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Abstract

Let e1,el;ea,eh;...5¢ei,el;... be a sequence of ordered pairs of edges chosen uniformly at
random from the edge set of the complete graph K, (i.e. we sample with replacement). This
sequence is used to form a graph by choosing at stage i, i = 1,..., one edge from e;, €} to
be an edge in the graph, where the choice at stage i is based only on the observation of the
edges that have appeared by stage i. We show that these choices can be made so that whp*
the size of the largest component of the graph formed at stage .535n is polylogarithmic in
n. This resolves a question of Achlioptas.

1 Introduction

Let e1, es,... be a sequence of edges from the edge set of the complete graph K,
where e; is chosen uniformly at random from the collection of edges that have not
yet appeared. Let E,, = {e1,es,...,e,} and G,, = ([n], E,;,) be the mth random
graph in this process. It is a classical theorem, due to Erdés and Rényi [3], that
if m = ¢n, ¢ > 1/2 a constant, then whp G,, contains a unique giant component
of order Q(n).

Achlioptas posed the following interesting question: Suppose that edges come in
pairs ey, €];ea,€h;...;¢€;,€el; ... and we are allowed at stage i to choose one of e;, €]
to be edge in our graph. We must base our decision on ey, €],...e;_1,€}_; only;
that is, the decision is made on-line. Does there exist an online algorithm A and a
constant ¢ > 1/2 such that the random graph G 4(m) arising from the first m = cn
choices whp does not contain a giant component?

We describe a simple algorithm which proves that the answer to Achlioptas’ ques-
tion is yes.
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Theorem 1. There is an algorithm A and positive constant cqg > .535 such that

whp the size of the largest component in G4 = Ga(m), m = con, is bounded by
(log n)°M).

Note that this says that a choice of two edges reduces the size of the largest
component from order n to order polylogn, i.e. by an exponential factor. This is
reminiscent of the beautiful result of Azar, Broder, Karlin and Upfal [1] where, in
the framework of n balls in n boxes, the choice of one of two random boxes for
each ball reduces the number of balls in the box containing the most balls from

roughly log’i’g‘n to about loglogn.

We prove Theorem 1 assuming edges are chosen with replacement. Since we
choose less than 2n edges altogether, the probability that we do not replace any
choice is bounded below by an absolute constant. Thus, the theorem remains
true conditioning on this event, which extends the result to sampling without
replacement.

We also prove the following converse to Theorem 1 which gives a limitation on our
ability to avoid a giant component.

Theorem 2. If m = cn, ¢ > 1 constant, then whp every collection of m edges
Jrom G, om gives a graph with a component of size at least e,n where

1
€c = 5(2cec+1)—1/(c—1).

It follows that any algorithm (including any off-line algorithm) that chooses one
of two random edges through cn steps where ¢ > 1 must produce a subgraph with
a component of size at least e.n.

The Algorithm A that we introduce to prove Theorem 1 is very simple: it takes e,
unless e} is disjoint from all previously examined edges. This introduces a small
bias in favor of choosing isolated edges and against merging larger components.
We shall see that this is enough to give the theorem. Let

m = an = |.535n]
(thus, a = .535) and

=)\ (e e

In words, V; is the set of vertices not incident with any edge in the first ¢ — 1 pairs
of edges.

Algorithm A
begin



Fort=1tom do

f, = e e, LV, Blue edge
T e e CV, Red edge

E(Ga) < {f1,---, [m}

end.

In the analysis of the algorithm it will be useful to make a distinction between
chosen edges of the form f; = e} (i.e. edges that are chosen because they are
disjoint from all previously examined edges) and chosen edges of the form f; = e,
(i.e. edges which are chosen because their partner is incident with some previously
examined edges). We call the former Red edges and the latter Blue edges.

The remainder of the paper is organized as follows. In then next section we reduce
the proof of Theorem 1 to 2 technical lemmas, which are proved in Sections 4 and
5. Section 3 is a brief discussion of some of the many open questions which follow
naturally from this work. Finally, we prove Theorem 2 in Section 6.

2 Main Argument

We begin with some notational conventions. Let E4 be the collection of edges
chosen; to be precise, Eq4 = U, f;. Let G4 = ([n],E4). For a tree T let b(T)
denote the number of branching nodes of T' (i.e. nodes of degree 3 or more). If
T has |T'| nodes and € > 0 is a positive constant then we say that T is e-bushy if
b(T) < €|T|. For positive integers K and n let Ik, be the interval

Ix, = [Klogn,2K logn|.

Our theorem follows from two lemmas:

Lemma 1. Let G be a graph with vertex set [n] which has mazimum degree, A(G),
at most logn. Let K and € be fized positive constants and set & = [2/€]. Ifn is
sufficiently large and G contains no e-bushy tree T for which |T| € Ik, then G
has no component with more than ko = (logn)é*! vertices.

Lemma 2. There exist constants K, e > 0 such that whp G4 contains no e-bushy
tree T' such that |T| € Ig,,.

Now, the random graph G4 is a subgraph of the random graph G, 2, (the graph
produced by the first n pairs). It is well known (see for example Bollobas [2],
Chapter III) that whp A(G,2,) < logn. Hence, Theorem 1 follows immediately
from Lemma 1 and 2.

The proof of Lemma 1 is constructive. We prove Lemma 2 by conditioning on
the times and colors of chosen edges. Consider the event E that a fixed pair of



incident edges appears in fi,..., f,,. Note that at least one of these edges must
be Blue (the set of Red edges forms a matching). Furthermore, if one of the edges
is Red and the other is Blue then the Red edge must appear before the Blue edge,
that is, the set of pairs of times for the occurrence of these edges is reduced by
half. It follows from these observations that the probability of E is less than 1/n?.
This is, very loosely speaking, the central idea of the proof.

Lemmas 1 and 2 are proved in Sections 4 and 5, respectively.

3 Open questions

Before turning to the proofs of Lemma 1 and 2, we list and discuss some questions
which follow naturally from Theorem 1.

There are a number of ways in which Theorem 1 might be extended or applied:

e What is the maximum value of ¢y for which the theorem remains valid? It
seems to us that .535 is not the maximum.

e How well can an off-line algorithm (i.e. an algorithm that chooses one of each
e, e, after it has seen all edges) do in avoiding a giant component?

e We can also consider the converse problem. Is it possible to create a giant
component with (1 — €)n edges if we have a choice of two at each stage?

e Are there any algorithmic implications, as there are for [1]?

Many interesting questions analogous to the original conjecture of Achlioptas can
be asked; that is, for any graph property we can ask if the choice of one of two
random edges at each stage allows us to delay (or advance) the appearance of
the property. We can also adapt the question to other random structures. At
first glance, we see no reason why statements analogous to Theorem 1 can not be
proven for other properties. It seems more challenging to show that there are non-
trivial graph properties for which the threshold is robust under the introduction
of an on-line choice of one of two random edges at each stage. We suspect that
the size of the components in G, , for p near 1/n will not provide such examples;
that is, we suspect that the answer to the following question is yes:

e Does there exists an algorithm A and a constant 8 > 1/2 such that size of
the largest component of G4(An) is O(logn) (rather than O(poly(logn))).
In other words, can we keep components of size (logn)? from occurring until
significantly after the (n/2)*¢ edge?

In fact, it may be the case that components of size even small than logn can be
delayed past p = 1/n.



e Does there exists an algorithm A and a constant 8 > 1/2 such that size of
the largest component of G 4(8n) is o(logn)?

4 Proof of Lemma 1

Let G be a graph with vertex set [n] such that A(G) < logn which contains no
e-bushy tree T such that |T'| € Ix,. Assume for the sake of contradiction that
G contains a component with more than kg vertices. Let T; be a subtree of this
component such that |Ti| = [(logn)é*t!]. We show that T} contains an e-bushy
tree T* with |T*| € Ik . We achieve this by constructing two sequences of trees:

T, 2T, 22T,

and

N
N
N

such that

(i) T; is a subtree of T} for each i,
(i) T} is e-bushy for each 4, and
(iii) |T,| € Ixn.

The idea is to ‘trim’ subtrees of T; that do not contain any long paths while
introducing a long path (length at least &) to T; every time a new branch vertex
is introduced to T;.

At each stage of this process some vertices are deleted and some vertices will be
chosen. Vertices deleted at stage ¢ do not appear in T;,;. The vertices chosen
during stage ¢ are the vertices in T;;1 \ T;. In other words, chosen vertices will
be vertices in T* = Tp. The collection of vertices that have not yet been either
chosen or deleted will be either touched or untouched.

Initially all vertices are untouched and P, = z;,%s,... ,Z; is a maximal path of
Ti. We may assume P; has fewer than K logn vertices (n.b. if T} contains a path
of length K logn then we simply take this path as T*). The vertices of P, become
chosen. Fix 1 < j < k and let E; denote the set of edges which are incident
with z; but are not part of P;. Consider e = {z;,y} € E; and the subtree T"
containing y which is connected to the rest of T by e. Let P’ be a longest path in
T’ which has y as one endpoint. If P’ has fewer than £ edges than we delete the
whole of T'. Otherwise the vertices of P’ become touched. We do this for every j
and every edge of E;. The paths that comprise the collection of touched vertices
become chosen one path at a time. If at any stage in this process the number of
chosen vertices lies in Ix, then we stop and the collection of chosen vertices is



the desired e-bushy tree T™. If the process does not terminate then the subtree of
vertices that have not been deleted is denoted by T5.

In general, after j — 1 steps we have a tree T; with a subtree Tj of chosen vertices,
and the remaining vertices are all untouched. For each chosen vertex v we consider
the set of edges E, which join it to the untouched vertices (note that we need only
consider the vertices that were chosen in the previous round). Each e € E, defines
a tree which is deleted if it has no long path to its root and otherwise it produces
a path which becomes touched. At the end of the round the paths that comprise
the collection of touched vertices become chosen one path at a time, and we stop
the process if the number of chosen vertices lies in Ik ,,.

We must show that the process terminates before all vertices are either chosen
or deleted. We can assume that we never see a path of length K logn or more,
otherwise we can use (part of) this path as our e-bushy tree. Thus, if the process
fails to terminate then the collection of chosen vertices never exceeds K logn.
Now, the deleted vertices make up a collection of trees which can be rooted at a
chosen vertex and have depth at most £&. Thus the number of deleted vertices is
at most A + A2 4 ... + A¢~! times the number of chosen vertices. If the process
did not terminate properly then T, would be an e-bushy tree and would satisfy

T | | T |
T, | >
Tl 2 T AT T AT 2 2A

for n sufficiently large. This is a contradiction.

> Klogn,

It only remains to prove Lemma 2.

5 Proof of Lemma 2

Recall that the chosen edge f;, t = 1,2,... ,m is assigned the colour Red if f; = €}
and is assigned Blue otherwise. By this colouring E,4 is partitioned into Ejp, Eg,
the sets of Blue and Red edges respectively. We prove Lemma 2 by conditioning
on the times when edges appear and the colors they are assigned.

We begin by defining a generic event £. Consider collections of edges By, B, R, Q)
which satisfy

(i) R is a matching.

(ii) B1 U R can be decomposed into |R| edge-disjoint paths of length 2, each
containing one edge from B; and one edge from R.

(iif) 0 < Q[ < 3.

Let B = By U B; and let £ = £(B, R, Q) be the event that we have
BgEB; RQER, QgEA



Condition (i) is motivated by the fact that the set of Red edges always forms a
matching. Condition (ii) is motivated by the fact that, since Red edges appear as
isolated edges, any edge in G 4 incident with a Red edge is Blue.

While it is not a formal necessity of this definition, whenever we consider the event
E(B, R,Q) the edge set B U R U @ forms a connected component (in fact, this
edge set is usually a tree and on rare occasion a unicyclic connected component).
Suppose we have a set of Red and Blue edges that forms a connected component.
We determine sets By, By, R, @ that satisfy conditions (i)-(iii) as follows. Choose
a spanning tree T of the connected component and an arbitrary root of 7. Form
paths consisting of one Blue and one Red edge by ‘matching’ each Red edge to
the first edge on the path from that Red edge to the root. This procedure fails to
‘match’ any Red edge incident with the root. The set () holds this ‘unmatched’
Red edge, when it exists.

We now bound the probability of such an event. Let s = |B| + |R|,q = |Q|-
Lemma 3. If s < (logn)? then

s+q |B|—|&]
Pr(€) < (1+ 0(1))7213+‘1 (a - %(1 — e—Sa))

1 —8a —16a .
X (128(16a+4e 3+e ))) .
Proof We prove the Lemma by conditioning on the times when the given
edges appear in our random process. Fix a collection of times t = {t; : f €
R U B U @} such that every pair of adjacent edges fi, fo with fi € BUQ and
f2 € R we have ty, > t;, (we will use this property only for the pairs given by
condition (ii)). Suppose that {t;: f e SUQ} ={n <7 < -+ < Tg44}. Define

events
{ey; = f,eif ZVi,} ifn=t;, fEB
Ai: {eif:f’fgmf} ifT’i:tfafER
{f € {ey. e, }} ifr,=t;, feQ
Then we let
s+q
A=) A
i=1
Now let us estimate
a; =Pr(A4; | Ai,..., A1) (1)
for i = 1,2,...,s + q. Note that the conditioning influences the randomness of
the edges unfixed edges in e, €};...;e,_1,€.._; in two ways:

(a) If the edge f is in R and j < t; < 7; then neither e; nor ¢} is incident with f.



(b) If f is in B and t; < 7; then there exists a first edge ei’f that appears before
time t; and is incident with e} ;- In other words, the conditioning may force

a number of paths on 2 edges in the set e1,€;...;er_1,€,. ;.

All told, very few edges in ej,€);...;er_1,€.._; are fixed and those that are not
fixed are distributed nearly uniformly.

Now, we bound «; by further conditioning on the edges €, and e, for f € B and
the time of appearance of the edge ei’f, which we denote ¢7. With this additional
conditioning in place the edge e; or €} that is not fixed by the conditioning is

chosen uniformly at random from the set of edges that does not intersect

Uj = U flu U e,

FER:j<ty<T; JE€Bity<t; and j<t’;
Note that the size of this vertex set is at most 2s; that is, the edge is chosen

uniformly at random from a collection of at least ("_223) edges. Also note that we

have Uy D Uz D -+ D U,,_1. We are now ready to bound o;.

Suppose first that 7; = t¢, f € @, then

2
since the edges are chosen independently with replacement.
Suppose now that 7; = t;, f € B. Clearly, Pr(e;, = f) = 1/N. We must multiply
this by the probability that e, ; intersects some previously appearing edge (note
that these two events are independent). The probability that e} ; intersects one of

the fixed edges is at most 6sn/(3) (since there are at most 3s fixed edges). If €, ;
intersects none of the fixed edges then e, ; does not intersect Uy, and the probability

e;, is incident with any given unfixed edge is at most 2n/ (”_223). Putting these
observations together we have

s/n _ _ 4771 " — l — e 8ts/n s/n
O(s/n) + <1 (1 n2—0(sn)) )] N(1 + O(s/n)).
3)

Finally, assume that 7, = t;, f € R. By reasoning analogous to that for the
previous case we have

1 4n 2706 4
;< — R — — (e 8ts/n . 4
% < & (1 . O(sn)) N (e + O(s/n)) (4)

1
aiSN

Applying (2), (3) and (4) we see that

Pr(A;) < < N2:+q [T —e®/+0(s/n)) [ (e + O(S/n)) :

JeB fER



Now let T denote the set of feasible choices for t. So

Pr(€) < N2sq+q <Z H(l — e 81/" 1 O(s/n)) H(e_Stf/" + O(s/n))

teT feB fER

‘ m |B|—|R|
< o (Zu — et 0<s/n>>)

=1

m—1 m |R|
X <Z Z (e8/™ + O(s/n))(1 — e ¥/™ + O(s/n))) .
i=1 j=i+1
Now .
Ze—&'/n <1 +/ e—Sx/nd:Ij =1+ g(l _ e—8m/n)
i=1 z=0
and
m—1

Z e 8/n(1 — e /") <m + / / e 821 — e 8/ dyd
z=0 Jy=z

= m+/ e 8=/n (m —z+ g(e_sm/" — 6_8’”/")) dz
z=0

e _ n_2(3 + e—lﬁm/n)
8 32 128

and the lemma follows. O

We also need a bound the number of e-bushy trees on a fixed set. Let B denote
the set of e-bushy trees spanning the set [k].

Lemma 4.
1B < kle?OF

where ¢p(e) — 0 as € — 0.

Proof We use the well-known Priifer correspondence between labelled trees
on k vertices and sequences of length k — 2 over [k], (see for example Lovész [4],
Problem 4.5). Suppose that we fix b(T) = ¢t and the set of ¢ branching nodes and

the degrees by,bs, ... ,b; of these nodes. If by + by + --- 4+ b, = B +t then we have
at most

(k—k;—tB) (161;2)(’“_2_3)!(1)1—1)!(132 —Bl!)!---(bt—l)! -

k—t (k — 2)!
(k—2—B) (b — D)l(bz — 1) -+ (b — 1)!




choices for the tree.

Thus the total number of e-bushy trees is at most

(k—2)!§:(lz)2(k_]€2_—t3) 2 (b1—1)!(b2—11)!---(bt—1)!

t=0 B>2t by+--+by =B+t

= (k- 2)!% (’Z) > (k _k;_t B) 5]

t=0 B>2t
ek
k k—t tB
—6-2) ()2 (5l s) 5
t=0 B>2t

Now let up = ( kot )%B, If B > €'/?k then

k—2—B
tB te\ B eek\ 2
<[ Z) <[ =) < (ee/B.
B!—(B) —(B) < (ee)

k—t
< (oel/2)t=2 1/2\B+2—t
E up < (ee/*) E (B+2_t)(ee )
<

So

B>el/2k B>2t
(661/2)t_2(1 + eel/z)k_t — eO?R),
On the other hand

k—t t8
2 uBS(k—2—el/2k) 2 B

B<el/2k B<el/2k

ee
kE—2— €2k

O((¢*/?1og(1/€))k)

VAN

VAN

e
So, (5) and (6) imply that the total number of e-bushy trees is at most

ek
k
& — 9)160((e/2log(1/)k)
- ("

t=0

and the lemma follows.

O

We now prove Lemma 2. Let T, |T| = k € Ik, be an e-bushy tree. We choose a

root r of T' and let M denote the set of matchings of T. We have

Pr(T CGa)= Y Pr(MC Eg,E(T)\ M C Eg).
MeM

Note that in this event, for a fixed matching M, every edge incident with an edge
in M must occur in Eg. For each M € M let () denote the set of edges of M
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which are incident with r (of course |@| < 1). Form paths of length two consisting
of one edge from Eg and one edge from Eg by associating each edge e € M \ Q
with the first edge in the path from e to the root r. We apply Lemma 3:

Pr(T CG4) < > Pr(M\QC Eg,E(T)\ M C Ep, Q C Ey)

Mem
<o) (a-ja-e) 0
|M|—1
16a + 473 — (3 + 6_16"‘))
8 M%:M < 128 (o — 2(1 — e782))?

We observe that the number of /-edge matchings in a tree T' on k vertices is at
most the number of [-edge matchings in a path on k vertices. Indeed, let my,
be the number of l-edge matchings on a path with k vertices and let my; be the
maximum over all trees T' with k vertices of the number of l-edge matchings in 7.
Then for k > 2,

* * *
Mpe = Mk—24-1 + Mi_1,¢ and Mpg < Myp_gp 1 + M1

The equality comes from considering whether or not an [-matching contains a par-
ticular end edge of a path with k vertices. The inequality comes from considering,
in a fixed tree T', whether or not an l-matching contains a particular pendant edge
{z,y} such that T' — {z,y} leaves a tree plus isolated vertices. Here we have to
use the fact that mj; is monotone non-decreasing with k. A simple induction then
shows that, in fact, mj; = my,.

Now, if we let
oo k
z9) =3 > mua'y
k=0 1=0

where my,; is the number of [-edge matchings on a path with k vertices, then

1

Y(z,y) = e

(o474

mz

Indeed, we have the recurrence my, = mg_24-1 + mig_1,¢ for k > 2, and we get
the claimed expression for 1 (z,y) by multiplying each such equation by z*y* and
summing in the usual way.

This implies that for any k vertex tree and any y > 0,

5 < St <2 (LVEE)

MeM

11



Plugging this into (7) we get

PI‘(T g GA) =

k
1 1 k 16c + e8> — (3 4 e~162)
O ——(1—e% 1 1
nk-1 (a 8( ¢ )) < * \/ * 32 (a0 — (1 —e8))2

Thus, by Lemma 3, the probability that G 4 contains an e-bushy tree with k € I
vertices is

O n k! P(e)k 1 1 1 —8a ¢
k 1€ F Oé—g( — € )

k
1 4e—8a _ —16a
w1+ 1+ 6o + 4e : (3-_:: 2)
32 (o — (1 — e %))

Putting o =~ .535 and e sufficiently small, we see that
Pr(T C Ga) = O(n¢")

where ( < 1 is constant. Thus whp G4 contains no e-bushy tree of size k in the
range Ik, for K = 2log (™! and Lemma 2 follows immediately.

Remark This argument can be used to show that whp all the components of
G 4 are trees or unicyclic. Consider a minimal complex connected graph. This
consists of a path P = (x1, z2, ... , zx) plus two edges contained in {z1, s, ... , 1}
Following the above argument we see that for k € Ik ,, the probability of such a
subgraph is O(n¢*n=2) = o(1) where the two extra edges are placed in @, when
we apply Lemma 3. This accounts for the extra factor n=2. For k > 2K logn,
Lemma 2 rules out the existence of P.

6 Proof of Theorem 2

Consider the random graph G = Gy, ,, p = 4¢/n. We first prove that whp
AS C [n],s = |S| < €.n such that S contains at least cs edges of G.  (8)

Indeed, the probability that there exists an S violating the density condition of
(8) is at most

Il
N
N

O
[y]
J’_
S
N
S|®
N’
O
N
\_/
1]
Il
(o]
~
'—l
S’
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Note that, by monotonicity, we can replace G, , by G, 2, m = cn in the conclusion
of (8).

Now, suppose that there are no sets violating the density condition of (8) and
assume for the sake of contradiction that G = G, 2, contains a set of m edges
X such that the edge induced subgraph G(X) has no component of size e.n or
more. Let the components of G(X) be C1,Cs, ... ,C,. Then the number of edges

in G(X) is less than
p
Z c|Ci| = cn
i=1

contradiction. O
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