
The Verus Language:
Representing Time Efficiently with BDDs

Sérgio Vale Aguiar Campos1

scampos@dcc.ufmg.br
Universidade Federal de Minas Gerais, Belo Horizonte, Brasil

Edmund Clarke2

 emc@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, USA

Abstract. Therehave beensignificantadvanceson formal methods
to verify complex systemsrecently. Nevertheless,thesemethods
have not yet beenacceptedasa realisticalternative to theverifica-
tion of industrialsystems.Onereasonfor this is that formal meth-
ods are still difficult to apply efficiently. Another reasonis that
currentverificationalgorithmsarestill not efficient enoughto han-
dle many complex systems.This work addressesthe problemby
presentinga languagedesignedespeciallyto simplify writing time-
critical programs.It is animperative languagewith asyntaxsimilar
to C. Specialconstructsareprovided to allow the straightforward
expressionof timing properties.Thefamiliar syntaxmakesit easier
for non-expertsto usethetool. Thespecialconstructsmakeit possi-
ble to modelthe timing characteristicsof the systemnaturallyand
accurately. A symbolicrepresentationusingBDDs,modelchecking
andquantitativealgorithmsareusedto checksystemtiming proper-
ties. The efficiency of the representationallows complex realistic
systems to be verified.

Keywords:Symbolicmodelchecking,timedsystems,BDDs,Verus

1 Intr oduction
Formal verification tools are becomingmore and more efficient every day. Until
recently, it wasnot possibleto verify large industrialsystemsusingformal methods.
Todaythis scenariohasbeenchangedby thedevelopmentof moreefficient verifica-
tion methodssuchas symbolic model checking[4,22]. It is now possibleto verify
systemsof realisticcomplexity suchastheFuturebuscachecoherenceprotocol[11]
and the PCI Local Bus [9].

1.This researchwassponsoredin partby ConselhoNacionaldePesquisae Desenvolvimentounderthe
project “Métodos Formais para Verificação de Sistemas Computacionais de Complexidade Industrial”.

2.This researchwassponsoredin partby theNationalScienceFoundationundergrantCCR-9217549,
by the SemiconductorResearchCorporationundercontract95-DJ-294andby the DefenseAdvanced
ResearchProjectsAgency,InformationScienceandTechnologyOffice, undertitle “ResearchonParal-
lel Computing”, ARPA Order 7330, issued by DARPA/CMO under Contract MDA972-90-C-0035.

However, in spiteof significanttechnicalsuccess,formal methodshave yet to be
recognizedasa viablealternative to theverificationof industrialsystems.Onereason
is becauseeven thoughcurrentalgorithmsaresignificantlymoreefficient thantheir
predecessors,thereis still a limit on thesizeof problemsthatcanbehandled.Unfor-
tunatelyseveral interestingexamplesarestill out of reach.This problemis especially
evident in systemswheretime is a vital parametersuchascontrollersfor industrial
machinery, power plantsor airplanes.In thesesystemsa late responsecanhave seri-
ousor even fatal consequences.We will refer to this typeof systemsastime critical

systems1. Modelingtime is difficult andfrequentlythetime componentis thebottle-
neck of the verification.Another difficulty in the useof formal verification is that
mosttoolsarenot simpleto use.Extensive knowledgeabouttheverificationmethod
is frequentlyrequired.Also, thelanguageusedto verify thesystemis usuallysignifi-
cantly different from the languageused to implement it. As a consequence,the
designermustmaintainseparatedescriptionsof the system,leadingto problemsin
managingdifferentversionsof thecodeandpotentiallyintroducingtranslationerrors.
Moreover, thetwo goalsof increasingtheverificationefficiency andthedevelopment
of more expressive and simpler to uselanguagescan be contradictory. A language
with powerful constructscanbeeasyto programin, but theverificationof thosecon-
structs can be expensive.

This work addressesthese problems by presentinga new languageused to
describetimecritical systemscalledVerus.Verusprovidesa familiarenvironmentfor
writing timedprograms.Its syntaxresemblesthesyntaxof C, thelanguagemostfre-
quentlyusedto implementsuchsystems.Thedevelopmentof themodelandits verifi-
cationcanbeperformedfastersinceboth languagesaresimilar. Also, the translation
processis lesserror-prone.This work describesVerusin detail andshows how time
critical programs can be efficiently represented and manipulated symbolically.

Verususesa discretenotion of time. The model of a Verusprogramis a finite
state-transitiongraphandtime passesby onetime unit at eachtransitionin thegraph.
Thesimplicity of this representationmakesit amenableto asymbolicimplementation
usingbinarydecisiondiagrams.This representationis very efficient,we have applied
this methodto the verificationof several real systems,suchasan aircraft controller
[8], a roboticscontroller[10] andadistributedheterogeneoustimecritical system[7].
In all casesthe examplesverified areeitheractual systemsor usecomponentsand
protocols employed in current industrial products.

The Verus Language
Themaingoalof Verusis to allow engineersanddesignersto describetimedsystems
easily and efficiently. Specialprimitives are provided for the expressionof timing
aspectssuchasdeadlines,priorities,andtime delays.Theseprimitivesmake timing
assumptionsexplicit. A differentapproachis takenby many otherlanguages,suchas
C, thatallow programswheretiming assumptionsarenot clearlystated.This results
in ambiguousspecificationsthataredifficult to prove correct.Theapproachtaken in
Verus makes the specification clearer and more complete.

1. They arealsocalledreal-timesystemsin the literature,but this term canbe confusingsincereal-time
also connotes the use of a continuous time representation.

The datatypesallowed in Verusarefixed-width integer andboolean.Nondeter-
minism is supported,which allows partial specificationsto be described.Language
constructshave beenkeptsimplein orderto allow a very efficient compilationinto a
state-transitiongraph.Smallerrepresentationscanthenbegenerated,which is critical
to the efficiency of the verification and permits larger examples to be handled.

Related Work
There are several other languagesfor specifying finite-statetime critical systems.
Esterel[5] is onesuchlanguage.It is an imperative language,but its syntaxmay be
very unfamiliar to mostdesignersof time critical systems,accustomedto program-
ming in C or similar languages.For example,specifyingthe executionof a periodic
processwith adeadlineis notasstraightforwardasin Verus.Processalgebrasarealso
usedto specifytimecritical systems[3,14,16,25]but they arealsofrequentlyunfamil-
iar to designers.Thedisadvantageof usinganunfamiliar languageis thatthedesigner
needsto adopthis/hercodingstyle to thatof thenew language.Forcingdesignersto
dosocanleadto lossof interestin themethod,sinceextraeffort hasto bespentto use
it. Frequentlydesignersgive up on new toolsbecausethey cannotafford the time to
learnit properly. By usinga familiar languagefor verificationwe overcomethis extra
obstacle in making formal methods a practical tool to be used directly by designers.

Modechart[13,20] and Statechart[23] are other examplesof specificationlan-
guagesthatcanbeusedto modeltime critical systems.They aregraphicallanguages
in which nodesrepresentstates,andtransitionsareexplicitly drawn betweenstates.
However, complex constructssuchasperiodicaredifficult to draw. Moreover many
systemsaretoo large to be naturallydescribedusing languagesin which individual
states are drawn in the program.

In this work we usea discretenotionof time. In recentyears,therehasbeencon-
siderableresearchon algorithmsthatusecontinuoustime [1,2,18,19].Most of these
techniquesusea transitionrelation with a finite set of real-valuedclocks and con-
straintson timeswhentransitionsmay occur. It canbe arguedthat suchalgorithms
leadto moreaccurateresultsthandiscretetime algorithms.However, anuncountable
infinite statespaceis requiredto handlecontinuoustime,becausethetimecomponent
in the statescan take arbitrary real values.Unfortunately, the representationof this
infinite statespacecanbe very expensive in practice.This makesit very difficult to
verify many largecomplex systemsusingcontinuoustime tools.Discretetime tools,
however, compromiseaccuracy for efficiency. It is possibleto verify larger systems
usingdiscretetime,but with lessaccuracy. In many cases,however, the lossof accu-
racy is not a problem.For the verificationof controllersfor many mechanical[17],
electrical [9] and chemical processes[24], for example, discrete time is
acceptablesincemany otherfactorsin thesecontrollersalreadyaffect theaccuracy of
measurements.Someof thesefactorsinclude the useof synchronouscircuits, the
granularityof operatingsystemtimer interruptswhich affects the observability of
eventsin thecomputer, or eventheslow speedin whichsomeof theseprocessesoper-
ate.In suchcasesit is preferableto usea discretetime tool, sincethis may simplify
verification,speedingit up considerablyandpossiblyenablingtheanalysisof larger
systems.

2 Overview of Verus
Thissectionprovidesanoverview of thelanguageby presentingasimpletimecritical
program.This programimplementsa solutionfor theproducer-consumerproblemby
boundingthe time delaysof its processes.No synchronizationis neededif the time
delaysof producerandconsumeraredefinedproperly. Thecodefor theproducer
processis shown below. Variablep is a pointerto the buffer in which datais stored
andtheproduce variablesignalstheproductionof an item. After initialization, the
programentersa nonterminatingloop in which itemsareproducedat a certainrate.
Line 7 introducesa time delayof 3 units.Line 8 markstheproductionof anitem and
in line 9 p is updatedappropriately. Line 10 makessurethat the eventproduce is
observed. It is neededbecausethe stateof a Verusprogramcanonly be observed at
wait statements.As it will beseenbelow, if await is not introducedin line 10, line
11 would cancel the effect of the assertion ofproduce before it can be observed.

1 producer(p)
2 {
3 boolean produce;
4 p = 0;
5 produce = false;
6 while(!stop) {
7 wait(3);
8 produce = true;
9 p = p+1;

10 wait(1);
11 produce = false;
12 };
13 }

Figure 1. Producer code

Wait Statements
In Verustime passesonly onwait statements.For example,lines4, 5 and6 execute
in time zeroandtime elapsesonly after the loop conditionhasbeentested.This fea-
tureallows a moreaccuratecontrolof time, andeliminatesthepossibilityof implicit
delaysinfluencingthe resultsof theverification.It alsogeneratesmodelswith fewer
states, since contiguous statements are collapsed into one transition.

Nondeterminism
To illustrateanothercharacteristicof Verus,let’s assumethat theproducer is not
requiredto actuallyproduceanitemafter3 timeunits,but mayinsteadleavethevalue
of p unchanged.Thischaracterizesanondeterministicchoice,andcanbemodelledin
Verus by changing line 9 to:

9 p = select{p, p+1};

Theconsumer processis very similar to theproducer. Thebasicdifferences
arethat it waits for lesstime beforeconsuming,andthat it only consumesif p andc
have different values (p == c signals an empty buffer).

14 consumer(p, c)
15 {
16 boolean consume;
17 c = 0;
18 consume = false;
19 while (!stop) {
20 wait(1);
21 if (p != c) {
22 consume = true;
23 c = c + 1;
24 wait(1);
25 consume = false;
26 };
27 };
28 }

Figure 2. Consumer code

Process Instantiation
In themain function, theproducer andconsumer processesareinstantiatedas
can be seenin figure4. An implicit instantiationof the main moduleis assumed,
wheremain executesas anothermodule.Processinstantiationin Verus follows a
synchronousmodel.All processesexecutein lock step,with onestepin any process
correspondingto onestepin theotherprocesses.Parallelprocesscompositionis dis-
cussedin section3.4. Asynchronousbehavior can be modeledby using stuttering,
which introducesnondeterministictransitionsand effectively models the desired
behavior. We canusenondeterministicassignmentsto variablesto determineif the
systemwill wait for anotherstepor not, asseenin the figure below. Notice that the
individual statementscan be hidden in a preprocessingstep. This techniqueis
described in detail in[6].

1 wait(1);
2 r = select{false, true};
3 if (r) wait(1);
4 r = select{false, true};
5 if (r) wait(1);

Figure 3. A stuttering transition of between 1 and 3 time units

The main function
Specificationscanalsofollow thecodeascanbeseenbelow. Thesespecifications

computetheminimum andmaximumtime betweenproducingan item andconsum-
ing it, as well as checkingthat a produce is always followed by a consume.
Details about the verification method can be found in section4.

29 main()
30 {
31 int p, c;
32 process prod producer(p),
33 cons consumer(p, c);
34 spec AG(prod.produce -> AF cons.consume)
35 MIN[prod.produce, cons.consume]
36 MAX[prod.produce, cons.consume]
37 }

Figure 4. Producer/consumer main function

Periodic Execution and Deadlines.
To illustrate different featuresof Verussomeextensionsto the programabove are
considered.The first comesfrom realizing that both processeswill alwaysexecute,
evenwhenno dataexists.In this caseCPUcyclesarewasted,theprocessesarebusy
waiting.For example,theconsumer usestheprocessorevenif theproducer does
not generateitems.In real systemsbusy waiting is virtually never used.In order to
modelsystemsasrealisticallyaspossible,busy waiting shouldbe avoided.In Verus
this can done using periodic execution, where execution is scheduledat specific
pointsin time. It canbeeasilyspecifiedin Verus.Theproducer canbemadeinto a
periodic processexecutingonceevery 10 time units as seenin figure5. The first
parameterof theperiodic statementis the start time, which specifieshow many
time units the periodiccodewill idle beforestartingits executionfor the first time.
Thesecondparameteris theperiod. In this casethestatementsfollowing periodic
will executeonceevery10 timeunits.Thethird parameterdefinesadeadline. It states
thattheexecutionmustfinish in lessthan10 time unitsor anexceptionwill beraised
(exceptionhandlingis discussedlater).Deadlinescanalsobedefinedindependentof
period using thedeadline(n) statement.

1 producer(p, c)
2 {
3 boolean produce;
4
5 p = 0;
6 produce = false;
7 periodic(0, 10, 10) {
8 wait(3);
9 produce = true;

10 p = p+1;
11 wait(1);
12 produce = false;
13 };
14 }

Figure 5. Periodic producer

Exceptions
Theonly exceptioncurrentlydefinedin Verusis amissed deadline. It occurswhenthe
codeinsideadeadline or aperiodic statementdoesnot finish within thespeci-
fied time. An exceptionhandlermust be specifiedfor the exceptionto take effect.
Whena deadlineis missedthecodedesignatedashandleris executed.After theexe-
cutionof theexceptionhandlercontrol is passedto thestatementfollowing thedead-
line statement. This can be, for example, the next instantiation of a periodic process.

1 producer(p, c)
2 {
3 boolean produce;
4
5 handler {
6 error = 1;
7 } for {
8 p = 0;
9 produce = false;

10 periodic(0, 10, 10) {
11 wait(3);
12 produce = true;
13 p = p+1;
14 wait(1);
15 produce = false;
16 };
17 };
18 }

Figure 6. Exception handling

Figure6 showsthetypicalexceptionhandlingmechanism.Wheneveradeadlineis
missedanerrorflag is asserted.Theverificationprocedurecanthencheckto seeif the
error condition is reachable.

Internal and External Variables
Thereare two typesof variablesin Verus,internal andexternal. Unlessassigneda
specificvalue, the value of both typesof variablesis chosennondeterministically

from all possiblevalues(true or false for booleansand0..2width-1 for integers).The
two typesdiffer, however, regardingthe rulesthat controlwhentheir valuechanges.
Thevalueof aninternalvariablechangesonly whenassignmentsareexecuted.Exter-
nal variableson theotherhandmodelthe interactionof themodelwith theenviron-
ment. They correspondto inputs from the outsideworld, and the programhasno
control over their value.Assignmentsto externalvariablesarenot allowed andtheir
valuecanchangenondeterministicallyat any transitionof themodel.Thedeclaration
of external variables is preceded by theextern keyword.

3 Semantics
Themeaningof a Verusprogramis a state-transitiongraph.Section3.1explainshow
state-transitiongraphsare representedin Verus.Also, in section3.1 the conceptof
wait graphs is introduced.Wait graphsarean abstractionusedto keeptrack of the
controlflow of theprogram.Theformalsemanticsis describedin section3.2.Theini-
tial discussionis restrictedto asingleprocess,thatis, only oneflow of execution.The
semantics of concurrency in Verus is not discussed until section 3.4.

3.1 State-Transition Graphs in Verus

Thestate-transitiongraphconstructedfrom aprogramP is GP = (SP, IP, TP), whereSP

is thesetof states,IP is thesetof initial statesandTP is thetransitionrelation.Theset
of states is defined by the variables in the program.IP andTP will be seen shortly.

Symbolic Representation
Statesaredefinedby the assignmentof valuesto programvariables.Eachpossible
assignmentto theprogramvariablesis a state.For example,if theprogramhasthree
booleanvariablesa, b andc, examplesof statesare(a,b,c), (a,b,c) and(a,b,c), where,
for variablev, v meansthe variableis true in the state,andv meansthe variableis
false.Booleanformulasoverprogramvariablescanbetrueor not in agivenstate.The
valueof a booleanformula in a stateis obtainedby substitutinginto the formula the
valuesof the variablesin that state.For example,the formula (a ∨ c) is true in all
statesshown above. Thegraphrepresentationusedby Verusis a direct consequence
of this observation. Setsof statesare representedby booleanformulas,whereeach
formularepresentsthesetof statesin which theformulais true.For example,thefor-
mula true representsthesetof all states,theformula false representstheemptysetof
states,andtheformula(a ∨ c) representsthesetof statesin which a or c aretrue.The
sizeof theBDD representationfor a setof statesis not directly relatedto thenumber
of statesin it. Frequentlythe BDD for a set of statesis significantly smaller than
anothercorrespondingrepresentationfor thesamesetof states.This is oneof therea-
sonsfor theefficiency of themethod.However, in theworstcasethesizeof theBDD
canbe exponentialin the numberof variablesin the formula. In this casethe BDD
representationis not smallerthan an explicit representationfor the states,possibly
makingverification impossible.This problemis known asthe stateexplosionprob-
lem. Fortunatelythereexist severalefficient heuristicsto manipulateBDDs thathelp
avoid this exponential blowup of states in the majority of cases[22].

Transitionscanalsobe representedby booleanformulas.A transitionT(s, s′) is
representedusingtwo setsof variables,onefor the currentstateandanotherfor the
next state.Eachvariablein thenext statesetcorrespondsto onevariablein thecurrent
stateset.If states is representedby theformulafs over thecurrentstatevariables,and
states′ is representedby formula fs′ over the next statevariables,thenthe transition
T(s, s′) is representedby the formula fs ∧ fs′. For example,a transitionfrom state
(a,b,c) to state(a,b,c) is representedby theformula¬a ∧ ¬b ∧ ¬c ∧ ¬a′ ∧ b′ ∧ ¬c′.
Thetransitionrelationof a graphis thedisjunctionof all transitionsin thegraph.The
meaningof the formula representingthe transition relation is the following: there

existsa transitionfrom s to s′ if f thesubstitutionof thevariablevaluesfor s in thecur-
rent statevariablesands′ in the next statevariablesof the transitionrelationyields
true. Further details about this representation can be found in[6,22].

Tracking the Control Flow — Wait Graphs
In Verus,theprogramstatecanonly beobservedatwait statements.Whenawait
is executedall changescausedby the executionof the block of statementssincethe
previous wait take effect at the sametime. As seenin figure7, transitionsin the
graphoccuronly whenwait statementsareexecuted.Eachtransitioncorrespondsto
timeelapsingby oneunit. Longerwaitsaremodeledby asequenceof unit transitions.

Figure 7. Wait statement example: ifs0 is the current state at the firstwait,
s1 will be the current state at the second.

It is easierto understandthebehavior of a Verusprogramby concentratingon its
wait statements.This is doneby translatingtheprograminto a wait graph. Thewait
graphcorrespondingto a Verusprogramis a graphin which thestatesarethewait
statementsin theprogram.It is anintermediaterepresentationbetweentheVeruspro-
gramandthecorrespondingstate-transitiongraph.It is usedonly to illustratehow this
translationoccursandis notactuallyconstructed.In thediscussionbelow, to differen-

tiatebetweendistinctwaits,waiti representsthe ith occurrenceof await statement
in thesource program. Traversingthesamewait statementmorethanoncedoesnot
changeits number. Subscriptshave beenaddedto the sampleprogrambelow to aid
the presentation, no subscript exists in actual programs.

As discussed,eachwait in the programis a statein the wait graph.Transitions
betweenwaits aredefinedasfollows.A transitionbetweenwaiti andwaitj exists
iff waitj can be reachedfrom waiti in the control flow of the programwithout
goingthroughintermediatewaits.Edgesof thewait grapharelabelledby a relation
Tij betweenany two statesin thestate-transitiongraph.Intuitively, giventwo statess
ands′, Tij(s, s′) meansthatif programexecutionis in waiti andthecurrentstateis s,
then thereexists a path in the control flow leadingto waitj without intermediate
waits, and executing the statements on this path changes states into states′.

...
wait(1);
a = false;
c = true;
d = d + 1;
wait(1);
...

a: true b: true
c: false d: 13

a: false b: true
c: true d: 14

s0

s1

NoticethatTij representsexactly all transitionsfrom s to s′ in thestategraphsuch
thats ands′ arerespectively thecurrentstateof theprogrambeforeandaftercontrol
is transferredfrom waiti to waitj. Thismakesit possibleto constructthestatetran-
sitiongraphthatcorrespondsto agivenVerusprogramfrom its wait graph.Thesetof
all relationsbetweenwait statementsrepresentsall transitionsin the programand
their disjunction constitutes the transition relation of the state-transition graph.

Wait Counters
SinceeachrelationTij correspondsto asetof transitions,theirdisjunctionshouldcor-
respondto thetransitionrelationof theprogram.However, this is not truebecauseTij

doesnot containinformationaboutwhereit camefrom (waiti) andwhereit leadsto
(waitj). Thedisjunctionof all relationswouldnotmaintainconsistency of thevalues
of variables after the execution of a sequence ofwaits.

Figure 8. A Verus program and part of its corresponding wait graph

This problemis solvedby creatinganextra variablein theprogramto recordthis
information,thewait counterwc. Eachwait statementis precededby anassignment
wc = i, wherei is theoccurrencenumberof thewait statement(this assignmentis
introducedby thecompiler;it is notpartof thesourcecode).TherelationTij now con-
tainsinformationaboutwhereit leadsto, sincethe assignmentwc = j is introduced
beforewaitj. As detailedin thenext section,thepreviousvalueof thewait counter
indicateswhere this transition camefrom. Now Tij has all information neededto
maintainconsistency acrosssequencesof wait statements.The disjunctionof all
relations betweenwaits is the transition relation of the program.

Determining the Initial State Set
The initial statesetof a Verusprogramis thestateit reachesjust afterexecutingthe
first wait. In orderto computethe initial stateset,Verusprogramsstartwith anini-

001 wait1(1);

002 S1;

003 while cond1 {
004 if cond2 {
005 S2;

006 wait2(1);

007 S3;

008 } else {
009 S4;

010 wait3(1);

011 S5;

012 };
013 S6;

014 wait4(1);

015 };

wait1

wait2wait3

wait4

T12T13

T24T34

(Sis correspond to blocks of assignments)

T42T43

tial wait, with the wait counterof 0 (introducedby the compiler).The stateof the
programat thispoint,S0, is representedby theformula(wc = 0). Theinitial statesetis
definedasthesetof statesreachedfrom S0 in onetransition.Alternatively, theinitial
statecould be definedas(wc = 0). However, this cancausea non intuitive behavior
becausein thesetof statesdefinedby (wc = 0) novariablehasbeeninitialized.Defin-
ing theinitial statesetasthesetof statesreachablefrom (wc = 0) in onestepensures
that all variables have been initialized in the initial state.

Efficient Representation of Time
Time is representedby transitionsin thestatetransitiongraph.Eachtransitionrepre-
sentsonetime unit. This representationis extremelysimple,but alsoextremelyeffi-
cient.Eventhougheachtimeunit is individually describedin thesourceprogram,it is
not necessarilyexplicitly representedinternally. The BDD representationusedby
Verusminimizesthebooleanformulasthatcorrespondto thesetransitions.This usu-
ally generates small representations even for very long transitions.

Two casescanbeconsideredwhendealingwith long transitionsrepresentedby a
sequenceof unit transitions.If at the intermediatestepsnothingelsehappensexcept
for thepassageof time, thecorrespondingBDD will besmallsincetheonly event to
representis theincrementof thewait countervariablevalue.If many eventshappenat
intermediatesteps,their representationmaybecomplex andthecorrespondingBDD
large. But in this caseit would be necessaryto representtheseeventsregardlessof
whichrepresentationof timeis used.For example,timedautomatauseclockvariables
to representtime [1,2,18,19].Their value is not necessarilyincrementedby one,so
long time delayscan berepresentedby onetransition.However, if othereventsmay
occurduringonesuchlong delay, they mustbetakeninto account,makingtheverifi-
cationof suchsystemsconsiderablymoreexpensive. This is oneof themainreasons
for thecomplexity of theverificationof timecritical systems,representedusingtimed
automata, BDDs or any other method.

The representationproposedin this work doesnot adda significantoverheadto
this problem,and it takes advantageof the efficiency of BDD manipulationalgo-
rithms.This efficiency canbeattestedby thevarioussystemsverifiedsuchasthePCI
local bus[9], a heterogeneoustime critical systemin which multimediadatatravels
over several differenttypesof communicationlinks [7] andothers.For example,the
full aircraftcontrollerexampledescribedin section5 has15concurrentprocessesand
we have beenableto producecounterexampleswith depthgreaterthan2000statesin
minutesusingaPCworkstation.Thedepthof acounterexampleis relevantbecauseit
measuresthedepthof thebreadthfirst searchperformedto verify theproperty. In this
examplewe have beenableto representtheparallelcompositionof 15 processesand

performanextremelydeepbreadthfirst searchon a statespacewith morethan1015

states.

3.2 Formal Semantics

Thestatespaceof a Verusprogramis definedby a setof booleanvariables.A statein
the model is an assignmentof valuesto the variables.The setof all statesis ST. A
relation between any two states belongs toRelation ≡ Powerset(ST x ST).

The function R given below constructsthe relationsbetweenwait statements.
Intuitively, givena relationr describingtheprogramuntil theexecutionof statement
Stmt, function R will producethe relationr′ describingthe programafter executing
Stmt. The functionR alsoconstructsanotherrelationt by accumulatingthe relations
constructed for allwait statements. FunctionR is defined by

R: STMT → Relation x Relation → Relation x Relation
wherepairsof relationsare〈r, t〉, r beingthe relationcontainingchangesto thepro-
gramstatesincethelastwait statement,andt beingthetransitionrelationof thepro-
gram,that is, the disjunctionof the relationsbetweenall pairsof wait statements.
Relationsr andt are represented by boolean formulas as explained previously.

Thestate-transitiongraphcorrespondingto aprogramP is constructedasfollows.
Given programP, function R constructs〈r, t〉 = R[[P]]〈wc = 0, false〉, wheret is the
transitionrelationof thestate-transitiongraphcorrespondingto P, andtheinitial state
set is constructed fromt as discussed above.

Additional definitions are needed before presenting the semantic functions:
• Thereareonly booleanvariablesin theprogram.Integervariablesareencodedin

binary and substituted for the corresponding boolean variables.
• V andV′ aretwo setsof booleanvariablessuchthatfor eachvariablev in thepro-

gramtherearecorrespondingvariablesv ∈ V andv′ ∈ V′. Thevalueof program
variablev in thecurrentstateis representedby v ∈ V, andin thenext stateby v′ ∈
V′. A transition is a relation between variables inV andV′.

• A variablewc (wait counter)is introducedin themodel.An assignmentwc = i;
exists just before statementwaiti.

• Programs start with the sequence:wc = 0; wait0;

• All programs are assumed to have as the last statement:
while (true) wait(1);

Thisstatementguaranteesthattransitionswill begeneratedfor all programs,since
transitionsareonly generatedat wait statements.It alsoensuresthatafterthepro-
gram terminates its state will remain unchanged.

Primary Expressions
Themeaningof a Verusexpressionis a booleanformulacorrespondingto thesyntac-
tic expression.Sincethecorelanguageonly allows booleanexpressions,the transla-
tion is straightforward; it is described below by the functionE:

E[[true]] = true E[[false]] = false
E[[v]] = v′, wherev is an internal variable andv′ ∈ V′.
E[[v]] = v, wherev is an external variable andv ∈ V.
Internalvariablesarerepresentedby theirnext statevalue,while externalvariables

arerepresentedby theircurrent statevalue.Thischoiceof representationsignificantly
affectsthebehavior of eachtypeof variable.Initially, letsconsiderhow internalvari-
ablesbehave. All referencesto an internalvariablewill be denotedby its next state
variable.For example,a referenceto variablev in the left-handof anassignment(as
in v = false) will bedenotedby thenext statevariablev′, andtheassignmentwill
changethevalueof v′ in thecurrentrelation(seesemanticsof assignments).This is
expected, since assignments determine the value of variables in the next state.

However, otherreferencesto v (asin x = !v) alsoreferto v′. In theassignment
x = !v the valueof x′ in the currentrelationwill be assignedthe negation of the
valueof v′. Two casesmustbeconsidered.If variablev hasbeenassignedavaluepre-
viously, this assignmenthasupdatedthe value of v′ in the currentrelation.Conse-
quently, theassignmentto x usesthemostrecentvalueassignedto v. In thecasethat
variablev hasnotbeenassignedany value,thecurrentrelationenforcesthatthevalue
of internalvariablesdoesnot changevia theclause(∧v ∈ internalvariablesv = v′) intro-
ducedin thecurrentrelationatwait statements(seeR[[wait]]). This clauseguaran-
teesthat thecurrentandnext statevariablesof internalvariableshave thesamevalue
(theclauseis automaticallyoverriddenif anassignmentis made).This hastheeffect
that the value of an internal variable does not change if no assignments are made.

Externalvariables,on the other hand,are not included in the wait statement
clauseintroducedin thecurrentrelation.This is becausetheir valueis not maintained
acrosswait statements.Externalvariablesmaychangevaluenondeterministicallyat
wait statementsandthey cannotbeassignedto. Thevalueanexternalvariablehasat
any point in theprogramis thevalueit hadin thepreviouswait statement,sinceno
assignments exist. This value is represented by its current state variable.

A final casethat mustbe consideredis what happenswhenthe valueof the next
statevariablev′ changesafteranassignmentthat refersto its old value.For example
in thecodex = !v; v = false; we mustbesurethatthenew valueof v′ does
not affect thevalueassignedto x′. This doesnot happen,however, becauseduringthe
assignmentto v′, its old valueis assignedto a new variabley which is substitutedfor
v′ in r, eliminatingcrossreferencingbetweentheold andnew valuesof v′. Thiscanbe
seen in detail in the semantics for the assignment statement below.

Boolean Expressions
E[[expr1 || expr2]] = E[[expr1]] ∨ E[[expr2]]

E[[expr1 && expr2]] = E[[expr1]] ∧ E[[expr2]]
E[[!expr]] = ¬ E[[expr]]

3.3 Statements

Assignments
R[[v = expr]]〈r, t〉 = 〈(∃ y [v = Expr y/v ∧ r y/v]), t〉

wherev = E[[v]], Expr = E[[expr]] andy is anew variable.Thisexpressioncomputes
thestrongestpost-conditionfor theassignmentv = expr givenr asa pre-condition.
If r is the set of valid transitionsin the graphsincethe last wait, the expression
abovedeterminesthelargestsetof transitionsthatsatisfytheassignmentandthatsat-
isfy r for variablesotherthanv. Intuitively, it substitutesthepreviousvalueof v in r
for Expr, while maintaining the values of other variables.

R[[v = select{expr1, expr2}]]〈r, t〉 =let〈r′, t〉 = R[[v = expr1]]〈r, t〉,
〈r′′, t〉 = R[[v = expr2]]〈r, t〉 in
〈r′ ∨ r′′, t〉

Therelationfor anondeterministicassignmentis thedisjunctionof theexpressionfor
eachpossibleassignment.In otherwords,anondeterministicassignmentis trueif any
possiblevalueis assigned.The extensionof R for the casein which morethantwo
expressions exist is a simple extension of this disjunction and is omitted for brevity.

Sequential Execution
R[[S1 ; S2]]〈r, t〉 = R[[S2]](R[[S1]]〈r, t〉)

Wait Statements
R[[waiti(1)]]〈r, t〉 = 〈((wc = i) ∧ ∧v ∈ IV v = v′), (t ∨ r)〉,

whereIV is the set of internal variables in the program.
FunctionR for thewait statementchangesthepreviousrelationin two ways.At this
point in the programtransitionsthat leadto waiti aregenerated.Thesetransitions
arerepresentedby relationr beforethewait is executed.r is thendisjointedwith the
previous transition relationt. This is the only clause that changes the value oft.

Moreover, the currentrelationafter the executionof waiti mustreflect the fact
thata new setof transitionswill becomputed.Thenew relationspecifiesthat transi-
tionsstartin waiti with theformula(wc = i). Thedestinationof thenew setof transi-
tions will be establishedwhen the next wait statementis found. At that point the
assignmentwc = j beforewaitj introducesthe formula (wc′ = j) in thecurrentrela-
tion, specifyingwherethe transitionleadsto. Becauseof thesetwo conditions,all
transitions specify a value for both the current and next state wait counters.

Finally, it is necessaryto introducethe expression∧v ∈ IV v = v′ into the current
relation.For internalvariablesthis expressionguaranteesthatunlessassigneda new
value,internalvariablesmaintaintheir previousvalueacrosstransitions.This allows
theuseof thenext statevariableasthesemanticvalueof internalprogramvariables.
Whenever aninternalvariableis referenced,its next statevariablewill have its previ-
ous value (via the clausev = v′ above) or its new value (via an assignment).

Conditionals
R[[if cond S1 else S2]]〈r, t〉 =let〈r′, t′〉 = R[[S1]]〈(r ∧ cond), t〉,

〈r′′, t′′〉 = R[[S2]]〈(r ∧ ¬cond), t〉 in
〈r′ ∨ r′′, t′ ∨ t′′〉

Eachbranchin theif statementis executedby restrictingits parameterto thesetof
transitionsthatsatisfytheappropriateconditional— S1 receivesthosetransitionssat-
isfying cond, andS2 receives transitionsnot satisfyingcond. In this way, if control
reachestheif statementthrougha statethatsatisfiesthecondition,controlwill pro-
ceedto S1. If thestatedoesnot satisfythecondition,controlproceedsto S2. Therep-
resentation of a conditional is the disjunction of the representation of its branches.

Loops
Therepresentationof awhile loop canbeseenasunrolling theloop into nestedif
statements:if cond {S1; if cond {S1; ...}};. We describebelow this recursive

structureusingthefix operator, which returnstheleastfixpoint of thefunctionalgiven
as its argument.

R[[while condS1]] = fix(λf λ〈r,t〉.let〈r′, t′〉 = f(R[[S1]]〈(r ∧ cond), t〉),
〈r′′, t′′〉 = 〈(r ∧ ¬cond), t〉 in
〈r′ ∨ r′′, t′ ∨ t′′〉)

Theoperationsperformedby the functionalabove areprojection(from theresult
of theapplicationof f into r′ andt′), disjunction(of r′, r′′ andt′, t′′) andpairing(of the
resultsof thedisjunctions).Sincetheseoperationsarecontinuous[26], any functional
constructedfrom themis alsocontinuous.By beingcontinuous,thefunctionalis also
monotonic, and therefore it has a fixpoint.

However, not all programswith while statementshave well behaved semantics.
For example,a fixpoint characterizationfor an infinite loop without waits is therela-
tion false, whichcorrespondsto non-termination.But sincetherearenowaits in the
program,time doesnot pass.Non-terminationin this casemeansthat if theprogram
is in stateswhenthecodebelow is executed,therewill benooutgoingtransitionfrom
s, thatis, thenon-terminatingbehavior is not observable.In orderto avoid this anom-
alousbehavior, we imposetherule thatall executionsequencesinsideall whiles in
the programmustexecuteat leastonewait statement.This ensuresthat even non-
terminatingwhile programs are always observable.

Schedule Statements
schedule_statement::=

deadline (constant) compound_statement

Thedeadlinestatementis translatedinto theVeruscorelanguageby creatinganinte-
ger variable timer. At the deadline keyword an assignmenttimer = 0 is
inserted.Within the scopeof the deadline,eachwait(n) statementis precededby
timer = timer + n; andby a checkif (timer >= deadline) error_code,
where the exception handler defineserror_code.

schedule_statement::=
periodic (constant, constant, constant) compound_statement

The periodicstatementis handledin a similar way. The differenceis that an infinite
loop is insertedenclosingtheperiodicstatement,andoncetheperiodicstatementhas
finished executing, a loop is inserted to enforce the periodicity:

while (timer < period) {
 timer = timer + 1;
 wait(1);
};

A similar loop is insertedbeforethe main loop at the beginning of the periodic
statementto accountfor the initial offset.Notice thatby usingmultipletimer vari-
ables it is possible to nestperiodic anddeadline statements.

Exception Handling
schedule_statement::=

handler compound_statementfor compound_statement

Thefirst compoundstatementis theexceptionhandler, andthesecondis thescopeof
thehandler. Theexceptionhandlingstatementhandler S1 for S2 is translatedby
substitutingtheerror_code createdby deadlinestatementsin S2 for: S1 else {. The
compoundstatementS1 is executedin caseof amisseddeadline,andtheelse clause
guaranteesthat the restof thedeadline statementis skippedin caseof a missed
deadline. The{ after theelse is closed at the end of the deadline statement.

3.4 Parallel Process Composition

Givena setof processesdefinedby their statetransitiongraphs,it is possibleto con-
structa global statetransitiongraphcorrespondingto the environmentin which all
processesexecuteconcurrently. Theconcurrency modelimplementedin Verusis syn-
chronous,thatis, onetransitionin theglobalmodelcorrespondsto exactlyonetransi-
tion in each process.

Given two processesdefinedby their statetransitiongraphsG1 = (S1, I1, T1) and
G2 = (S2, I2, T2) we can construct a global state transition graphG = (S, I, T) by:

• S = {(s1, s2) | s1 ∈ S1, s2 ∈ S2 ands1〈v〉 = s2〈v〉, for all sharedvariablesv}, where
s〈v〉 denotes the truth value of variablev in states.
Eachstatein theglobalmodelcontainsonecomponentin eachprocess.However,
oneconstraintmustbesatisfied.If a variableis referencedin morethanonepro-
cess,its valuein eachcomponentof theglobalstatespacemustbethesame.This
model guarantees consistency of the values of shared variables.

• I = {(i1, i2) | i1 ∈ I1, i2 ∈ I2 and (i1, i2) ∈ S}
An initial statein G is a statein theglobalmodelthat is aninitial statein all pro-
cesses.

• T((s1, s2), (t1, t2)) iff T1(s1, t1) andT2(s2, t2)
A transitionin theglobalmodelexists iff it correspondsto existing transitionsin
eachcomponent.Symbolically T is constructedby conjunctingT1 and T2. The
meaningof the formula representingtheglobal transitionrelationis thata transi-
tion exists if transitions exist in all components.

4 The Verification Algorithms

CTL and RTCTL Model Checking

Verusallows the verificationof untimedpropertiesexpressedasCTL formulas[22]
suchasAG(prod.produce -> AF cons.consume). This propertymeans
that it is an invariantof thesystem(theAG part) thataproduce is alwaysfollowed
by aconsume (theAF part).TimedpropertiescanbeexpressedasRTCTL (real-time
CTL formulas[15]. CTL formulasallow the verification of propertiessuch“p will
eventuallyoccur”,or “p will neverbeasserted”.However, it is notpossibleto express
boundedpropertiessuchas“p will occurin lessthan10ms”directly. RTCTL model
checkingovercomesthis restrictionby allowing boundson all CTL operatorsto be
specified [15].

Many importantpropertiesof timedsystemscanbeverifiedusingbothCTL and
RTCTL modelchecking.For example,wehaveusedit to show theexistenceof prior-
ity inversionin a time critical system[6]. In this example,we have modeleda simple
systemin which processescommunicatein a non-regularpattern.Themainobjective
is to determinewhich problemscanarisefrom this communicationandhow to avoid
them. The boundeduntil operatorallows us to determinethe existenceof priority
inversion,andto checkthatthesolutionimplemented,priority inheritance,avoidsthe
problem.

Quantitative Algorithms

Most verificationalgorithmsassumethat timing constraintsaregiven explicitly.
Typically, thedesignerprovidesaconstraintonresponsetimefor someoperation,and
theverifierautomaticallydeterminesif it is satisfiedor not.Unfortunately, thesetech-
niquesdo not provide any informationabouthow mucha systemdeviatesfrom its
expectedperformance,althoughthis informationcanbeextremelyusefulin fine-tun-
ing the behavior of the system.

Verusimplementsalgorithmsthat determinethe minimum andmaximumlength
of all pathsleadingfrom asetof startingstatesto asetof final states.It alsohasalgo-
rithmsthatcalculatetheminimumandthemaximumnumberof timesaspecifiedcon-
dition can hold on a path from a set of startingstatesto a set of final states.Our
algorithmsprovide insightinto how well a systemworks,ratherthanjust determining
whetherit worksatall. They enableadesignerto determinethetiming characteristics
of acomplex systemgiventhetiming parametersof its components.This information
is especiallyusefulin theearlyphasesof systemdesign,whenit canbeusedto estab-
lish how changes in a parameter affect the global system behavior.

Several typesof informationcanbe producedby this method.Responsetime to
eventsis computedby makingthe setof startingstatescorrespondto the event,and
thesetof final statescorrespondto theresponse.Schedulabilityanalysiscanbedone
by computingtheresponsetimeof eachprocessin thesystem,andcomparingit to the
processdeadline.Performancecanbe determinedin a similar way. The algorithms
have beenusedto verify several time critical and non time critical systems.More
information about the verification algorithms can be found in[6,8,9,10].

5 A More Complex Example: An Aircraft Controller
This sectionpresentsa morerealisticapplicationof theVerustool thantheproducer/
consumerprogramdescribedabove. We will briefly describean aircraft controller
systemthat is basedon controllersemployedin existing military aircrafts[21]. Some
examplesof the Veruscodeusedto modelthe systemarealsoshown. We conclude
with a brief analysis of the results obtained. A full analysis can be found in[8].

The control systemfor an airplanecanbe characterizedby a setof sensorsand
actuatorsconnectedto a centralprocessor. This processorexecutesthe software to
analyzesensordataandcontrol theactuators.Our modeldescribesthis control pro-
gram and defines its requirements so that the specifications for the airplane are met.

The aircraft controller is divided into systemsandsubsystems.Eachsystemper-
formsa specifictaskin controllinga componentof theairplane.Themostimportant

systemsareimplementedin ourmodelto providearealisticrepresentationof thecon-
troller. Examples of systems being controlled are:
• Navigation: Computesaircraft position.Takes into accountdatasuchas speed,

altitude, and positioning data received from satellites or ground stations.
• Radar Control: Processes data received from radars. Identifies/positions targets.

• Display: Updates information on the pilot’s screen.
Eachsystemis composedof oneor moresubsystems.Timing constraintsfor each

subsystemarederived from factorssuchasrequiredaccuracy, humanresponsechar-
acteristicsandhardwarerequirements.Thereare15subsystemsin ourexample.Con-
current processesare used to implement each subsystem.Processesexecute
periodicallyandaredefinedby their periodandtheexecutiontime of eachinstantia-
tion. Periodsrangefrom 25 to 200 ms, andexecutiontimes rangefrom 1 to 9 ms.
Communicationamongthe variousprocessesis doneindirectly. No dataareshared
directly; processescommunicateonly throughdataserverscalledmonitor tasks. The
time to access shared data is included in the process execution time.

The code below models a process with a 200ms period and a 3ms execution time.

1 radar_control()
2 {
3 boolean radar_activate, data_available;
4 radar_activate = false;
5 data_available = false;

Initially we declaretwo booleanvariablesthatflag thebeginningandendof exe-
cutionof eachinstantiationof theprocess.They areusedwhencheckingprocessrun-
ning time. Initially both variables are false.

6 periodic(0, 200, 0) {
7 radar_activate = true;
8 wait(1);

Wethenstarttheperiodicexecutionandflagthebeginningof theexecution.A one
time unit wait is insertedsootherprocessescanobserve thatradar_activate is
true.

9 radar_activate = false;
10 wait(2);

Variableradar_activate is deasserted,andtheprocessendsthis instantiation.

11 data_available = true;
12 wait(1);
13 data_available = false;
14 };
15 }

Finally theendof executionis assertedandtheperiodicloop is iterated.Thecode
for theother14 processesis similar. Thecodefor theschedulercompletesthemodel.
But before presentingthe scheduler, it is important to understandthe interaction
between processesand scheduler. Processesrequest execution by asserting a
request variablewhich is readby the scheduler. Upon decidingwhich processes
executesthe schedulerassertsa variablegranted readby all processes.To make
this interactionclearwe repeatthecodefor thesameprocess,but now translatedinto
the core languageto show the featuresdiscussed.Another modification has been
implementedbelow, moving the periodic statementinto the scheduler. In this way
morethanoneprocesscanmake useof thesamevariableusedto implementtheperi-
odicity.

1 int time, granted;
2 boolean req1, req2,... ;

Variabletime is thecounterusedto enforceperiodicity. Thevariablesgranted
andreqi are used by the scheduler.

3 p1(time, granted, req1)
4 {
5 boolean radar_activate, data_available;
6
7 req1 = false;
8 radar_activate = false;
9 data_available = false;

10 while (true) {
11 while (time != 0) wait(1);

Theperiodicstatementhasbeenreplacedby aninfinite loop thatonly startswhen
time is 0. Noticethatwhenwaiting on line 11 variablereq1 is false,andtherefore
p1 does not request execution at this point.

12 req1 = true;
13 radar_activate = true;
14 while (granted != 1) {
15 wait(1); radar_activate = false;
16 };
17 wait(1);
18 radar_activate = false;

Whenexecutionstartsthe requestvariableis assertedandthe processmustwait
until beinggrantedthe processor(lines14 to 16) beforecontinuing.Line 17 corre-
sponds to the process executing for one time unit.

19 while (granted != 1) wait(1);
20 wait(1);
21 while (granted != 1) wait(1);
22 wait(1);

The processexecutesuntil completionin lines19 to 22. But beforeeachstepit
must check to see if it still has the processor.

23 data_available = true;
24 req1 = false;
25 wait(1);
26 data_available = false;
27 };
28 }

The end of the execution is similar to the previous one.

29 scheduler(req1, req2,..., time, granted)
30 {
31 time = 0;
32 while (true) {
33 if (req1) granted = 1; else
34 if (req2) granted = 2; else
35 ...
36 granted = 0;

The schedulerexecutesan infinite loop which startsby assigninga value to the
granted variable.It checksrequestsin thepriority order(highestpriority first) and
grantstheprocessorto thehigherpriority requestingprocess.In this examplepriori-
ties are static, they are defined by the order in which requests are tested.

37 wait(1);
38 if (time < 199) {
39 time = time + 1;
40 } else {
41 time = 0;
42 };
43 };
44 }

Line 37 makesthegranted variableobservable.Theschedulerthenincrements
thetime variable and repeats the cycle.

In the main module all processesare instantiated,and their schedulabilityis
checkedusingquantitative timing analysis.A timecritical systemis schedulableif all
processesfinish executionbeforetheir deadline.Usually the deadlineis the sameas

theperiod,that is, processesmustfinish beforetheir next instantiation.We have been
ableto determinethatthesystemis schedulable.Wehavealsobeenableto determine
severalotherpropertiesof thesystemsuchastheresponsetime of theweaponssub-
system.Whenever the pilot pressesthe firing button a complex sequenceof events
occurs.Wehave beenableto determineits fastestandits slowestresponsetimes.The

completeanalysisof thisexamplecanbefoundin [8]. Thefinal modelhasabout1015

states,and the transitionrelation usesapproximately4600 BDD nodes.Properties
have been computed in seconds in all cases.

45 main()
46 {
47 process P1 p1(time, granted, req1),
48 P2 p2(time, granted, req2),
49 ...
50 SCH scheduler(req1, req2,...,
51 time, granted);
52
53 spec
54 MIN(P1.start, P1.end)
55 MAX(P1.start, P1.end)
56 MIN(P2.start, P2.end)
57 MAX(P2.start, P2.end)
58 ...
59 }

6 Conclusions
This work presentsa new languageto be usedin the formal verificationof time

critical systems,theVeruslanguage.Verusprovidesa familiar environmentto verify
time critical systems.Thesyntaxis similar to thesyntaxof theC language,simplify-
ing theuseby non-experts.It hasspecialconstructsto expressthetiming characteris-
tics of the program naturally and accurately.

Verusprogramsarecompiledinto state-transitiongraphs,which provide a simple
andextremelyefficient representationof time. Thediscretemodelof time allows the
useof fastsymbolicalgorithmsfor verification.Thesimplicity of the internalrepre-
sentationdoesnot restrictthe language,however, asattestedby theexamplesof sys-
temsthat have beenverified.Several large complex time critical systemshave been
verifiedusingVerus.Most examplesareeitherexisting industrialapplicationsor use
components employed in real systems.

7 References
1. R. Alur, C. Courcourbetis,andD. Dill. Model-checkingfor real-timesystems.In Proceed-

ings of the 5th Symposium on Logics in Computer Science, pp. 414-425, 1990.
2. R. Alur andD. Dill. Automatafor modelingreal-timesystems.In Lecture Notes in Com-

puter Science, 17th ICALP. Springer-Verlag, 1990.

3. T. BolognesiandF. Lucidi. A timedfull LOTOSwith time/actiontreesemantics.In: Theo-
riesandExperiencesfor RealTimeSystemDevelopment. World ScientificPublishing,1994.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.Symbolic model
checking: 1020 states and beyond. In5th Symposium on Logics in Computer Science, 1990.

5. G. Berry and G. Gonthier. The ESTERELsynchronousprogramminglanguage:design,
semantics, implementation. In:Science of Computer Programming, vol. 19, 1992.

6. S.V. Campos.A quantitativeapproach to theformalverificationof real-timesystems.Ph.D.
thesis, SCS, Carnegie Mellon University, 1996.

7. S. V. CamposandO. Grumberg. Selective quantitative analysisandinterval modelcheck-
ing: verifying different facets of a system. In:Computer Aided Verification, 1996.

8. S. V. Campos,E. M. Clarke, W. Marrero,M. Minea,andH. Hiraishi. Computingquantita-
tive characteristicsof finite-statereal-time systems.In Real-Time SystemsSymposium,
1994.

9. S. V. Campos,E. M. Clarke, W. MarreroandM. Minea.Verifying the performanceof the
PCI local bus using symbolic techniques. In:ICCD, 1995.

10.S.V. Campos,E. M. Clarke,W. MarreroandM. Minea.Verus:a tool for quantitativeanaly-
sis of finite-statereal-timesystems.In: Workshopon Languages,Compilers and Tools for
Real-Time Systems, 1995.

11.E. M. ClarkeandE. A. Emerson.Synthesisof synchronizationskeletonsfor branchingtime
temporallogic. In Logic of Programs:Workshop,YorktownHeights,NY, May 1981. LNCS
131, Springer-Verlag, 1981.

12.E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha,D. E. Long, K. L. McMillan, andL. A.
Ness. Verification of the Futurebus+ cache coherence protocol. In11th CHDL, 1993.

13.P. Clements,C. Heitmeyer, G. Labaw, andA. Rose.MT: a toolsetfor specifyingandanalyz-
ing real-time systems. In IEEE Real-Time Systems Symposium, 1993.

14.J. Davies andS. Schneider. A brief story of timed CSP. In: Theoretical ComputerScience
138(2), 243-271, 1995.

15.E. A. Emerson,A. K. Mok, A. P. Sistla,andJ.Srinivasan.Quantitative temporalreasoning.
In LNCS, Computer-Aided Verification. Springer-Verlag, 1990.

16.A. N. FredetteandR. Cleaveland.RTSL: a languagefor real-timeschedulabilityanalysis.
In IEEE Real-Time Systems Symposium, 1993.

17.V. Hartonas-Garmhausen,S.Campos,E. Clarke,A. Cimatti,F. Giunchiglia.Verificationof
a Safety-Critical Railway InterlockingSystemwith Real-timeConstraints.In: 28th IEEE
International Symposium on Fault Tolerant Computing, 1998.

18.T. Henzinger, X. Nicollin, J.Sifakis,andS.Yovine.Symbolicmodelcheckingfor real-time
systems. InProceedings of the 7th Symposium on Logic in Computer Science, 1992.

19.T. Henzinger, P. Ho, andH. Wong-Toi. HyTech: the next generation.In IEEE Real-Time
Systems Symposium, 1995.

20.F. JahanianandD. Stuart.A methodfor verifying propertiesof modechartspecifications.
In: IEEE Real-Time Systems Symposium, 1988.

21.C. Locke,D. Vogel,andT. Mesler. Building a predictableavionicsplatformin Ada: a case
study. In IEEE Real-Time Systems Symposium, 1991.

22.K. L. McMillan. Symbolicmodelchecking - an approach to the stateexplosionproblem.
Ph.D. thesis, SCS, Carnegie Mellon University, 1992.

23.J. Ostroff. Formalmethodsfor thespecificationanddesignof real-timesafetycritical sys-
tems. In:Journal of Systems and Software, vol. 18, n. 1, 1992.

24.S. T. Probst.ChemicalProcessSafetyand Operability Analysisusing SymbolicModel
Checking. Ph.D. thesis, Dept. of Chemical Engineering, Carnegie Mellon University, 1996.

25.J. Quemada,D. FrutosandA. Azcorra.TIC: a timedcalculus.In: Formal Aspectsof Com-
puting, 5(3), 224-252, 1993.

26.G. Winskel. TheFormal Semanticsof ProgrammingLanguages,an Introduction. TheMIT
Press, 1994, pp. 135-139.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

