HRR for unit processing times, we show a
lower bound of /2 for the competitive ratio of any on-line algorithm for O-SLTQ in case
of non-unit processing times. (Thus, the non-unit processing time case is harder than
the unit length case for O-SLTQ.) In this setting, there is an incentive to invest in better
forecasting or obtaining advance information about orders. On the other hand, for Q-
SLTQ), the upper bound carries over to this case from the p = 1 case. This indicates that
Q-SLTQ does not get harder because of non-unit processing times. (The lower bounds
always carry over from O-SLTQ to Q-SLTQ.)

15

Proposition 3 Ifp > 1, then the competitive ratio of any on-line algorithm for O-SLTQ)
is at least /2.

Proof Consider an instance with [= p. The machine is free at time zero, and an order
arrives. Since all the orders are of the same type and since the machine is free at time
zero, any good online algorithm should start processing this order immediately. If the
processing of this order starts later, this will not only decrease the revenue one can obtain
from this order but may also delay the processing of other orders that might arrive later.
At time ¢ = (v/2 — 1)l another order arrives. If the algorithm decides to reject this order,
no more orders arrive and we have z*/z = w = /2. If the algorithm accepts this
order, it will start processing it at some time ¢ > p. Then, at time p 4+ 1 another order
will arrive (and can make revenue at most 1, since it can be scheduled only after the
current order’s processing is completed). In this case z < [+ 1+1(v/2 — 1), 2* = 2] and
2¥)z > V2 for large [. O

Proposition 4 If p > 1, then the competitive ratio of any quotation algorithm for for
Q-SLTQ is at least 1.5.

Proof The proof is similar to the proof of proposition 2 and can be constructed by using

an instance where p = 2 and [= 4. We skip the details.

Theorem 2 If a = 0.618, then Algorithm Q-FRAC has competitive ratio z*/z < 1/a =
1.618 for single type with p > 1.
The proof of Theorem 2 is similar to the proof of Theorem 1. We skip the details.

In summary, O-SLTQ is more difficult than F-SLTQ only when p > 1 (so can benefit
from information), while @Q — SLT'Q is hard primarily because of when a decision has to

be made.

3 Enhanced Model

Recall that in the enhanced model there are two types of customers; an urgent type
who would like the product immediately, and a normal type whose availability window

is longer.

16

First we study the case where all the orders have unit processing times. Without loss of
generality we assume that there is at most one type 1 arrival (urgent type) in each time
period and that wy =w > 1 and wy = 1. Let [; = 1 and Iy = [. Note that the maximum
revenue one can make from a type 1 order is w and the maximum revenue one can make

from a type 2 order is [. We distinguish between the cases w < [and w > [.

e w < [l. The lower bound for O-SLTQ is 1.2808. The lower bound on Q-SLTQ is
1.5. This indicates that Q-SLTQ may be harder than O-SLTQ. We present an
on-line algorithm for O-SLTQ with competitive ratio 1.618. We also present a
quotation algorithm with competitive ratio at most max{1 + %,1.755} < 2. We
use techniques similar to those applied in the basic model; the algorithms are a
hybrid of the earlier idea of scheduling an order only if it yields at least a certain
fraction of the maximum revenue (like algorithm Q-FRAC), along with the idea of
scheduling the more profitable type of order first.

e w > 1. We show that Algorithm O-HRR is an optimum on-line algorithm for O-
SLTQ. We show that any quotation algorithm must have competitive ratio at least
2. We present a quotation algorithm for Q-SLTQ with competitive ratio at most
2.3524. Here, we use an interesting new idea of scheduling the less profitable orders
by leaving evenly spaced gaps to allow for scheduling of the more profitable orders

with shorter deadline, should they arrive later.

On-line version, O-SLT(). The following propositions show that when p = 1, the online
version of the enhanced model is harder than the corresponding basic model only if w < [.
This is because when w > [, and an urgent order arrives, it is optimal to schedule it,
and, if it does not arrive, then scheduling the normal orders based on remaining revenue
is optimal (since the commitment of capacity is only one time unit). In the w < case,
however, the static priority of urgent orders over normal orders is neither immediate, nor

optimal.

Proposition 5 Ifw > [, then Algorithm O-HRR is optimal for the enhanced model with

unit length orders.

Proposition 6 Any on-line algorithm for O-SLTQ has competitive ratio at least 1.2808
if w <.

17

[Remark. Consider an algorithm that gives priority to the jobs with largest unit revenue,

instead of largest remaining revenue.

Algorithm O-HUR: (On-line Highest Unit Revenue)

Whenever the machine is idle and there are orders available for scheduling, pick an order j with

the largest w; and schedule next. In case of ties, choose the order with the largest rem;(t).

One can see that O-SLTQ is harder than the online version of 1|r;,p; = 1| > w;C; by noting
that Algorithm O-HUR finds the optimum solution for the latter problem while any on-line
algorithm for O-SLT'Q has competitive ratio at least 1.2808, even if there are only two types of

orders.]

We now find an upper-bound for the case w < [. Consider the following algorithms.

Algorithm O-1HRR(On-line 1-first then O-HRR):
If a type 1 order is available at time ¢, schedule that order. Otherwise, schedule an order

with the largest remaining revenue.

Algorithm O-HYBRID:
Let a = @ If w > al, use algorithm O-1HRR; otherwise, use algorithm O-HRR.

Theorem 3 The competitive ratio of algorithm O-HYBRID is at most 1.618.

The theorem follows from propositions 7 and 8. Proposition 7 shows that if w > \/52’1l,

then Algorithm O-1HRR has competitive ratio at most 1.618. Proposition 8 shows that

ifw< \/52_11, then Algorithm O-HRR has competitive ratio at most 1.618.

Proposition 7 The competitive ratio of Algorithm O-1HRR is at most | /w.

Proof Consider an arbitrary instance I, where the algorithm scheduled k type 1 orders
(i.e. there were type 1 arrivals in k periods) and made revenue z = C' + wk. We claim
that the optimum solution is z* < C' + lk. To see why this is the case, consider another
instance I, where there is a type 2 arrival instead of every type 1 arrival. Let 2z’ be the
optimum solution for I’. 2’ is clearly better than z*, and can be obtained by scheduling
the order with the largest remaining revenue at any time. But then 2/ = C 4 [k > 2z*
and z*/z < l/w.

18

Observation: Suppose that in an optimum solution an order j is scheduled at time
t, with remaining revenue rem;(t), although there was another order k available for
scheduling at time ¢, with remy(t) > rem;(t). Then, order k must also be accepted and

scheduled later in the optimum solution.

Proposition 8 The competitive ratio of Algorithm O-HRR is 1+ 7.

Proof Consider an arbitrary phase i. Suppose that z of the type 1 orders which are
rejected during phase ¢ by Algorithm O-HRR are accepted in the optimum solution.
The algorithm rejected these type 1 orders, because some type 2 orders with remaining
revenue > w were available when they arrived. (If there were no type 1 arrivals, then
z; would be the optimum solution.) By scheduling these z type 1 orders, the optimum
algorithm made wx more revenue during this phase. In the best case, the type 1 orders
are scheduled to the interval [t; —z, t}], and the x type 2 orders are scheduled immediately
after ¢,. Therefore, the optimum algorithm will lose at least 1 + 3 + ...+ 2z — 1 = z?

due to those z type 2 orders (cf. previous observation).

Let z; and 2 denote the revenue made by the algorithm and by the optimum solution in
2

phase 7, respectively. We have 2} < z;+zw—2?% and 2} /z; < 1+ MZ—_Z During the first x
periods of phase i, the revenue made by the algorithm is at least +(I—1)+...+(l—z+1) >
QZQJIJJ (This happens when all these orders arrive in period ¢;). Hence, z; > 2’; Lx and
z_;f<1+wm—x2 :1+2w—2m <1_|_E_
zi 2=z) 20— x — l

2

Since this is true for any phase, the competitive ratio of this algorithm is at most 1+ 7.
O

Quotation version, Q-SLT(Q). Next we turn to quotation algorithms.

Algorithm Q-FRAC-HYBRID:

Choose 0 < a < 1. If there is a type 1 arrival at time ¢:

Schedule the type 1 order, if there are no type 2 orders available for scheduling; otherwise,
schedule the type 1 order only if w > al.

If there are type 2 arrivals at time ¢, schedule the type 2 orders to the earliest available

positions, as long as you will make at least al revenue for each order scheduled. Reject

all the remaining type 2 orders.

The proof of the next theorem is in the appendix.

19

Theorem 4 If w <l and o = 0.56984, then Algorithm Q-FRAC-HYBRID has compet-

ey . 1
itwe ratio z*/z < max{l+ %, =}

Note that for w = [, we have an on-line algorithm which gives the optimum solution,
but any quotation algorithm has competitive ratio at least 2 as shown by Proposition 9
below. This indicates that the quotation version continues to be harder than the on-line

version in the enhanced model.

Proposition 9 If w > [, then any on-line quotation algorithm for Q-SLTQ has compet-

itive ratio z*/z > 2.

We now turn to construct a good algorithm for Q-SLTQ. Here is the intuition. First,
recall that w is the largest revenue we can make from a type 1 order and [is the largest
revenue we can make from a type 2 order. If w > [, the revenue we can make from a
type 1 order can be arbitrarily larger than the revenue we can make from a type 2 order.
Also note that a type 1 order is lost, if it is not scheduled immediately at its arrival.
Therefore, in the quotation version, it is crucial to leave some capacity free for possible
future type 1 arrivals, while we accept and quote lead times for type 1 orders. As in the
single type case, we will accept type 2 orders only if they yield a certain fraction («) of
the maximum possible revenue (I in this case), in order to reserve capacity for other type
1 or type 2 orders which may arrive at a later time (and bring more revenue). If we think
of the next [time periods as our planning window, this means that we should keep the
capacity of the last al periods free for future orders. However, due to the possible revenue
difference between type 1 and type 2 orders, reserving capacity only in this fashion is not
enough. Therefore, we also need to leave “gap”s (i.e. reserve capacity) between type 2
orders, while we quote lead times. These “gap”s may be filled later with type 1 orders or
high revenue type 2 orders. So, in our proposed algorithm Q-GAP, in addition to leaving
the last al periods, we also leave [fraction of the first (1 — a)l periods in the planning

window free while quoting lead times for type 2 orders.

Algorithm Q-GAP:

Choose 0 < a < g < 0.5. If the machine is available, schedule a type 1 order as soon
as it arrives. Quote lead times for type 2 orders leaving the machine free for at least 3
fraction of the time (as evenly as possible), if you will make at least al revenue for each

order. If the machine is available and there are no new arrivals, “pull” the order with

the earliest quoted due date (which must be type 2) and process it.

20

Our analysis chooses the values of @ and [to optimize the worst case performance of

the algorithm.

Theorem 5 If a = 0.4251, algorithm Q-GAP has competitive ratio at most é = 2.3524

for unit length orders.

Proof We first prove the theorem for [> 3. Consider an arbitrary phase i. By the
definition of the phases and the choice of the algorithm, there are no arrivals in [t},¢;.1].
If no type 2 order is scheduled in that phase, then it consists of a single type 1 order,

and we have 2} = z;.

If type 2 orders are scheduled in phase 7, let n; be the number of type 1 orders scheduled
during the interval [t;,#;]. Since we leave the machine free for at least § fraction of
the time, and since a type 2 order is “pulled” only if there is no type 1 arrival (hence,
increasing the free space), at least [fraction of all type 1 arrivals are scheduled in a

phase.
Consider the following two cases:

CASE 1: ¢t —t; —n; < (1 —)(1 —)1

This means that the number of type 2 arrivals during this phase was t; — ¢, — n; (and
all of them are scheduled), because otherwise the algorithm would schedule more type 2
orders. Furthermore, the maximum number of type 1 arrivals in this phase is %nz which
is at most (¢, — t;), and hence n; < (¢, — t;)3. So, we have

1
zE < (t—t; —m)l +w=n; and z; > (t; — t; — ny)al + wn,.

' g
Therefore, z7/z; < max{é, %}
CASE 2: t) —t; —n; > (1 — a)(1 — B)I

> (Z(l : b _ “l(“é_ ”) (1= B) &+ (£ — t; — s — (1 — a)(1 — B)al + wn;

We claim that the first term of the right hand side above denotes the minimum revenue
made from the first (1 — «)(1 —)l type 2 orders scheduled in phase i. The second term
denotes the minimum revenue made from the remaining type 2 orders. The last term

denotes the revenue made from the type 1 orders. After rearranging terms, we get

21

2

Before computing an upper bound on z}, again note that there are no arrivals in [¢],¢;,1].
Let 0 =a+ 0 —apf.

2 < (t—t;—mn;)l+ lwni + ot + 1)
16} 2
The first two terms of the right hand give an upper bound on the maximum revenue one
could make during the interval [¢;, ¢;]. The third term of the right hand side is an upper
bound on the maximum revenue one could make from type 2 orders that were rejected
by the algorithm but could be scheduled after ¢;. The algorithm rejected such orders
which arrived in [t;,¢]], if they had remaining revenue less than al. If we did not leave
B fraction of the time free, and if we scheduled such an order after ¢}, we could make at

most al + f(1 — «)l, which is equal to §l giving the third term. After rearranging terms,

we get
*<52l2+5l+(t’ t)l+1
Z; - - L — 1; — Ny —wn;
1 — 2 2 (2 ﬂ
and
z¥ < { 62 4] 1 1}
— < Imax , sy oy A
% 1-01-a)p A=-0)1+a)a’p
If we choose a = 3 and solve for % = é, we get v = 0.4251.

For a = 0.4251, z{/z; < 1/« in any phase i, and the competitive ratio of this algorithm
is at most 1/av = 2.3524.

Now we do the analysis for [< 3 and a = 0.4251. If there is no type 1 arrival, but
there are type 2 arrivals in a given period, the revenue made by the algorithm in that
time period is [. The maximum revenue one could make from the the orders which
arrived in that time period is {(I + 1)/2. If there is a type 1 arrival in a given period,
the revenue made by the algorithm is w, whereas the maximum revenue one could make
from the orders that arrived in that time period is w + [(I — 1)/2. Since w > [, we have
zf/zi <max{(l+1)/2,1+(I—1)/2} <2for [<3. O

We created an example where the ratio z*/z goes to m (which is equal to 2.1231

for o = 0.4251), which shows that the analysis of this algorithm is almost tight.

22

Next we turn to p > 1. First, we show a lower bound for the competitive ratio of any
on-line algorithm. This same lower bound can be used for any quotation algorithm as

well.
Proposition 10 Any on-line algorithm withp > 1 has competitive ratio at least max{+/2, 2}

Next, we show that the performance of Q-FRAC is within a constant of this lower bound.

The proof of Theorem 6 is similar to the proof of Theorem 4.

Theorem 6 Algorithm Q-FRAC has competitive ratio at most max{2,1.75488%} with
p>1.

4 Delayed Quotation Problems

In terms of decision making, the on-line and quotation versions consider two extremes.
In this section we consider the delayed quotation problem (D-SLTQ), which generalizes
Q-SLTQ by allowing a waiting time ¢; for decision making, such that 0 < ¢; < I; (for a
type i order). (Interestingly, an emerging topic of interest within the computer science
community is the study of on-line models with a “look ahead” feature, which parallels

the delayed quotation feature of our model [22].)

We have at least two options on how we think a customer behaves in this setting.

e No change in the revenue function. The first option is that the revenue function
remains the same, i.e. revenue is lost for every unit of time an order waits before

its processing starts.

o The revenue function is more lenient. In this case, if the quoted lead time is less
than ¢;, then the full revenue is obtained. Decisions have to be made within ¢; time
periods, but revenues start to decrease only if the quoted lead time is longer than
q;. Furthermore the availability interval is now ¢; + [;, i.e. longer by ¢; units. One

such revenue function is the following.

w;i(l; — max{0,d — ¢;}) ifd<li+¢qi=12

0 otherwise

R;(d) = { (2)

23

In both of these delayed quotation models, without loss of generality we can assume that
g=(1-6)(I—-1)forsome 0 <J <1 Ifg=1—-1(§=0), D-SLTQ with revenue function
R reduces to the standard on-line scheduling problem O-SLTQ. If ¢ = 0 (6 = 1), then
D-SLTQ is equivalent to the immediate quotation model Q-SLTQ.

First, let us consider D-SLTQ for our basic model with a single type of customer. To
quantify the impact of delaying the quotation decision on performance, we first design a
new algorithm, Q-HRR, which is a modified version of O-HRR. Theorem 7 shows that
by using algorithms Q-FRAC and Q-HRR together, we can obtain an increase in the

revenues as ¢q increases.

Algorithm Q-HRR (Quotation version of O-HRR):
At time ¢, from the set of orders available for scheduling, choose the one with the largest

remaining revenue and process. Reject all the orders with remaining revenue < 6. (These

are the orders whose quotation time is over.)

Theorem 7 Consider D-SLTQ in the basic model with unit length orders and let ¢ =
(1 —6)(I —1). There is an on-line quotation algorithm with competitive ratio at most
min{1.618, 25 }.

Proof Let o denote the schedule generated by the above algorithm. Again, we do the
analysis by dividing ¢ into phases. Phase 7 starts at time ¢;, if the following conditions
hold:

1. An order is scheduled to time ¢; and the arrival time of that order is also ¢;.

2. There are no orders waiting for quotation at time ;.

Let t; be the start time of the last order scheduled in phase i.

Note that the machine will always be busy during the interval [¢;,¢}]. Let 2z be the
maximum revenue one could make from the orders which arrived during phase 7 and z;

be the revenue made by the algorithm. Now, consider the following two cases:

CASE 1: t), —t; < (1 —90)!
This means that the number of arrivals in this phase was exactly t; —¢; (and all of them

are scheduled). Hence, z} = z; in this phase.

CASE 2: ¢/ —t; > (1 — 6)l

In this case we made the maximum possible revenue, except possibly losing ! orders at

24

the end of the phase. The minimum revenue we made during this phase is

zi 2 W+ — ool = 1) and we lost at most M
2 2 2
SU(81 — 1) 2 *+1 1
<+ —— — = E '
Therefore, z; < z; 5 and 2 T (1= +(1+0) — 142

The ratio decreases, as § decreases, i.e. as ¢ increases.
If § < 0.618, then algorithm Q-HRR gives 2*/z < 1.618. So, one can use algorithm

Q-FRAC for § > 0.618, and algorithm Q-HRR for § < 0.618. O

The result of Theorem 7 quantifies the increase in revenues, as the waiting time ¢ =
(1 —0)(l — 1) increases. For § < 0.618, we are able to show that revenues increase
quadratically as the waiting time increases linearly. One can compare the revenue increase
with the “cost” of asking a customer to wait for a quote, and decide whether it is worth

delaying the decision.

The following two results show how delayed quotation impacts the revenues, for the
second revenue function R’ in the enhanced model. In this case, we observe that there is
a sharp decrease in the worst case performance guarantees, once the waiting time exceeds
a threshold of g =p — 1.

First, we show that if ¢; < p—1 for one of the types, then delaying the quotation decision

does not improve the worst case performance.

Proposition 11 If ¢; < p — 1 for some i, then w/l is a lower bound on the competitive

ratio of any quotation algorithm for enhanced model with revenue function R'.

Proof Consider an instance where [y = [, =1, ¢ < p— 1 and ¢ = p. At time zero,
the machine is idle and a type 2 order arrives. Any on-line algorithm has two options,
either it will reject the order, or it will accept it and start processing it at some time
t < p+ 1. (The decisions can be made within p time units.) If the algorithm rejects
the order, another type 2 order will arrive at time p, and the type 2 orders will continue
to arrive every p time periods, as long as the algorithm rejects them. If the algorithm
does not accept any of these type 2 orders, we have z = 0 and z* = t/p at time ¢. If the
algorithm decides to accept a type 2 order which arrived at time ¢, it will start processing

this order at time ¢’ < t + p and no more type 2 orders will arrive. Then, at time ¢’ + 1

25

a type 1 order will arrive. In this case, since the machine is busy for the next p — 1 time

periods, this type 1 order is lost and we have z =1 and 2* =¢/p +w. O
A similar lower bound can be shown for revenue function R.

Next, we consider a modified version of Algorithm Q-GAP.

Algorithm Q-LONG-GAP:

Choose 0 < a, 8 < 0.5. Schedule a type 1 order to the earliest available position. Quote
lead times for type 2 orders based on the following conditions:

1. Leave the machine free for p period long intervals, for at least 3 fraction of the time
(as evenly as possible).

2. If the revenue you will make from a type 2 order is less than al, reject that order.

If the machine is available and there are no new arrivals, “pull” the order with the earliest

quoted due date (which must be type 2) and process it.

The following result shows that once the decisions can be delayed longer than a threshold
of p — 1, revenues increase significantly as the competitive ratios decrease sharply to a

constant.

Theorem 8 Ifqg1 =q =p—1, 11 =1 and a = 0.4251, then Algorithm Q-LONG-GAP

has competitive ratio at most 1/a for revenue function R'.

The proof of Theorem 8 is similar to the proof of Theorem 5.

In summary, we see that delaying the decision can be beneficial, although the benefit

may be monotone in some cases, and a threshold type for others.

5 Conclusion

Motivated by real applications, we considered the problem of scheduling and lead time
quotation when revenues are decreasing with lead times and the orders have an availability
interval. We studied, for a basic model and an enhanced model, four versions — F-SLTQ),
O-SLTQ, Q-SLTQ and D-SLTQ - that differ in what information is known and when
decisions have to be taken. We have provided complexity results for the off-line case,

and competitive analyses for the on-line cases. Several useful qualitative insights about

26

the relative difficulty of the versions leads to improved managerial decision making about
when to collect more information and when to delay a quotation decision. These insights
have been used as part of real world implementations of accurate lead time quotation;

see [31] for an example.

Our approach for measuring the performance of on-line algorithms was to use competi-
tive analysis, in which the performance of an on-line algorithm is compared to the per-
formance of an optimum off-line algorithm, which knows the input sequence in advance.
Although competitive analysis allows us to obtain theoretical bounds on the “worst case”
performance of on-line algorithms, this approach so far has not had much impact on the
development of real systems. One reason is that (in practice) the orders in the near
future are at least partially predictable, but competitive analysis assumes that an on-line
algorithm has no information about the future. Another reason is that in practice the
probability that a problem instance will cause an online algorithm to realize its worst
case performance may be very small. For example, in the SLTQ context it is very unlikely
that a group of clients will select the release times and the lead times in order to frustrate
the decision maker. However, to have a good competitive ratio an online algorithm still
has to be designed to perform well in such worst possible instances. Despite its limita-
tions, we believe that this approach is a good alternative and complements other existing

methods (such as queuing) widely used within our community.

Future research considers computational testing to find average case performance of the
algorithms as well as study randomized algorithms. The study of a general case that

includes non-equal processing times with m > 2 types is also underway.

Appendix

Proof of Theorem 4 The proof is similar to the proof of Theorem 1. In every phase,
at most one type 1 order is scheduled. If a phase consists of type 1 orders only, then it

has exactly one order in it. In that case, we have 2 = z;.

If at least one type 2 order is scheduled in a phase i, we consider two cases:

CASE1: ¢/ —t; < (1 —a)l

In this case, we can have at most k = t; — ¢; type 2 arrivals during the interval [t;,¢;1).

27

All the type 2 orders which arrived in this time interval are accepted, and scheduled in
the order of nondecreasing arrival times. If there were no type 1 arrivals during this
period, this would be the optimum solution (this can be shown by a simple interchange
argument). But there may be some type 1 orders, which are rejected due to the type 2
orders scheduled consecutively by the algorithm. Consider an instance I’ with the same
type 2 arrivals as in this phase, but also with a type 1 arrival in each period. Let 2’
be the optimum solution for that instance. Clearly, 2’ > 2. If the optimum algorithm
accepts x of those type 1 orders in I’, then it will make an extra wx revenue. As before,
the optimum algorithm will lose at least 14+ 3 + ...+ 2z — 1 = 22 due to those x type
2 orders. (This lower bound is attained if all of the = type 1 orders are consecutively
scheduled in the interval [t; — x,t}], which minimizes the revenue loss due to the delayed

type 2 orders.) x < k, since there are k perions. We have 2} < 2/ < z; + wr — 2% and

zi2l+(l—1)+...—|—(l—k’—|—1)Zlk—%Zlm—%. Hence, z;f/zigl—i—%.

CASE 2: t; —t; > (1 — a)l

By the choice of the algorithm, we cannot have any type 2 arrivals between t; — (1 — a)l
and t;,. Furthermore, we cannot have any type 1 arrivals between ¢, and t,,,. By the
definition of the phases, only the first order in B; may be a type 1 order, and all the

other orders must be type 2 orders.

If the first order is a type 1 order, the revenue (denoted by z;) we will get for this time

interval will be at least

For the first order, which is of type 1, we get revenue w; for the following (1 — a)l — 1

Il-1) al(al—1)
5~ — — 5 finally, for each

orders, which must be of type 2, we get revenue at least
of the remaining orders, we get revenue at least al, which gives us the last term of the
above right hand side. Since w > al by the choice of the algorithm, we have

1—a)?, (Ba-1)
> l
- 2 + 2

If all the orders in B; are type 2 orders, then the revenue we will get for this time interval

will be at least

5 > l(l;—l)—al(ag_l)—I—al(t;—ti—(l—a)l)

28

The first two terms of the right hand side above give us a lower bound for the revenue
of the first (1 — «)l orders scheduled in B;, and the last term gives a lower bound for the

revenue of the remaining orders. By rearranging terms, we have

1—a)? 1
o> L=) w4,
2 2
l(al —1
The maximum revenue is z; < (¢, —t;) + %.

During [t;, t;], the maximum revenue one can get is [(t; — ¢;), hence the first term of the
right hand side above. Since there are no type 2 arrivals between t; — (1 — «)l and ¢,

and no type 1 arrivals between ¢, and ¢;,, the maximum revenue one can get between t;
al(al—1)
2

terms, we have

and ;1 is , which is the second term of the right hand side above. By rearranging

Oé2 (6]
A —t) =P — =L
it —t)+ S8 -

If we choose av = 0.56984, then for the interval [t;,;11), the ratio z*/z is at most 1/a.

References

[1] E.M. ArkIN, E.B. SILVERBERG (1987), “Scheduling jobs with fixed start and end
times”, Discrete Applied Mathematics 18, 1-8.

[2] K.R. BAKER (1984), “Sequencing rules and due-date assignments in a job shop”,
Management Science Vol. 30, No. 4, 1093-1104.

3] K.R. BAKER, J.W.M. BERTRAND (1981), “A comparison of due-date selection
rules”, AIIE Transactions, Vol. 13, No. 2, 123-131.

[4] K.R. BAKER, J.W.M. BERTRAND (1982), “A Dynamic Priority Rule for Schedul-
ing Against Due-Dates”, Journal of Operations Management, Vol. 3, No. 1, 37-42.

[5] J.W.M. BERTRAND (1983), “The effect of workload dependent due-dates on job
shop performance”, Management Science, Vol. 29, No. 7, 799-816.

6] J.H. BOOKBINDER, A.I. NOOR (1985), “Setting job-shop due-dates with service-
level constraints”, J. Oper. Res. Soc., Vol. 36, No. 11, 1017-1026.

29

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[18]

A. BorobIN, R. EL-YANIV (1998), Online Computation and Competitive Analy-
sis, Cambridge University Press, United Kingdom.

S. CHAND, D. CHHAJED (1992), “A single machine model for determination of

optimal due dates and sequence”, Operations Research, Vol. 40, No. 3, 596-602.

T.C.E. CHENG (1984), “Optimal due-date determination and sequencing of n jobs
on a single machine”, J. Oper. Res. Soc., Vol. 35, No. 5, 433-437.

T.C.E. CHENG, M.C. GupTA (1989), “Survey of scheduling research involving

due date determination decisions”, Furopean Journal of Operational Research 38,
156-166.

R.W. CoNnwAy (1965), “Priority dispatching and job lateness in a job shop”, The
Journal of Industrial Engineering, Vol. 16, No. 4, 228-237.

I. DUENYAS (1995), “Single facility due date setting with multiple customer
classes”, Management Science, Vol. 41, No. 4, 608-619.

S.ErLioN, I.G. CHOWDHURY (1976), “Due Dates in Job Shop Scheduling”, Inter-
national Journal of Production Research, Vol. 14, No. 2, 223-237.

U. FAIGLE AND W.M. NAWLIN (1994), “Note on scheduling intervals on-line”,
Discrete Applied Mathematics 58, 13-17.

R.L.GrRAHAM, E.L.LAWLER, J.K.LENSTRA AND A.H.G.RINNOOY KAN (1979),
“Optimization and approximation in deterministic sequencing and scheduling: A
survey”, Annals of Discrete Mathematics, No. 5, 287-326.

N.G. HALL AND M.J. MAGAZINE (1994), “Maximizing the value of a space mis-

sion”, Furopean Journal of Operational research 78, 224-241.

L. HaLL, D.B. SHMOYS AND J. WEIN (1996), “Scheduling to minimize average

completion time: Off-line and online algorithms”, in Proceedings of the 7th ACM-
SIAM Symposium on Discrete Algorithms, 142-151.

ROBERT B. HANDFIELD AND ERNEST L. NICHOLS, JR., Introduction to Supply
Chain Management, Prentice Hall, NJ, 1999.

30

[19]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

J.A.HOOGEVEEN AND A.P.A.VESTJENS (1996), “Optimal On-Line Algorithms
for Single Machine Scheduling”, in Proceedings of the Fifth Conference on Integer

Programming and Combinatorial Optimization, 404-414.

R. KAPUSCINSKI AND S. TAYUR (1997), “100% reliable quoted lead times”, GSIA
working paper, Carnegie Mellon University, Pittsburgh, PA.

P. KESKINOCAK (1997), Satisfying Customer Due Dates Effectively, Ph.D. Thesis,
GSIA, Carnegie Mellon University.

P. KESKINOCAK (1998), “On-line Algorithms: How Much is it Worth to Know the
Future?”, IBM Research Report RC21340(96133).

S. MivyazAki (1981), “Combined scheduling system for reducing job tardiness”,
Int. J. Prod. Res., Vol. 19, No. 2, 201-211.

C.PHiLLiPs, C.STEIN AND J.WEIN (1995), “Minimizing Average Completion
Time in the Presence of Release Dates”, to appear in Mathematical Programming,

earlier version appeared in Algorithms and Data Structures: 4th International Work-
shop, WADS’95, Kingston, Canada, August 1995, Proceedings, 86-97.

M. PINEDO (1995), Scheduling: Theory, Algorithms and Systems, Prentice Hall,

New Jersey.

G.L. RAcATZ AND V.A. MABERT (1984), “A simulation analysis of due date

assignment rules”, Journal of Operations Management, Vol. 5, No. 1, 27-39.

A. SEIDMAN, S.S. PANWALKER AND M.L. SMITH (1981), “Optimal assignment

of due-dates for a single processor scheduling problem”, Int. J. Prod. Res, Vol. 19,
No. 4, 393-399.

A. SEIDMAN AND M.L. SMITH (1981), “Due date assignment for production sys-
tems”, Management Science, Vol. 27, No. 5, 571-581.

D.D. SLEATOR AND R.E. TARJAN (1985), “Amortized efficiency of list update
and paging rules”, Communication of the ACM 28, 202-208.

31

[30] G. StaLk Jr., AND T. H. Hout (1990), Competing Against Time, The Free
Press, New York.

[31] S. TAYUR (1998). “ Improving Operations and Quoting Accurate Lead Times in a

Laminate Plant”, to appear in Interfaces.

[32] J.K. WEEKS (1979), “A simulation study of predictable due-dates”, Management
Science, Vol. 25, No. 4, 363-373.

[33] L.M. WEIN (1991), “Due-date setting and priority sequencing in a multi-class
M/G/1 queue”, Management Science, Vol. 37, No. 7, 834-851.

[34] G.J. WOEGINGER (1995), “On-line scheduling of jobs with fixed start and end

times”, Theoretical Computer Science 130, 5-16.

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

32

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

