Mixtures of Rectangles: Interpretable Soft Clustering

Dan Pelleg
Andrew Moore

DPELLEG@CS.CMU.EDU
AWM@CS.CMU.EDU

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract

To be effective, data-mining has to conclude
with a succinct description of the data. To
this end, we explore a clustering technique
that finds dense regions in data. By con-
straining our model in a specific way, we are
able to represent the interesting regions as an
intersection of intervals. This has the advan-
tage of being easily read and understood by
humans.

Specifically, we fit the data to a mixture
model in which each component is a hyper-
rectangle in M-dimensional space. Hyper-
rectangles may overlap, meaning some points
can have soft membership of several com-
ponents. Each component is simply de-
scribed by, for each attribute, lower and up-
per bounds of points in the cluster. The
computational problem of finding a locally
maximum-likelihood collection of k rectan-
gles is made practical by allowing the rect-
angles to have soft “tails” in the early stages
of an EM-like optimization scheme. Our
method requires no user-supplied parameters
except for the desired number of clusters.
These advantages make it highly attractive
for “turn-key” data-mining application. We
demonstrate the usefulness of the method in
subspace clustering for synthetic data, and in
real-life datasets. We also show its effective-
ness in a classification setting.

1. Introduction

Technological advances have made collection and stor-
age of massive amounts of data commodity technolo-
gies. Unfortunately, much of this data is doomed to
accumulate dust in the warehouse because deriving
useful information from it is still a human-controlled
and poorly understood task. We focus our view on
clustering. A typical example for this problem is

the mixtures-of-Gaussians model. This is a powerful
model which allows for a wide variety of cluster shapes.
It also conveniently accommodates membership of any
point in multiple clusters (a property known as “soft”
membership). Tt can be fitted accurately with the
EM method, and scaled to massive datasets (Moore,
1998). But, the produced clusters are inherently hard
to understand, and so the strength of the model be-
comes 1ts weakness. When interpreted back in the
original data domain, a Gaussian cluster involves com-
puting weighted distances from datapoints to cluster
centroids. In arithmetic terms, this boils down to
subtractions and multiplications of record attributes,
most probably represented in different, often incom-
parable, units. The reason people turn to data-mining
1s to seek help with important decisions such as mar-
keting strategies or credit allocation. From the cogni-
tive aspect, 1t is highly unlikely that any decision will
be taken when its only justification is such cumber-
some manipulation. To make our technique useful, we
must choose an aesthetically pleasing model, even if
the price is reduced expressiveness.

Our model 18 a mixture of uniform density M-
dimensional hyper-rectangles, supplemented with
Gaussian “tails”. The tails mean that (as is the case
with conventional Gaussians), the probability of a dat-
apoint decreases with the distance from the “centroid”.
But, in contrast to conventional Gaussians, there is a
difference in the way we measure distances. We con-
sider the distance from the point to the closest point
to it that is included in the rectangular kernel. Note
that under this definition all points contained in the
kernel are equally (and maximally) likely. We fit the
model by means of an EM procedure. Finally, we re-
port the rectangular kernels. These are just lists of
intervals (one interval per dimension, per cluster) the
intersection of which defines the dense regions. Note
that this model only has O(M) parameters, as op-
posed to O(M?) for mixtures of Gaussian (however, it
is likely to require more components).

Much of the related work in the area of clustering is

concerned with scaling of the algorithms to support
huge datasets. CLARANS (Ng & Han, 1994) performs
a search over the space of centroids for a k-means
model (Duda & Hart, 1973; Bishop, 1995). BIRCH
(Zhang et al., 1995) aims to scale this to massive
datasets by concentrating on heuristic clustering of the
data into spherical clusters while minimizing running
time and memory usage. In (Pelleg & Moore, 1999)*
we show how to use a kd-tree to make this calculation
exact, and extend this result to high-dimensionality
data in (Moore, 2000), and to automatic estimation of
the number of clusters in (Pelleg & Moore, 2000).

Liu et al. (2000) show how to use decision-trees,
traditionally used in supervised learning, in cluster-
ing. While the generated cluster description is human-
readable for simple problems, one can easily construct
an example where the cutoff points chosen by the deci-
sion tree are not very meaningful. This approach also
assumes hard membership. CLIQUE (Agrawal et al.,
1998) is specifically designed to generate interpretable
output in the form of a DNF formula. The creation of
these formulae, however, is done as a post-processing
step and may miss the goal of presenting the clusters
succinctly. Another problem is that they support only
a single notion of membership (whether the datapoint
is in a dense region or not). This precludes multiple
class memberships. It also requires two user-supplied
parameters (the resolution of the grid and a density
threshold) which are unlikely to be specified correctly
for all but expert users and simple densities. Nagesh
et al. (1999) try to fix this, but the hard-membership
assumption still holds in their work.

Learning axis-parallel boxes and their unions has been
discussed in Maass and Warmuth (1995). Note, how-
ever, that our algorithm is unsupervised whereas the
learning-theory work is mainly concerned with super-
vised learning. Another example of a machine learning
approach that searches rectangles is Friedman (1998),
which addresses the supervised learning problem of
finding a hyper-rectangle in input space that contains
points with relatively high mean output value.

2. The probabilistic model and
derivation of the EM step

2.1 Tailed Rectangular Distributions

We begin by defining M to be the number of dimen-
sions. A hyper-rectangle R will be represented by a
pair of M-length vectors, which define the upper (R")
and lower (Rl) boundaries for each dimension. Let x4

'Independently published by AlSabti et al. (1999).

denote the d-th element of the vector x. Define the
function closest(zq,{, h) as the closest point to x4 on
the interval [I, A]:

[ifxg <l
closest(wq,l,h) =< xq ifl<zq<h
h ifh<azg

with the natural multi-dimensional extension of
closest(x, R) being the point in R which is closest to
x. Consider the following single-rectangle PDF:

P(z) = Kexp—§z

o
d=1 d

1 (xd — closest(zq, R, RZ))Z

(1)
P(z) can be thought of as a generalization of the Gaus-
sian distribution where the covariance matrix is zero
except for the squares of the elements of o on the di-
agonal. What makes it different from Gaussian is the
way 1t measures distances to the distribution mean; in-
stead of being the distance between two fixed points,

we measure how far away z is from the boundary of
the rectangle R 2.

Another important property of this distribution is that
it can be factored into independent components:

M 2
K exp _% [Z (xd — closest(zq, R, RZ))

o
d=1 d

04

M 2
= H Ky exp—% (xd — closest(xd’Rld’RZ)) |
d=1

One of these components is shown in Figure 1.

And so when we proceed to integrate it we only need
to consider the single-dimension case:

o0 2
/ exp—% (x closest(x,R)) dx

— 0o o

where z and ¢ are now real numbers and R is an inter-
val [{, h]. We get an integral similar to the one derived
from the univariate Normal distribution, except for the
fact that the mean point is stretched into an interval:

2Strictly speaking, the definition is how far = is from
any point in R. This is implied since closest(z, R) = z for
r € R.

h
+ /exp(O)dd;
!

/°° 1 (x—h)z
+ exp —— dx
h 2 o

= Voro+ (h—1).

Thus the normalizing constant in Equation 1 is simply
the product of the following per-dimension constants:

ﬁ[\/_ad—l— Rl — RY)

Note the penalty imposed on high-volume rectangles.
This will later prevent them from expanding infinitely
to try and capture all possible points.

2.2 Maximum likelihood estimation of a single
Tailed Rectangular Distribution

Suppose we have a dataset X = {z! 2%,.. .2V} and
given ¢ we wish to find the Maximum Likelihood
(MLE) set of 2M parameters defining the rectangle.
The log-likelihood function is

LL(X) = (2)

Z (—N log(V2roq + R: — RY)
d
. . 2
1 [2% — closest(z%, R, RY))
+ Zz: _2 [T4 '

From this equation it is immediately clear that we can
perform the MLE for each dimension independently.
For each dimension d in turn find the values [and h

that maximize
(=Nlog(v2mo + h —1))

+ oy, -1 [Mr

od
We begin by guessing an initial value of (I, h). First
we fix the low-point at [, and find a good candidate
for the new high boundary h’. Then we find a good
candidate for the low boundary I’ based on the exist-
ing h. For each of the boundaries, we want to max-
imize the likelihood which is a function of the new
To achieve this we use the golden-ratio one-
dimensional optimizer (Press et al., 1992). Under the
assumption that the function is unimodal in the given
range, this optimizer will find a maximum point of it,
up to the specified tolerance value. The number of

value.

function evaluations is logarithmic in the width of the
range. Although we have not yet proved that the like-
lihood function is indeed unimodal, empirical evidence
suggests this is indeed the case.

2.3 EM search for a mixture of Tailed
Rectangles

EM for mixture model clustering general takes the fol-
lowing form:

1. Begin with a guess of the the mixture parameters
{p1,01,p2,0,...pk, O} where p; is the probabil-
ity of the mixture generating a datapoint from
component j and ; are the parameters for the j-
th component. In our example ¢; consists of 2M
parameters: the upper and lower bounds of the
j-th rectangle. Note that we are holding ¢ fixed
during the iterations—we are not estimating it by

EM.

2. For each datapoint z* and each mixture compo-
nent j let w;; be:

P(generated by j-th component |located at z;)

or, more succinctly,
w;; = P(class = j|a;) .
This, by Bayes’ rule, is

P(x;|class = j) - p;

Yo Plxi|class =1) -y

3. For each component j, re-fit the parameters 6; to
a “weighted” version of the dataset in which the 7 -
th datapoint is given weight w;;. Fach datapoint
thus only counts as a fraction of a full datapoint
in its contribution to the likelihood.

Wi; =

In our case this means we need to reestimate the
coordinates of rectangle R = R; to maximize

LL(X) =
> (—(Z wi;) log(V2moq + Rl — RY)

2
w;; [x% — closest(z?, R, R)
+ Z [. :

This can again be achieved one dimension at a
time with two golden-ratio searches per dimen-
sion: one for the lower and one for the upper

bound.

2.4 The full algorithm

The full algorithm follows. Initialize the mixture com-
ponents by taking, e.g. initial points as used in the
anchors hierarchy (Moore, 2000). Initialize o (we cur-
rently use some constant fraction of the range of the
data in each dimension). For each dimension and com-
ponent, compute a new upper boundary based on the
existing lower one, and a new lower boundary, based
on the current upper one. Change the boundaries and
iterate. Once stability is obtained, decrease ¢ (we mul-
tiply it by a constant factor) and continue iterating.
Terminate if the components are all stable immedi-
ately after decreasing o.

2.5 Example

For illustration, Figure 2 shows a run on a synthetic
two-dimensional dataset made by drawing points from
a triple-rectangular distribution. Initially, the bound-
aries are quite arbitrary and o is large. This allows
the rectangles to freely move to better locations. In
following iterations, as o decreases, the rectangles try
to reposition the boundaries to capture as many points
as possible (since now the penalty for excluding them
is high). After a few more iterations, the distribution
1s modeled accurately.

2.6 Intuition

We are really interested in obtaining a final mixture of
hard rectangles (i.e., with infinitely steeply declining
tails). But the key to the whole algorithm is the use
of relatively wider tails in the early stages. Without
them, it is impossible for rectangles to move because
they would pay an infinite penalty for missing a single
datapoint with weight w;; > 0. Thus, without the
tails, the initial EM iterations see all rectangles jump
to the bounding box of the data, where they remain. It
is only with the tails that the rectangles are guided in
directions to grow or shrink, and are able to negotiate
ownership of points with the other rectangles.

3. Experimental Results

Our first test is as follows. Fix two parameters r and
M. As usual, M is the dimensionality of the data.
Additionally, choose a set R C {1...M} of r relevant
dimensions. Now generate points, choosing one of two
classes for each point x, and then setting the i-th co-
ordinate to be:

uniform(0, 1) if i ¢ R
uniform(0,0.5) if { € R and # is in class 1
uniform(0.5,1) if € R and # is in class 2

For M = r = 2, this distribution looks like a 2 x 2
checkerboard. This set is interesting because it clearly
contains clusters, yet when the data is projected onto
any single dimension, the distribution is indistinguish-
able from uniform.

After estimating the rectangles, we evaluated the re-
sult by rounding the boundaries to 0,0.5, or 1 if they
lie within less than 20 away from these values, and
keeping them unchanged otherwise (¢ was never more
than 0.075 in any dimension). We then declare the
run a “success” if the rounded boundaries match the
generating rectangles exactly — that is, they always
have 0 and 1 in the irrelevant dimensions, and 0, 0.5,
or 1, as the case may be, in the relevant ones. Results
are shown in Figure 3. In general, it was possible to
identify the relevant r = 5 dimensions from data with
dimensionality up to M = 30.

Another experiment involves a similar setup, this time
in three dimensions. Consider the a 33 grid placed on
the unit cube. We will use nine of the resulting grid
cells to generate datapoints from. See Figure 4. Now,
projection along any two dimensions is indistinguish-
able from the joint two-dimensional uniform distribu-
tion. Again, the estimated mixture is very close to the
original one, as seen in Figure 5.

In another experiment, datapoints were generated
from a mixture as follows. In each dimension, a ran-
dom interval with expected width 0.4 was drawn from
[0,1]. The intersection of these intervals defines a
hyper-rectangle, and datapoints were generated from
the union of several such components. The estimated
distribution was evaluated as follows. Fix a mapping
from the true distribution to the estimated one. Each
estimated rectangle is compared to the matching true
rectangle by taking the M-th root of the ratio between
the volumes of the intersection of the two rectangles to
their union. The simelarity of the two distributions is
Jjust the average of these values, taken over all rectan-
gle pairs. The values reported here are the maximum
similarity values taken over all possible mappings (e,
all permutations over [1,...k], where k is the number
of components). See Figure 6.

We have also performed sporadic experiments to test
the sensitivity of the algorithm to the different parame-
ters. Figure 7 shows how supplying the wrong number
of rectangles might affect the run. Another parameter
is the initial value for . We currently use a rather
simplistic estimate of 1/10 of the range of the input.
It does work for our datasets. A more sophisticated
approach would be to first try and estimate o (say,
using a model with spherical Gaussians) and use the
estimate to set the rectangle tails.

(b)

(©)

Figure 2. A three-component example. Shown from left to right, the components after the first, 20-th, and 40-th iteration.
The inner rectangles mark the kernel boundary, while the outer ones are o away from them.

L Smpsshar

(a)

(b)

(©)

Figure 7. Results when the reported number of rectangles k differs from the true number (which is 5). From left to right,
the reported number was 4, 5, and 6. In (a), one of the estimated rectangles takes over two clusters. In (c), two estimated

rectangles “fight” over the points in a single cluster.

L H

Figure 1. The 1-dimensional form of a rectangle (in this
case a line-segment) with tails. An A/-dimensional tailed
rectangle is simply a product of these.

Experiments on real-life data were done on the “mpg”
and “census” datasets from the UCT repository (Blake
& Merz, 1998). The “mpg” data has about 400 records
with 7 continuous® attributes. Running on this data
with the number of components set to three, we get
the results shown in Table 1. Interpreting this data,
we see that cars with at most four cylinders are the
most economical; and that eight-cylinder cars weighing
more than 3000 pounds are the most environmentally-
harmful. While these facts should come as no surprise,
it is important to note that the “mpg” attribute was
not flagged as special in the input. It was found use-
ful in defining clusters because 1t has inherent corre-
lation with other attributes. Had we been asked to

*We treat discrete attributes as continuous if the val-
ues can be linearly ordered (e.g., number of cylinders and
model year).

09

0.8

accuracy

0.6 |

0.5

5 10 15 dimensions 20 25 30
Figure 3. Estimated boundaries for the “checkerboard”
data with 5 relevant dimensions. The y axis is the fraction
of the experiments in which exactly the relevant dimen-
sions were identified (out of 30 trials). The = axis is the
dimensionality of the data (). Similar experiments were
held for 2 and 10 relevant dimensions (not shown).

Figure 4. Grid cells used for generation of data. Shown,
from left to right, “slices” along the third dimension, each

of width 1/3.

Figure 5. Estimated distribution along the first two dimen-
sions for the “cube” dataset. Only datapoints in the first
“slice” are shown. The inner rectangles mark the kernel
boundary, while the outer ones are o away from them.

classify the model year, for example, we would run
the program in the exact same way. From the results
we would conclude that this attribute is not informa-
tive (because all clusters have the same boundaries for
it, approximately). Another interesting feature of this
output is the fact that eight-cylinder cars are included
in both the second and third cluster. So these clusters
are overlapping, and further distinction can be made
on other attributes (such as displacement, or weight).
This effect 1s due to the “soft” membership that is
inherent in the model.

The “census” set is significantly bigger (about 32,000
records in the training set). It has a binary “income”
attribute (indicating whether the annual income is
over $50K) which is to be predicted, based on other
values. Again, we did not specify this to the algorithm
directly, but rather let it cluster the whole data. On
termination, we inspect to see if the resulting clusters
have a very narrow range for this attribute, indicat-
ing that they represent records that are mostly in the
same income class®. This was observed clearly when
the number of clusters was set to four. Results are in
Table 2. Three of the clusters predict the “income”
attribute to be either zero or one. We built a sim-
ple classifier based on these clusters. If a datapoint is
contained in one of the regions defined by the kernel
boundaries, plus or minus the vector o, it predicts the
label zero or one according to the value in the cor-
responding estimated cluster. It also predicts one or
zero if the point belongs in more than one cluster, but
all said clusters have the same label. If we treat all
other cases as wrong classification, we get accuracy
of 78% on the test-set. But, if we classify as “zero”
(the more frequent label in the training-set) the 3537
records that belong in no component, the accuracy in-
creases to 97%. Note that the UCI repository contains
a survey of the performance of classical techniques,
such as C 4.5, Naive Bayes, and nearest-neighbor, on
this data. The reported accuracies for about 16 al-
gorithms range from 79% to 86%. This experiment
shows the usefulness of clustering (and, in particular,
of our technique) in a supervised-learning task, when
the label attribute is informative.

4. Conclusion and Future Work

We have demonstrated a method that benefits from
the usefulness of soft membership and the expressive-
ness and clean analysis of mixture models. At the
same time, the produced clusters have a compact rep-

*The interval width is typically not zero, due to both
numerical and statistical reasons, such as the inclusion of
outliers.

Table 1. Clusters for the “mpg” data.

“Prob.” 1is the mixture probability for the cluster; the remaining attributes are
from the input. Numbers are rounded to the nearest integer.

PROB. MPG CYLINDERS DISPLACEMENT HORSEPOWER WEIGHT ACCELERATION MODELYEAR
52% [18, 46] 3, 4] [75, 150] [49,112] [1700, 3205] [12, 25] [70, 82]
23% [10,18] 8, 8] [303, 453] [130, 227] [3134, 5092] [8, 18] [70, 79]
25% [15,37] 5,8] [126, 347] [70,162] [2539, 3993] [11, 22] [70, 82]

Table 2. Clusters for the “census” data. “Prob.” is the mixture probability for the cluster; the remaining attributes are

from the input. Numbers are rounded to the nearest integer.

PROB. AGE TAXWEIGHT EDUNUM CAPITALGAIN CAPITALLOSS HOURS INCOME
14% [28,65] [65863,319616] [7,15] [748, 767 3, 2391] [28,70] [1,1]
11% [18,88] [44770,998117] [1,16] [45, 805] [2,33] [4, 98] [0,1]
8% [26,70] [63389,395858] [9,16] [73,99452] [32,33] [20,71] [1,1]
67% [19,65] [62643,342083] [4,14] [45, 787] [4, 1898] [15,59] [0,0]

T
optimal —+—
estimated ---x--+

0.95 q

volume

0.88 I I I I I I I

6
dimensions

Figure 6. Similarity, by relative volume of intersection, of
the estimated distribution to the true one. There were 4
rectangles in the distribution. The “estimated” line shows
the performance of the proposed algorithm. The “optimal”
line is for a version that initializes the distribution with the
true one, therefore providing a theoretical upper bound for

the similarity.

resentation which people can find comprehensible. As
an added bonus, expanding the Gaussian means into a
rectangular form seems to help avoid the inherent sta-
tistical problems that come with high-dimensional dis-
tance computations. The resulting clusters are highly
readable and allow for the construction of very sim-
ple, yet very effective, classifiers. The proposed model
was also shown to be effective in dimension-reduction
tasks.

We started working on an accelerated version of this
technique which stores sufficient statistics of subsets
of the data in the nodes of a kd-tree. Future work
can use the anchors hierarchy (Moore, 2000) for better
performance in high-dimensional domains.

We believe it would be straightforward to extend this
method to data involving discrete attributes. For
a given mixture component, each discrete attribute
would be modeled independently by a multinomial dis-
tribution. The parameters needed for an n-ary at-
tribute would simply be the n multinomial probabil-
ities (which must sum to one). In the case of all-
discrete, no real attributes, this would degenerate to
the well-known mixtures of products of multinomials
distribution (e.g. (Meila & Hackerman, 1998)).

A natural extension would be to get rid of the single
parameter that the user needs to supply — the de-
sired number of clusters. Ideally the algorithm would
estimate this by itself.

We argue that the representation of clusters as inter-
section of intervals is succinct. However, there 1s room
for improvement, especially if the data dimensionality

is very large. We believe that a post-processing step
that identifies the irrelevant dimensions and removes
them from the output can be easily implemented. An-
other useful operation would be to sort the dimen-
sions by their “importance” (or contribution to the
log-likelihood) before presenting the intervals.

References

Agrawal, R., Gehrke, J. E., Gunopulos, D., & Ragha-
van, P. (1998). Automatic subspace clustering of
high dimensional data for data mining applications.
Proc. ACM SIGMOD Int. Conf. Management of
Data, 27, 94-105.

AlSabti, K., Ranka, S.; & Singh, V. (1999). An effi-
cient space-partitioning based algorithm for the K-
means clustering. Proceedings of the 3rd Pacific-
Asta Conference on Methodologies for Knowledge
Discovery and Data Mining (PAKDD-99) (pp. 355—
359). Berlin: Springer.

Bishop, C. M. (1995). Neural networks for pattern
recognition. Oxford: Clarendon Press.

Blake, C., & Merz, C. (1998). UCT reposi-
tory of machine learning databases. http://
www.ics.uci.edu/~mlearn/MLRepository.html.

Duda, R. O., & Hart, P. E. (1973). Pattern Classifi-
cation and Scene Analysts. John Wiley & Sons.

Fasulo, D. (1999). An analysis of recent
work on clustering algorithms. http://
www.cs.washington.edu/homes/dfasulo/
clustering.ps.

Friedman, J. (1998). Bump Hunting in High-
Dimensional Data. NIPS-98.

Guha, S., Rastogi, R., & Shim, K. (1998). CURE:
An efficient clustering algorithm for large databases.
Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD-98)
(pp. 73-84). New York: ACM Press.

Liu, B, Xia, Y., & Yu, P. (2000). Clustering
through decision tree construction (Technical Report

RC21695). IBM Research.

Maass, W., & Warmuth, M. K. (1995). Efficient learn-
ing with virtual threshold gates. Proc. 12th Inter-
national Conference on Machine Learning (pp. 378—
386). Morgan Kaufmann.

Mehta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ:
A fast scalable classifier for data mining. 5th Intl.
Conf. on Ezxtending Database Technology.

Meila, M., & Hackerman, D. (1998). An experimental
comparison of several clustering and wnitilalization
methods (Technical Report 98-06). Microsoft Re-
search, Redmond, WA.

Moore, A. (1998). Very fast EM-based mixture model
clustering using multiresolution kd-trees. Proceed-
wngs of Neural Information Processing Systems Con-
ference.

Moore, A. (2000). The anchors hierarchy: Using the
triangle inequality to survive high dimensional data.
Proceedings of the 16th Conference on Uncertainty
in Artificial Intelligence (UAI-00) (pp. 397-405).

San Francisco, CA: Morgan Kaufmann Publishers.

Nagesh, H., Goil, S., & Choudhary, A. (1999).
MAFIA: Efficient and scalable subspace clustering
for very large data sets (Technical Report 9906-010).
Northwestern University.

Ng, R. T., & Han, J. (1994). Efficient and effective
clustering methods for spatial data mining. Pro-
ceedings of VLDB.

Pelleg, D., & Moore, A. (1999). Accelerating exact
k-means algorithms with geometric reasoning. Pro-
ceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing (pp. 277-281). New York, NY: AAAT Press.
An extended version is available as Technical Re-

port CMU-CS-00-105.

Pelleg, D., & Moore, A. (2000). X-means: Extending
K-means with efficient estimation of the number of
clusters. Proc. 17th International Conf. on Machine
Learning (pp. 727-734). Morgan Kaufmann, San
Francisco, CA.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., &
Flannery, B. P. (1992). Numerical recipes in C, 2nd.
edition. Cambridge University Press.

Shafer, J. C., Agrawal, R., & Mehta, M. (1996).
SPRINT: A scalable parallel classifier for data min-
ing. Proc. 22nd Int. Conf. Very Large Databases
(pp. 544-555). Mumbai (Bombay), India: Morgan
Kaufmann.

Zhang, T., Ramakrishnan, R., & Livny, M. (1995).
BIRCH: An efficient data clustering method for very
large databases,. Proceedings of ACM SIGMOD (pp.
103-114).

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

