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Abstract

Recently, the first combinatorial strongly polynomial algorithms for submodular function
minimization have been devised independently by Iwata, Fleischer, and Fujishige and by
Schrijver. In this paper, we improve the running time of Schrijver’s algorithm by designing
a push-relabel framework for submodular function minimization (SFM). We also extend this
algorithm to carry out parametric minimization for a strong map sequence of submodular
functions in the same asymptotic running time as a single SFM. Applications include an
efficient algorithm for finding a lexicographically optimal base.

1 Introduction

A function f defined on all the subsets of a finite ground set V' is submodular if it satisfies for all
X, YCV,

fFX)+fY) 2 f(XUY)+f(XNY).

Submodular functions arise in combinatorial optimization and various other fields. Examples
include cut capacity functions and matroid rank functions. Submodular function minimization
(SFM) is the problem of finding a subset X C V with f(X) < f(Y) for all Y C V. The
first (strongly) polynomial-time algorithms for SFM were introduced by Grétschel, Lovész, and
Schrijver [10, 11]. These algorithms use the ellipsoid method.

Only recently, the first combinatorial polynomial-time algorithing were developed by Iwata,
Fleischer, and Fujishige [13] and by Schrijver [17]. These algorithms build on Cunningham’s work
to design a combinatorial storngly polynomial algorithm for testing membership in matroid poly-
hedra as well as a combinatorial pseudopolynomial-time! algorithm for general SFM [1, 2]. Iwata,
Fleischer, and Fujishige [13] design both weakly and strongly polynomial algorithms employing
scaling techniques used in the design of algorithms for minimum cost submodular flow [5, 12, 14].
Schrijver [17] describes a combinatorial strongly polynomial algorithm that builds more directly
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on Cunningham’s algorithm [1] for testing membership in matroid polyhedra. The algorithms in
[13] have worst-case complexity O(n®ylog M) and O(n"ylogn), where n = |V| and M denotes
the maximum absolute value of the function values, and « denotes the time for one function
evaluation, i.e., the time to determine f(X) given X. The algorithm in [17] runs in O(n®y + n?)
time.

In this paper, we present an improved version of Schrijver’s algorithm. Schrijver’s algorithm
depends on the use of his novel subroutine Reduce-Interval described in the next section. It uses
this subroutine in a lexicographic framework, using a layered network in a manner similar to
augmenting path algorithms of Tardos, Tovey, and Trick [18]. We design a simpler push-relabel
framework for SFM that reduces the number of subroutine calls by a factor of n. The resulting
algorithm runs in O(n7y + n8) time.

The push-relabel framework was introduced by Goldberg and Tarjan [9] for the maximum flow
problem. Subsequently, it was applied to polymatroid intersection by Fujishige and Zhang [7].
Gallo, Grigoriadis, and Tarjan [8] extended the push-relabel algorithm to solve monotone para-
metric maximum flow problems with no increase in time complexity. Iwata, Murota, and Shigeno
[15] discussed an extension of the result in [8] to polymatroid intersection. They showed that a
strong map sequence of submodular functions plays a similar role to that of a monotone paramet-
ric network. Analogously, we extend the push-relabel algorithm for SFM to solve the parametric
minimization problem for a strong map sequence.

We then show how to use the parametric submodular function minimization algorithm to solve
related problems in the same asymptotic time as solving SFM via the push-relabel algorithin:
minimizing f(X)/w(X) for a positive vector w, and finding a lexicographically optimal base. The
concept of a lexicographically optimal base was introduced by Fujishige [6] as a generalization of
the lexicographically optimal flow earlier defined by Megiddo [16].

Before the existence of combinatorial polynomial-time algorithms for general SFM, it was
common to present algorithms that required minimizing submodular functions as having access
to an oracle. This was done for two reasons: 1) the ellipsoid method was viewed as a tool
for proving polynomial solvability rather than a practically efficient algorithm; 2) for specific
submodular functions, there may be efficient specialized algorithing for minimization.

In this manner, Fujishige [6] devised an algorithm for finding the lexicographically optimal
base that uses O(n) calls to an oracle for SEFM and an algorithm for finding a lexicographically
optimal flow by solving O(k) maximum flow problems, where k& designates the number of terminal
vertices. Gallo, Grigoriadis, and Tarjan [8] described how to find a lexicographically optimal flow
in the same asymptotic running time as a single maximum flow computation using a push-relabel
algorithm.

In our paper, we show how to exploit the structure of combinatorial algorithm for submodular
function minimization to find a lexicographically optimal base in O(n"y + n8) time, the same
asymptotic time as our improved version of Schrijver’s algorithm for SFM. This improves by a
factor of n the analysis of the algorithm of Fujishige [6] obtained by simply using our algorithm
for SFM as the oracle.

Notation and Definitions

Denote by Z and R the set of integers and the set of reals, respectively. Let V be a finite
nonempty set of cardinality |V| = n. For a vector in z € RY and a set X C V we define
z(X) = ,cx #(v). For each u € V, we denote by X, the unit vector in RV such that x,(v) =1
ifv=wuand xu(v) =0if v # u.

Throughout this paper, we assume without loss of generality that f(#) = 0. With such a



submodular function f, we associate the base polyhedron B(f) defined by
B(f)={z |y eRY,2(V) = f(V), VX CV: «(X) < f(X)}.

A vector z € B(f) is called a base. For a base z € B(f), a set X C V is called z-tight if
z(X) = f(X) holds. An extreme base is an extreme point of B(f). Given a total order < in V,
the greedy algorithm [4] produces an extreme base y by setting y(v) = f(L(v)) — f(L(v)\{v}) for
each v € V, where L(v) = {u | u € V,u < v}. Note that this implies L(v) is y-tight for each v.

Let I be a set of indices for total orders in V. For ¢ € I, we denote by y; the extreme base
generated by <; via the greedy algorithm. For s,t € V and ¢ € I, let (s,t]; := {v | s <; v =; t} be
the interval between s and ¢ in <;. Note that (s,t]; may be empty. For r € (s,t]; define <" to
be the total order obtained from =<; by moving r to just before s. That is, r <]" vif s <; v <; 7,
and all other relations remain as with <;. We denote by y;”" the extreme base generated by <;"
via the greedy algorithm.

2 Submodular Function Minimization

2.1 Schrijver’s Algorithm

The combinatorial algorithms for submodular function minimization are based on a dual charac-
terization of a minimizer. For z € RY define £~ by 2~ (v) := min{0, z(v)} for v € V. A theorem
of Edmonds [4] on vector reduction of polymatroids implies

max{z™(V) | ¢ € B(f)} = min{f(X) | X C V}. 1)

It is important to note that a maximizer of the left hand side might not be an extreme base. If
x € B(f) is extreme, it is easy to show this: simply exhibit the total order that generates x via the
greedy algorithm. However, if z is not extreme, the problem of verifying z € B(f) is the problem
of determining if f — z > 0. Unfortunately, no efficient algorithm is known to do this without
relying on general SFM. 2 To avoid this problem, Cunningham [2] maintains a representation of
a base z € B(f) as a convex combination of extreme bases: x =) ,c; iy, A >0, > ;X = 1.
All of the subsequent algorithms for general SFM do the same.

Since the greedy algorithm returns a base in B(f), a natural idea is to start from such a
base and “move towards” a maximizer of the left hand side of (1). One way to move from one
base = to another base z’ is to increase z for an element v and decrease z for an element u by
the same amount. To determine a maximum feasible step size a(z,v,u) so that the new vector
' =z + alz,v,u)(xy — Xu) 18 in B(f) is to determine the minimum value of f(X) — z(X) over
all sets v € X C V\{u}. This quantity is called the exchange capacity, and computing it is again
a problem of minimizing a submodular function. 3

To avoid the obstacle of computing exact exchange capacities, Schrijver proposes a method
of computing lower bounds on exchange capacities, and devises a framework in which performing
such exchanges leads to a strongly polynomial algorithm for SFM [17]. Given z = ), ; A;y; and

2Given an algorithm that solves the membership problem, it is possible to find the minimum of an arbitrary
submodular function f via the binary search method. By asking whether 0 € B(f?) where the function is defined
as fP(X) = f(X) — § for nonempty X, it is possible to determine if the minimum value of f is less than or greater
than 8 < 0. Good upper and lower bounds on the minimum value of f may be obtained from any base x € B(f).

3Let 3 be a lower bound of an arbitrary submodular function f : 2 — R.. Define f' : 2¥ =5 Ron U = VU{u, v}
by f/(X)=f(XNV)—Bfor§ # X CU and f'(#) = f/(U) =0. Then f' is submodular and 0 € B(f). Computing
(0, v,u) is equivalent to finding the minimum value of f.



a pair (s,t) with (s,t]; # 0 for some ¢ € I, Schrijver introduces a subroutine that moves from z

while reducing either max;cr (s, t];| or the number of total indices ¢ € I that attain this maximum.

By maintaining an affinely independent representation of z, after at most n? such applications,

(s,t]; =0 for all 1 € I, and thus the base z in this last iteration satisfies a(z,s,t) = 0.
Schrijver’s subroutine is now described as follows.

Reduce-Interval (i, s, t)
Input: A total order <; and s,t € V such that s <; t.

Output: A constant g > 0 and a decomposition of y; + u(x: — Xxs) as a convex
combination of y;”" for r € (s, t];.

Suppose Reduce-Interval(i, s, ) returns p and 3¢ (, 4, pry;” . The total orders <" generated
by the subroutine satisfy two properties:

e For each r € (s,t];, the set (s,¢];" := {v | s <" v <" t} is strictly contained in (s, t];.
o If >0, then xs — xs =, %(yf” — y;). Otherwise, y;”" = y; for some r € (s, ];.

Let ¢ attain the maximum |(s, ¢];| in I. If A; is the coefficient of y; in the convex representation
of z then by replacing Aiy; with Ai -, ¢, 4, pry;”", the new base 2’ =z + X\ >, pry)” =z +
Aivi + Ap{xt — Xxs) with new index set of total orders I’ has a convex representation with either
smaller max;ey |(s,t];| or fewer total orders that obtain this value.

It takes O(n?y) time to determine this expression of 1; + u(x: — Xxs). After this operation,
the number of total orders in the expression of the new base ' may have increased by at most
|(s,t];| < n. Gaussian elimination can then be used to reduce the total number of bases to at
most n in O(n®) time. Thus Reduce-Interval takes O(n2y + n3) time.

Schrijver [17] describes a modification of a layered network algorithm to find a minimizer of
f by calling Reduce-Interval O(n®) times. Below, we describe how to embed Reduce-Interval in a
push-relabel framework to minimize a submodular function with O(n®) calls to Reduce-Interval.
This speedup mirrors the improvement in the run time of push-relabel algorithms over layered
network algorithms for the maximum flow algorithm. Besides giving a faster algorithm, the
push-relabel framework is more adaptable to generalizations of maximum flow such as parametric
maximum flow. We show in Sections 3 and 4 of this paper that this is also the case for submodular
function minimization.

2.2 Push-Relabel Framework

Our push-relabel algorithm works on a graph with vertex set V and arc set Ar := (J;c; 4,
where A; := {(s,t) | s,t € V, s <; t}, and maintains distance labels d on the vertices. Let
P={v|veV,z(w)>0}and N ={v|v eV, z(v) <0}, where z = >, ; A\iy;.

Definition 2.1 The labeling d : V — Z is valid for x € B(f) if it satisfies d(v) =0 for v € N
and d(s) < d(t) + 1 for all (s,t) € Ar.

The push-relabel algorithm maintains a valid labeling. Initially, d(s) = 0 for s € V, which is
clearly valid. Note that for a valid distance labeling d, d(s) is a lower bound on the minimum
number of arcs from s to N. For a valid labeling d, we define Q@ = {s | s € P, d(s) < n}.



The push-relabel algorithm for maximum flow maintains a preflow: a flow that satisfies ca-
pacity constraints but not conservation. Instead, vertices are allowed to have excess: more flow
coming in than going out. The operations push and relabel apply to a vertex with excess. In the
setting of submodular function minimization, the algorithm will simply maintain a base z as a
convex combination of extreme bases. The operations push and relabel will apply to elements s
with z(s) > 0.

Operation Relabel(s) applies if s € @ and d(s) < d(t) for every (s,t) € Aj. It updates
d(s) :=d(s) + 1. If the new d(s) = n, then s is removed from @. Thus, d(s) < n holds for s € V'
throughout the algorithm.

Operation Push(s,t) applies if s € @, (s,t) € Ar and d(s) = d(t) + 1 and results in either
z(s) =0or (s,t) ¢ Ar. It accomplishes this by repeatedly selecting ¢ € I with the largest interval
(s, t];, and applying the subroutine Reduce-Interval(z, s, t) to get u > 0 and a convex decomposition
D re (st pry;” of yi+ (Xt — Xs). Then it updates z := z +&(x: — xs) with € = min{z(s), \;ju}. If
p = 0, this update does not change z, but <; is replaced by <" for some r € (s, t];. Otherwise,
the new convex combination coefficients are updated as A; := X\, —e/u, i, 1= eu,/pu for r € (s,t];;
and the set I is augmented by the indices i, of those total orders <;"" with nonzero coefficients,
and the final coeflicients of indices 4, that are already in I is obtained by adding the existing
coeflicient to the coefficient of 4, computed above. By a standard linear programming technique,
the I can be reduced to an affinely independent set of at most n members in O(n3) time. This
entire sequence is repeated until z(s) = 0 or (s,t) ¢ As, which occurs when (s,t]; = 0 for all
i € 1. If (s,t) ¢ Ar, we call Push(s,t) saturating. Otherwise, Push(s,t) is nonsaturating. After
each call to the subroutine Reduce-Interval, the maximum size of the intervals (s, t]; decreases or
the number of total orders that attain the maximum decreases. Thus Push(s, t) performs at most
O(n?) calls to Reduce-Interval.

These two operations are used in the algorithm as follows. The algorithm starts by fixing an
arbitrary total order <, on the vertices. The algorithin repeatedly selects a vertex s € () with
highest d(s) to apply a procedure Scan(s). The goal of Scan(s) is to either obtain z(s) = 0, or
certify that no Push operation is applicable for s, in which case a relabel operation is applicable.
The procedure Scan(s) repeatedly picks a vertex ¢ € V in order of <, and applies Push(s,t) if
possible, until z(s) = 0 or it has examined every ¢t € V. If Scan(s) ends with a non-saturating
Push(s,t), the next time Scan(s) is invoked, it starts at ¢. This is done by keeping a pointer
7(s) that indicates the current vertex to be examined in Scan(s) for each s € V. The algorithm
increments 7(s) if it performs a saturating Push(s, 7(s)) or it finds Push(s, 7(s)) is not applicable.
If 7(s) is the last vertex in <,, this invocation of Scan(s) ends and the algorithm performs
Relabel(s) and resets 7(s) to be the first vertex in <.

The algorithm terminates when either ¢} or N is empty. This algorithm is summarized in
Figure 1.

Correctness and Complexity

Lemma 2.2 The operations Push and Relabel maintain d valid.

Proof. At the start d is valid. The operation Relabel, if applicable, maintains that d is valid.
Suppose d is valid before Reduce-Interval(s, s, t) that introduces a new arc (u,v) to Ar. If (u,v) is
a new arc, it is not in A; but is in A;, for some u € (s,t];. Thus, s <; v <; u <; ¢, which implies
that d(u) < d(t) + 1 = d(s) < d(v) + 1, where the equality follows by choice of (s,t). Thus d
remains valid after a Push operation. |



Push-Relabel(f, V):

Fix a total order <, on V,s0 V. ={1,2,... ,n}.
z € B(f) obtained by greedy algorithm.
dlv)=0foral veV.
Tv)y=1forallve V.
P:={v|veV,z) >0}
N:={v|veV, z(v) <0}
Q= P;
While @ # 0 and N # 0,
s « element in @ with max d(s).
[ Start Scan(s). ]
While z(s) > 0 and 7(s) <o n,
If d(s) = d(7(s)) + 1 then
Push(s, 7(s)).
[ Updates Q, P, N, z ]
7(s) :=7(s) + 1;
[ End Scan(s). ]
If z(s) #0,
Relabel(s).
[ Updates @ ]
7(s) == 1.
else @ + Q\{s}.
W « the set of vertices from which NV is reachable.
Return W.

Figure 1: Description of a push-relabel algorithm for finding a minimizer of a submodular function.

Lemma 2.3 At termination, the set W of vertices from which there is o directed path to N is a
minimizer of f.

Proof. If N # (), then z(v) < 0forv € W and z(v) > 0 forv € V\W. This impliesz~ (V) = z(W).
Since no arc in Ay enters W, the set W is y;-tight for each ¢ € I, which implies z(W) = f(W).
Thus by (1), the set W is a minimizer of f.

If N =0, then f(X) > z(X) > 0 holds for every X C V, which implies that § is a minimizer
of f. |

By the same argument as in Proof of Lemma 2.3, any subset X with N C X C V\P such
that there is no arc from V\X to X in A; is a minimizer of f.

Since the algorithm never relabels a vertex s with d(s) = n, d(s) < n for every s € V. Thus,
the algorithm performs at most n? relabel operations in total. The following sequence of lemmas
bounds the number of push operations.

Lemma 2.4 Relabel(u) is applicable when the algorithm resets T(u) in Scan(u).

Proof. Tt suffices to establish that when the algorithm resets 7(u), that there is no arc (u,v)
in Ar with d(v) < d(u). We do this by showing that v <, 7(u) and (u,v) € A imply that
d(u) < d(v). Suppose by induction that the statement holds before Reduce-Interval(i,s,t) is
applied when (u,v) ¢ Ar. Suppose Reduce-Interval(s, s,t) introduces (u,v) into A;. From the
proof of Lemma 2.2, we have that d(u) < d(t) + 1 = d(s) < d(v) + 1. Now, if t <, 7(u), then the



first inequality can be tightened to be d(u) < d(t). On the other hand, if v <, 7(u) <, t, then
d(s) < d(v). In either case, we have d(u) < d(v). [ |

Corollary 2.5 The algorithm performs at most n3 saturating pushes.

Proof. After a saturating Push(s,t), 7(s) is incremented by 1. Thus there are at most n saturating
pushes before s is relabeled. Since no label exceeds n and there are at most n? saturating pushes
per element, there are at most n3 saturating pushes in total. |

Lemma 2.6 Between a non-saturating Push(s,t) and the next Scan(s), the algorithm performs
Relabel(u) for some u € V.

Proof. As a consequence of a non-saturating Push(s, t), we have z(s) = 0. Before applying Scan(s)
again, the algorithm must increase z(s) via a Push(v, s) for some v € V with d(v) = d(s) + 1.
This implies by the highest label selection rule that there must be a relabel operation some time
before Push(v, s) is invoked. [ |

Corollary 2.7 The number of non-saturating pushes is at most n>.

Proof. Since there are at most n? relabel operations over the course of the algorithm, the number
of times Push(s, ) is non-saturating for s is at most n2. Over all vertices, this implies at most n>
nonsaturating pushes. n

Thus the algorithm performs O(n?) relabel and O(n®) push operations. Since each push oper-
ation calls Reduce-Interval O(n?) times, Reduce-Interval is invoked O(n®) times in total. Therefore,
the push-relabel algorithm runs in O(n7y + n8) time.

In the above algorithm, we could reverse the direction of arcs in A7y and replace the roles of P
and N with each other. In this case, a push operation is performed from a vertex s with negative
z(s). This algorithm ends if P =0 or @ = 0. If P = ), we have 2= (V) = (V) = f(V'), which
implies V' is a minimizer of f. Otherwise, the set W of vertices reachable from N by the arcs in
Ay is a minimizer of f. We call this variant Reverse-Push-Relabel.

3 Parametric Submodular Function Minimization

Gallo, Grigoriadis, and Tarjan [8] modify the maximum flow push-relabel algorithm of Goldberg
and Tarjan [9] to solve a parametric network flow problem. They consider a flow network with arc
capacities ¢g that are functions of a parameter 6: For arc a leaving the source, ¢y(a) is increasing
in @; for a entering the sink, cy(a) is decreasing in 8; all other arcs have constant capacities. This
is called a monotone parametric network. They show that for a sequence of parameter values
01 < 8y <--- <8, the minimum cuts and maximum flows can be computed for all values in the
same asymptotic time as one push-relabel maximum flow computation.

In the setting of submodular functions, we consider a generalization of this special parametric
flow problem. A submodular function fis said to be a strong quotient of f if Z O Y implies

-~ -~

f(2) - f¥Y) 2 §(2) - f(Y) 2)

for Y,Z C V. We denote this relation by f — f, and say that the relation f — fis a strong
map.



Lemma 3.1 (Topkis [19]) If f — f then the minimal (mazimal) minimizer of f is contained
in the minimal (mazimal) minimizer of f.

To show that the parametric flow problem is indeed a special case of strong maps, consider any
fixed value @ of the parameter and denote by d(X) the set of arcs leaving X. The cut function &y
defined on subsets of V\{s,t} by kg(A) = cp(6(A U {s})) is a submodular function. For 6; < 02,
it is easy to check that kg, — Kg,.

Another special case of strong map sequence is the set of functions obtained from a submodular
function f and a nonnegative vector w € RY: the set of functions {f + 6w} for an increasing
sequence of 0;,. Then f + 01w — f + Gpw.

We show that the minimizer of all submodular functions in a strong map sequence f; — fo —
--+ = fi can be found in the same asymptotic time as a single submodular function minimization
using the push-relabel algorithm.

The algorithm consists of & iterations. Iteration ¢ finds a minimizer of fy,. The first iteration
starts with a valid labeling d(s) = 0 for s € V and applies the push-relabel algorithm for SFM
until it terminates. Each subsequent iteration starts with the final distance labeling from the
previous iteration and an appropriately defined base z € B(f;) such that the current labeling d
is valid with respect to . It resumes the push-relabel algorithm with these inputs.

To obtain the initial base € B(fy) in iteration £, let Z = Y, ; A;%; be the convex combination
of extreme bases in B(f;_1) obtained at the end of the previous push/relabel iteration. For each
of the bases y; € B(fy_1), we generate a base y; € B(fy) and set z = \jy;.

While the extreme bases in the convex combination have changed from ¥ to y, the total orders
generating them have not changed. Thus s <; ¢ still implies that d(s) < d(t) + 1. Furthermore,
Lemma 3.2 below implies that y; > ¥;. Thus, z = > ,c; Aiyi > D ;c7 AiYli = T so that z(v) < 0
implies Z(v) < 0 which implies d(v) = 0. Thus we have that d is a valid labeling with respect to
z.

-~

Lemma 3.2 ([15]) Let y; and ¥; denote respectively the extreme points of B(f) and B(f) ob-
tained by applying the greedy algorithm to =<;. Then f — [ if and only if y; > 7; for every total
order =; of V. |

We now discuss the time complexity of the algorithm. Since the validity of d implies d(s) < n
for every s € V, the total number of the relabel operations is at most n?. The total number
of push operations is O(n®). To generate the initial base z € B(/f,) in iteration £, we apply
greedy |I| < n times to generate |I| < n extreme bases. This takes a total of O(n?) arithmetic
steps and function evaluations per function in the strong map sequence. Therefore the algorithm
requires O(n” + kn?) oracle calls and O(n8) additional arithmetic steps. Thus the algorithm runs
within the same time complexity as the push/relabel algorithm for a single submodular function
minimization as long as k = O(n®).

Note that this algorithm can be run even if the f; are obtained in an on-line manner during
the course of the algorithm. We will use this fact in the following section.

Finally, we may be interested in computing the minimizers in the opposite order, i.e. first the
minimizer of f, then of fi_1, etc. To do this, we need to invoke Reverse-Push-Relabel. When
moving from one function to the next, we obtain the new base in the same way as before. To
check the labeling is valid, we are just in the opposite case of showing the new base z < Z. But
this holds by Lemma 3.2 since the new function f is a strong quotient of the old function f, ie.

f—=



4 Applications

Finding a Weighted Minimizer

One application is finding the minimizer of f(X)/w(X) for a positive vector w. To do this, we
seek the smallest value of a such that there is a set X with f(X) = ow(X). Such a can be
computed by Dinkelbach’s [3] discrete Newton method as follows.

Start with « := f(V)/w(V'), which serves as an upper bound. Find a minimizer Y of f — aw.
If f(Y)— aw(Y) > 0, then the current « is the optimal value, since decreasing « will only
make f — aw more positive. Otherwise, the set Y is strictly contained in V and we update
a = f(Y)/w(Y), which gives an improved upper bound. Repeating this, we will eventually
obtain the optimal o. Since @ < @ implies (f — aw) — (f — @w) we may apply the algorithm for
strong map submodular functions, and thus solve the problem in the same asymptotic time as a
single push-relabel submodular function minimization. By Lemma 3.1, the number of « visited
by the algorithm is at most n.

Finding a Lexicographically Optimal Base

Another related application is finding a lexicographically optimal base. This concept was first
introduced by Megiddo [16] for multi-terminal network flow. Fujishige [6] generalized it to the
framework of polymatroids. Let w € RY be a weight vector satisfying w(v) > 0 for all v € V.
For any base z € B(f), we denote by 6(z,w) the sequence of the numbers z(v)/w(v) for v € V
arranged in the increasing order. A base z* is said to be lexicographically optimal w.r.t. w if
0(x*, w) is lexicographically maximum among all the bases in B(f). A lexicographically maximum
base may not be an extreme base. Fujishige [6] showed the uniqueness of the lexicographically
optimal base and described algorithms to find it.

For any base z € B(f), let {; < --- < & denote the distinct values of z(v)/w(v) for v € V, and
put H; = {v | z(v) < {w(v)}. Fujishige [6] proved that z is the lexicographically optimal base if
and only if z(H;) = f(H;) holds for j =1,... ,£. Therefore, if z is lexicographically optimal and
& < a <&y, we have f(X) — aw(X) > 2(X) — aw(X) > z(H;) — aw(H;) = f(H;) — aw(H;)
for any X C V. This suggests finding an appropriate H; as a minimizer of f — aw for some
parameter . In fact, Fujishige [6] presented the following recursive algorithm for computing the
lexicographically optimal base.

Minimize the submodular function f — aw for a := f(V)/w(V). If f — ow > 0, then
z*(v) := aw(v) for each v € V. In this case, z* is the lexicographically optimal base since any
base x must satisfy (V') = aw(V'). Otherwise, let W be the unique minimal minimizer of f —ow.
The minimal minimizer is the set of elements that can reach N in Ag«. Let f"V be the restriction
of f with respect to W defined by f(X) := f(X) for X C W. Let fi denote the contraction
of f with respect to W defined by fy(X) := f(WUX) — f(W) for X C V\W. Compute the
lexicographically optimal base "V of f with respect to w and the lexicographically optimal
base zy of fir with respect to w. Then z* := 2 @ zw defined by z*(v) := W (v) forv € W
and z*(v) := zw(v) for v € VAW is the lexicographically optimal base of f.

We now discuss an efficient implementation of this recursive algorithm, similar to the lexico-
graphically optimal flow algorithm of Gallo, Grigoriadis, and Tarjan [8]. Let o) be a sufficiently
small number such that f— o w is nonnegative. For instance, select a; = min{y(v)/w(v) | v € V'}
for some y € B(f). Apply the reverse push/relabel algorithm to f — a;w to obtain a base z and
valid labeling d;. Similarly, let a3 be a sufficiently large number such that V minimizes f — asw.
For instance, select a3 = max{y(v)/w(v) | v € V} for some y € B(f). Apply the ordinary



push/relabel algorithm to obtain a base z3 and valid labeling ds. We then perform the following
recursive procedure Slice(f, a1, a3, x1,x3,d1,ds).

In the procedure Slice(f, a1, a3, 1, %3,d1,ds), we compute the unique minimal minimizer W
of f — aow for ae = f(V)/w(V') by applying both ordinary and reverse push/relabel algorithms.
The ordinary one starts with z := z3 + (a3 — a2)w and d3, while the reverse one starts with
z = x1 — (@2 — a1)w and d;. We concurrently execute these algorithms and stop when one
of them terminates. Suppose the ordinary one terminates the first with a base zo and valid
labeling do. (The other case is symmetric.) If W = ), then return z*(v) = agw(v) for each v.
If [W| > n/2, then compute "V and zyw by applying respectively Slice(f"V, a1, ag, 1,29, dy, d2)
and Slice(fw, a2, as, 2, 3,dy, d3), where do(v) = 0 for each v. If |W| < n/2, continue the reverse
algorithm to replace x5 and dy by the resulting ones, and then apply Slice(f%, o, oo, 21, %2, d1, dp)
for finding 2" and Slice(fw, o, 3, 2, T3, d2, d3) for finding zy,. The lexicographically optimal
base is obtained by z* := 2V @ zw.

When we divide the ground set into W and its complement, we introduce new labelings
do for at most half of the ground set. Therefore, the entire algorithm deals with at most 2n
labelings, and hence it performs O(n?) relabel operations in total. Thus the algorithm finds the
lexicographically optimal base in O(n7y + n8) time. This is the same as the running time of our
push/relabel algorithm for SEM, whereas the previous best algorithm due to Fujishige [6] requires
O(n) calls to an oracle for SEFM.
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