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Abstract

We prove a sufficient condition for the stability of dynamic packet
routing algorithms. OQur approach reduces the problem of steady state
analysis to the easier and better understood question of static routing.
We show that certain high probability and worst case bounds on the
quasi-static (finite past) performance of a routing algorithm imply
bounds on the performance of the dynamic version of that algorithm.
Our technique is particularly useful in analyzing routing on networks
with bounded buffers where complicated dependencies make standard
queuing techniques inapplicable.

We present several applications of our approach. In all cases we
start from a known static algorithm, and modify it to fit our frame-
work. In particular we give the first dynamic algorithms for routing
on a butterfly or two-dimensional mesh with bounded buffers. Both
the injection rate for which the algorithm is stable, and the expected
time a packet spends in the system are optimal up to constant factors.
Our approach is also applicable to the recently introduced adversarial
input model.
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1. Introduction

The rigorous analysis of the dynamic performance of routing algorithms is
one of the most challenging current goals in the study of communication
networks. So far, most theoretical work on this area has focused on static
routing: A set of packets is injected into the system at time 0, and the routing
algorithm is measured by the time it takes to deliver all the packets to their
destinations, assuming that no new packets are injected in the meantime
(see Leighton [8] for an extensive survey). In practice however, networks
are rarely used in this “batch” mode. Most real-life networks operate in
a dynamic mode whereby new packets are continuously injected into the
system. Each processor usually controls only the rate at which it injects its
own packets and has only a limited knowledge of the global state.

This situation is better modeled by a stochastic paradigm whereby the
packets are continuously injected according to some inter-arrival distribution,
and the routing algorithm is evaluated according to its long term behavior. In
particular, quantities of interest are the maximum arrival rate for which the
system is stable (that is, the arrival rate that ensures that the expected num-
ber of packets waiting in queues does not grow with time), and the expected
time a packet spends in the system in the steady state. The performance of
a dynamic algorithm is a function of the inter-arrival distribution. The goal
is to develop algorithms that perform close to optimal for any inter-arrival
distribution.

Several recent articles have addressed the dynamic routing problem, in
the context of packet routing on arrays [7, 10, 5, 2], on the hypercube and the
butterfly [13] and general networks [12]. Except for [2], the analyses in these
works assume a Poisson arrival distribution and require unbounded queues
in the routing switches (though some works give a high probability bound on
the size of the queue used [7, 5]). Unbounded queues allow the application of
some tools from queuing theory (see [3, 4]) and help reduce the correlation
between events in the system, thus simplifying the analysis at the cost of a
less realistic model.

Here we focus on analyzing dynamic packet routing in networks with
bounded buffers at the switching nodes, a setting that most accurately mod-
els real networks. Our goal is to build on the vast amount of work that
has been done for static routing in order to obtain results for the dynamic
situation. Rather than produce a new analysis for each routing network
and algorithm we develop a general technique that “reduces” the problem of



dynamic routing to the better understood problem of static routing.

In Section 2 we prove a general theorem that shows that any communi-
cation scheme (a routing algorithm and a network) that satisfies a given set
of conditions, defined only with respect to a finite history is stable up to a
certain inter-arrival rate. Furthermore we bound the expected routing time.
At first glance these conditions seems very restrictive and hard to satisfy,
but in fact, as we show later, many of the previous results on static routing
can be easily modified to fit into our framework. The theorem applies to
any inter-arrival distribution: the stability results and the expected routing
time of a packet inside the network depend only on the expectation of the
inter-arrival distribution. The relationship between the inter-arrival distri-
bution and the waiting time in the input queues is more complicated and is
formulated in the theorem.

In Sections 3,4 and 5 we present three applications of our general the-
orem to packet routing on the butterfly network. In Section 6 we present
an application to packet routing on a mesh. We assume that packets arrive
according to an arbitrary inter-arrival distribution and have random destina-
tions. In Section 7 we present similar results for an alternative input model,
the adversarial model [1], whereby probabilistic assumptions are replaced by
a deterministic condition on edge congestion.

Section 3 presents the first dynamic packet routing algorithm for a but-
terfly network with bounded buffers under constant injection rate. Our algo-
rithm is stable for any inter-arrival distribution with expectation greater than
some absolute constant. The expected routing time in an n-input butterfly
is O(logn) and in the case of geometric inter-arrival times the expected time
a packet spends in the input queue is also O(logn). Thus, the performance
of the algorithm is within constant factors from optimal in all parameters.
Our dynamic algorithm is based on the static routing results of Ranade [11]
and Maggs and Sitaraman [9)].

The above algorithm is not a “pure” queueing protocol (in such a protocol
packets always move forward unless progress is impeded by an already-full
queue) because as in the algorithms devised in [11, 9] it generates and uses
extra messages and mechanisms to coordinate the routing. Maggs and Sitara-
man studied the question of a “pure” queuing protocol routing with bounded
buffers. They gave an algorithm that routes n packets on an n input but-
terfly with bounded buffers in O(logn) steps. Based on their technique we
develop in Section 4 a simple greedy algorithm for dynamic routing. It is
stable for any inter-arrival distribution with expectation Q(logn), the rout-
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ing time is O(logn), and in the case of a geometric inter-arrival distribution
the expected wait in the queues is also O(logn).

In Section 5 we apply our approach to a dynamic version of the simple
oblivious routing algorithm on the butterfly described in [14, 8]. This al-
gorithm routes nlogn packets (all logarithms in this paper are base 2) on
an nlogn butterfly in expected O(logn) steps, and with high probability no
buffer has more than O(log n) packets. Our dynamic version of this algorithm
uses a butterfly with buffers of size O(logn) and is stable for any inter-arrival
distribution with expectation greater than some absolute constant. The ex-
pected routing time is O(logn) and the expected time a packet waits in a
queue in the case of geometric inter-arrival distribution is also O(logn). Note
that for dynamic routing, which is an infinite process, it does not suffice to
have a high probability bound on the size of the buffer memory needed at a
given time: we must prove that the algorithm is stable for some fized buffer
size.

The result of Section 2 is couched in terms of a general network, but the
above examples are all concerned with the butterfly network. In Section 6 we
exhibit the generality of the result by applying it to an n x n mesh. Our dy-
namic algorithm is based on the Greedy Algorithm of Section 1.7 of Leighton
[8]. Our algorithm is stable for any inter-arrival distribution with expecta-
tion at least Cn for some fixed constant C. The expected time a packet
spends in the network is O(n). In the case of Poisson arrival (geometric
inter-arrival distribution) the expected time the packet spends in the queue
is also O(n). This is optimal up to constant factors. Leighton [7] studied this
problem and obtained similar results provided that the buffers in the routing
switches are unbounded. More precisely, Leighton’s algorithm ensures that
at any fized time, with high probability, no routing queue has more than 4
packets. However, for any sufficiently long execution the maximum size of
any queue exceeds any given bound. Our results build on Leighton’s analysis,
by augmenting his algorithm with a simple flow control mechanism, which
ensures that every routing queue is bounded at all times, and thus only finite
buffers are needed.

In an attempt to avoid probabilistic assumptions on the input, Borodin
et al. [1] defined the adversarial input model. Instead of probabilistic as-
sumptions, for any time interval there is an absolute bound on the number
of generated packets that must traverse any particular edge. Surprisingly,
our general technique can be applied here as well. In Section 7 we briefly
sketch how the results of Sections 3-6 can be extended to this model.



These examples demonstrate several ways of applying our scheme. The
analysis required is similar to the analysis used in the proof of the corre-
sponding static case with several small modifications. Most notably, as often
done in practice, we sometimes augment the original static algorithm with
a simple “flow control” mechanism, such as acknowledgments. Our general
theorem can be applied to other topologies and algorithms provided that an
appropriate static case analysis can be constructed.

2. The stability criterion

Our model is as follows: we are given a routing algorithm 4 acting on a
network I'(n) with n inputs and n outputs. Each input receives new packets
with a inter-arrival distribution 7. We distinguish between usual and unusual
distributions. We first describe the situation for usual distributions. By this
we mean that the probability that the number of arrivals in any time period
significantly exceeds its expectation falls off exponentially. A more precise
definition is left until later. In the usual case the packets are placed into an
unbounded FIFO queue at the input node. Packets have an output destination
chosen independently and uniformly at random. When a packet reaches the
front of its queue, it is called active. At some point after becoming active, the
packet is removed from its queue and eventually routed to its destination.
For convenience we assume that a packet chooses its random destination
upon becoming active.

In an arbitrary input distribution we modify our routing scheme as fol-
lows. We maintain at each input node v two queues, @); and ). On arrival,
packets are placed in @);; the front packet in ¢); leaves it to ()2 according to
a geometric service time at a rate greater than the arrival rate of F; then Q)5
feeds the network as above. The precise details are discussed in Theorem 2.1
below.

We are interested in determining under what conditions the queuing sys-
tem is ergodic (or stable), that is, under which conditions the expected length
of the input queues is bounded as t — co. To this purpose we have to study
the inter-departure time, which is the interval from when a packet becomes
active until it leaves the queue, and the packet next in line (if any) becomes
active. Besides stability, we are also interested in the expected time a packet
spends in the queue, and the expected time it spends in the network.

Since the inter-arrival times are independent, if the inter-departure times



are also independent, then each queue can simply be viewed as a G/G/1
system and the stability condition would trivially be that the inter-departure
rate exceeds the inter-arrival rate. However the usual situation is that there
are complex interactions among packets during routing and thus the inter-
departure times are highly dependent and hard to analyze.

The goal of this section is to define a set of relatively simple sufficient
conditions such that if the routing algorithm satisfies them, then the system
is stable up to a certain inter-arrival rate and we can bound the expected
time a packet spends in the queue and in the network. This is captured in
the following. We assume that the system is empty of packets at time ¢ = 0.
We use H; to denote the history of the process up to time ¢ i.e. the outcome
of the random choices made at times 1 through ¢.

Let p denote the expected inter-arrival time and then p = 1/u is the
inter-arrival rate.

Theorem 2.1 Assume that the randomized routing algorithm A acting on
the network I'(n) is characterized by four parameters a, b, m, and T, where
a and b are positive constants, and m and T are positive integers that might
depend on n and satisfy 1/n* < m/T < 1 and T < n®. Assume that the
algorithm satisfies the following conditions:

1. Ewvery packet is delivered at most n® steps after becoming active.

2. For every time T > 0 there exists an event £, with the following proper-
ties:

(a) =&, implies that any packet that at time T was among the first m
packets in its queue, is delivered before time T + T

(b) For any fized time T,

(m/T)"p
Pr(& [ H, ) < Be = ars
(c) & is determined by H., .
Thus for any k > 1,
PI‘(&- | 8T—2’i’nb)i - 1,2,...,k) S Bg. (1)

If there exists a positive constant € such that the inter-arrival distribution F
has an inter-arrival rate smaller than (1 — e€)m /T, then
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1. The system is stable.

2. The expected elapsed time between when a packet becomes active and it
is delivered is at most 2T + O(1).

3. The expected time a packet spends in the input queue is bounded by
O(T) + f(T/m), where f is a function that depends only on F and
not on the routing process. (For “usual” distributions such as geometric

f(T/m) = O(T/m)).

Proof: Assume first that the inter-arrival time is geometric, that is, at
each step, each input receives a new packet with some fixed probability p <
(1 —€)m/T. (We will show later how to extend the proof to a general inter-
arrival distribution).
Fix an input v and let Q(¢) denote the length of the queue at node v at
time ¢. Let
7(t,L) = Pr(Q(t) > L).

We show that the system is stable by proving a uniform bound, independent
of t, on w(t,L). Let

B=<" amd U= (%)3#%.
(Hence U > m.) We will establish the bound using the following two in-
equalities:
e For L>U
n(t,L) < (t—[5],(1+ B)L) + de . ()
e Form<L<U
w(,) < x ([(e- %) 1,0) + U Be 4 o0, (3)
€p

(Define as usual zt to be max{0, z}.)
where v = Q((m/T)3/n*™?), § = O(n®), and ¢ is a positive constant. Since
m(t, L) = 0 for t < L, these inequalities imply that for L > U,
7(t, L) < 6 E 4 de~ AL | ge— (48T
<de (A +ePE 4 el 4l

de L
T 1 —eBIL”



and that for m < L < U,
m(t,L) <

Combining the two bounds we get

EQ() = Y =(tL)

L>1
Ude 'V 202 26V
_¢pm
< mt+i vt - Be +2e R
= O(m)

Since this holds for any inter-arrival rate bounded by (1 —€)m/T, by Little’s
Theorem the expected time a packet spends in the queue is O(T).

We now turn to proving the recurrence (2). Since the inequality is trivially
true for ¢ < L, assume that t > L. Let to = t—[£]. Let I denote the number
of packets arriving at input v between ¢ and £, and let J denote the number
of packets leaving the queue at v during this interval. Let s; denote the
inter-departure time of the i’th packet to become active at v after time ¢,
that is, the interval from when this packet reaches the front of queue until it
departs. (If there was an active packet at time o then s; denotes how long
it took that packet to depart.) Let

M= [(1-8)73].

We claim that if Q(¢) > L, then at least one of the following three events
holds:

F.=Q(to) > (1 + B)L. (Large initial queue.)

L
Fo=I>01+ ,B)pg — 1. (Excessive number of new arrivals.)

F.=81+ 82+ -+ sy > L/2. (Slow processing.)

Indeed assume —~F,, =F;,, and -F, and consider two cases:

Case 1: Q(to) > L/2. This means that at time ¢, the queue contained more
than M packets, and —F, implies that M packets left the queue by time



t=1to+ [L/2]. Thus J > M, and
Q) =Qt)+1—-J
<(+H)L+(+ Py ~ (1)

:L+(2ﬂ+p+ﬂp—%+ﬂ%>

m L

T2

L

2
m\ L

<i+(10+p-7)3

< L.

Case 2: Q(to) < L/2. Then

Q) <Qty) +1< g +(1+ 5)p§

em
<Z+(1+ ) 1-o22
—2+(+4T>( )T 2

< L.

B~

Thus, in order to prove the recurrence (2) it suffices to show that for L > U
Pr(F) <e* (4)

and that
Pr(F. A (Q(t) > L)) < O(n’)e " (5)

Equation (4) follows immediately from standard bounds on the binomial
distribution

Pz =P (1 (4 gl —1) <P

To prove equation (5) note that if at any time during [¢g,¢] the queue at
v contains less than m packets, then Q(¢) > L only if I > L — m and the
probability of the latter can be bounded as above. So let’s assume that for
all 7 € [to, t], we have Q(7) > m.

Let now z denote the number of occurrences of &, during [to,¢]. By the
hypothesis of the theorem s;+s2+- - - +sy < Mn®. We partition the interval
[to,to + Mn?] into 2n® sets, T1, Tz, - - ., Tape Where T; = {to +i — 1 + 2kn® :
0<k<|[(Mn®*—i+1)/(2n%)]}. Let z; denote the number of occurrences
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of & for 7 € T;. Note that if packet 7 becomes active at time 7 and if =&,
then we have s; + s;11 + -+ + S;1m < T; if £, we can use the bound s; < n®.
Thus we have the following series of implications:

L
S1+8 + -+ 8y > —

2
T L
M—2)— +niz> =~
= ( z)m-l—nz>2
L T _ L L BL
s M- >T _a-pg)o=""
s> MO 2o -(1=-85=5
L
= Z>IB
2ne
. BL
= 32.2¢>W

It follows from (1) that

i (1) () 2 )

u n2a-+2b+3 onbu  n2at26+3
So
8L o[ Me  dperd\PH/OT
Pr (Elz: z,-24na+b) <2n <2n2a+3b+3- AL ) < 2n’e 7.

This completes the proof of recurrence (2) and we turn to recurrence (3).
If t < L/(2p) then for some constant ¢,

Pr(Q(t) > L) < Pr(L packets arrive in [0, L/(2p)]) < e~%.

Hence assume that ¢ > L/(2p) and let t¢ = [(t — 2U/(ep))™|. Define the
following three events:

fa = Q(to) Z U.
Fi» = The event &, does not occur for any 7 € [tg, t].

F. = The queue at v receives at most (1 — 5) 760 new packets in any interval
[t —0,t] with 6 > 2.
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We bound Pr(Q(t) > L) via the inequality

Pr(Q(t) = L) < Pr(F,) + Pr(=F) + Pr(-F)
+Pr(Q(t) > L | ~F,, Fy, Fo).

By definition
Pr(F,) = n(to, U).

Clearly
2U
PI‘(“J:I,) < (— + 1) Bg,
€p
and since (1 — $)76 > (1 + 5)pd
1
PI‘(_IJ:C) < 6—621)9/12 < §€_¢L (7)

for a constant ¢.
Now assume —F,, F;, and F. and notice that if F, holds, then as long as
the queue is not empty it loses at least m packets in any interval of T steps.
If Q(t) > L we claim that these assumptions imply that there is a step in

the interval [to, ] in which the queue is empty; otherwise
m

Q) < Qo)+ (1= £) Pt~ 1)~ m| 122

< Q(te) +m — %%(t — )

which is less than m since if t, = 0 then Q(¢y) = 0, and otherwise ¢ — ¢y =
[2U/(ep)] and Q(to) <U — 1.

Thus, under the assumptions —F,, F3, and F,, if there are L packets in
the queue at time ¢, then there is an interval [t — €', ¢], such that
(i) the queue was empty at time ¢t — 6’ — 1;
(ii) the queue was not empty in any step in the interval [t — &', ]
(iii) at least L + mL%J > L+ mTG’ — m new packets arrived at the queue in
that interval.
But if L > m and 6’ > L/(2p) then (iii) contradicts F,. So we only have to
consider the probability that (iii) holds for an interval with L < 8’ < L/(2p).
This is bounded by

!
max (1 — al_i} < max e P3<
L>m { Z, (Z)p( p) T L<0'<L/(2p) -
L<o'<L/(20) i>L+ ™8 _m

e L. (8)

N | =
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This completes the proof of equation (3).

Let us now see how to go from a geometric inter-arrival distribution to
something more general. We observe that in the proof above the inter-arrival
distribution is only required to satisfy (4), (7), and (8). Suppose that the
inter-arrival time is a random variable X with distribution F. Let p =
1/E(X) < 1. We say that F is usual if there exist constants Ag and A; such
that in any interval of length ¢, the number N of arrivals satisfies

Pr(N > (1 + €)pt) < Age 41t

for any 0 < € < 1. Clearly if F is usual, then our proof will go essentially
unchanged provided that p < (1 —¢€) 7.

Assume finally that the arrival of packets to the queue is governed by
some arbitrary inter-arrival distribution F. Let ); and ()3 be the two queues
in front of a generic node v, as described at the beginning of this section.
We move packets from the front of (); to the end of ()2 with probability
p = (1 —¢€)T. Our analysis has shown that @), is stable, and that the
expected wait in Q2 is O(T'). The queue @), is a G/M/1 queue. Thus, if the
expected inter-arrival time to (J); is smaller than p, then the queue is stable
and the expected waiting time in ); is determined (see [6] for details) by the
distribution F, as follows: Let z be the non-trivial (that is, z # 1) root of
the equation (the Laplace transform)

z = /oo e P =2) g F(¢);
0

The expected wait in the queue is then z/(p(1 — z)).

We now bound the expected time that a packet takes to reach its destina-
tion once it becomes active. Consider a long interval of time [0, L]. Suppose
that x, packets arrive during this interval and &, occurs for z; values of 7.
Given this the average time that a packet takes to reach its destination once
it becomes active is at most

(Ta — 2)T + zp10 < T
Lq Ta
Now
zpn® E(z)n® 1
E < ¢LPr(z, < L
( Tq ) - %LpPr(ma > %Lp) T r(za < 3Lp)

2n°B,

— n e as L — oo

b
- 0 as n — oo.
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Consequently, the expected time that a packet takes to reach its destination
once it becomes active is at most 27T as claimed. O

In the next four sections we deal with applications of Theorem 2.1 to the
cases where the underlying topology is (i) a butterfly with logn levels (rows)
of n nodes (switches) or (ii) an n X n mesh. In both cases there are buffers on
edges and unbounded queues at input vertices. We show stability for several
protocols under suitable assumptions about input rate and internal buffer
size. We will explicitly consider geometric inter-arrival distributions. The
general case is implicitly dealt with as in the proof of the main theorem.

3. Dynamic routing on a butterfly with con-
stant injection rate and bounded buffers

For this section we assume that the buffer size g is a sufficiently large
constant. We first fix m = ©(logn) and we will subsequently describe a
protocol and define &, T', a, and b to satisfy the conditions of Theorem 2.1.

Our approach is based on the second algorithm of Maggs and Sitaraman
[9] and in places we follow their description very closely. This algorithm uses
tokens whose main role is to define a wave number for each packet. We will
assume that tokens occupy the same amount of space as a packet. Imagine
that behind each input node queue there is an infinite sequence of tokens,
packets and blanks. The odd positions are always taken by tokens and the
even positions contain packets or blanks, where the packets occur randomly
with probability p. The tokens are labeled 1,2,.... The label of a token is
referred to as its wave number. As opposed to [9] we actually use these labels
within the algorithm, not only in its analysis.

At each time step we examine the front of the sequence. If it is blank
then we simply delete this blank and go to the next time step. If there is a
token or packet then we delete it from the sequence and place it in the back
of the input queue. The front element (which could be a packet or a token)
of the queue tries to enter the network only if it is eligible (we define this
subsequently). An eligible packet enters the system if the buffer on the edge
that it intends to use is, or becomes not full during the current time step.
Upon entrance into the network a token splits into two tokens, one for each
outgoing edge. Thus both buffers need to have space before an eligible token
can enter.
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The wave number w(II) of packet II is the wave number of the token that
immediately precedes it in entering the network. The rank of a packet is a
pair (w, c) where w is the wave number and c is the column number of its
input. The rank of a token is given by its wave number. Ranks are ordered
lexicographically.

An important invariant of the algorithm is that packets go through a
switch in increasing order of rank.

A switch labeled (I, ¢ = ¢g,c1,...,cr_1) where [ is the level and L = logn,
has a 0-edge entering it from switch (I — 1,c — ¢;2""!) and a 1-edge entering
it from switch (I — 1,¢ — (¢ — 1)2!). The buffer of the i-edge is called the
i-buffer.

The behavior of each switch is governed by a simple set of rules. By
forwarding a packet or token we mean sending it to the appropriate queue
in the next level. If that queue is full, the switch tries again in consecutive
time steps until it succeeds. A switch can either be in 0-mode or 1-mode and
is initialized to be in 0-mode. In i-mode, a switch forwards packets in the
i-buffer until a token is at the head of the i-buffer. At that time, if i = 0 then
the switch simply changes to 1-mode; otherwise, if ¢ = 1 then there will be
tokens at the front of both queues and the switch waits until it can forward
both tokens, each to one of its outgoing edges. (These tokens have the same
wave number). It then switches back to 0-mode.

It will be important in the subsequent analysis to ensure that if IT and IT'
are packets or tokens residing simultaneously in the network then |w(II) —
w(Il')] < Alogn for some constant A > 0. This is achieved as follows:
At every time step, every output node generates two chips. The 2n chips
generated at time ¢ will be referred to as generation t. Each generation
travels back through the network one level at a time. The chips make their
journey so that each chip occupies a different edge at each step. By the time
a chip of generation ¢ has reached a switch s, it has iteratively computed the
lowest wave number of any packet/token which left the network at time ¢
from an output node reachable from s. Thus when generation ¢ reaches the
input nodes, each input node knows the lowest wave number w*(¢) of any
packet/token that left the network at time ¢. This happens at time ¢ + log n.
w* is initialized at zero and if no packet leaves the network at time ¢ then
w*(t) = w*(t—1). Note that if I is a packet/token which is in the network at
time ¢ or later then w(II) > w*(¢) since packets go through network switches
in increasing order of rank.
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At time 7 a packet/token II will be eligible to enter the network, only if
w(Il) < w*(r — logn) + Alogn.

It follows that if II is any packet/token already in the network at time 7, or
eligible at time 7, then

w*(r —logn) < w(Il) < w*(r — logn) + Alogn. (9)

We focus now on one of the first m packets of a queue at time 7. Denote
it by II. Assume for the time being that II is eligible at time 7. Maggs and
Sitaraman define a delay sequence of packets and tokens in a familiar way —
an (r, f) delay sequence consists of (i) a path P from an output node to an
input node, (ii) a sequence $i, S,..., s, of not necessarily distinct buffers,
(iii) a sequence II;, I, . .., IL. of distinct packets and tokens and (iv) a non-
increasing sequence w;, ws, . .., w, of wave numbers. The wave numbers of
the tokens are shown to decrease strictly as one moves along the delay path,
in fact they decrease by one from one token to the next. The length A = A\(P)
is equal to 2f —logn where f is the number of forward edges of the path. It
is a little confusing at first, but here forward edges go from level z to level
x + 1, for some z, and are traced backwards by P, assuming it is directed
from output to input. It is assumed that II; goes through buffer s; and has
wave number w;. Maggs and Sitaraman show (Lemma 4.1) that if packet II
takes log n+ d time to exit from the network, then there is a (d+ (g —2)f, f)
delay sequence, with II; = II, for some f > 0.

We have to argue that the delay sequence does not contain many tokens.
Let k£ denote the number of tokens in our delay sequence. We see that

k < Alogn,

since the wave numbers of tokens decrease by one along the delay path,
equation (9) holds, and any packet/token on the delay path must be in the
network at some time after 7, and thus has wave number at least w*(7—logn).
If we assume (and we will subsequently remove this assumption)
A: The destinations of packets under consideration are random

then the expected number of delay sequences for I can be bounded as follows.

Choose A = 2f — logn for the length of a path P. Let P denote the set
of possible delay paths and note that |P| < 4*. Choose a delay d > Klogn
where K is a large constant. (We assume ¢ > K > A.) Let r =d+(¢—2)f.
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We have to count the number of (r, f) delay sequences with delay path P.
Choose positive integers a,, as, . .., a so that a; +as+---+ax < r and along
our path there are tokens at positions a;,a; +as,...,a;+as+:+-+ag. There
are (Z) choices for the a;’s.

Let J = [r]\ {a1,01 + a2,...,a1 + a2 + -+ + ax}. Now choose an edge
buffer s; for each j € J. Observe that having chosen P our choices are now
restricted. However for each edge in P we can choose the multiplicity of its

buffer in the delay sequence. This can be done in at most ("J;izl) ways.

Let d; be the depth of the edge with buffer s;. There are 2% inputs
which could send a packet along this edge. The probability that there is
such a packet with a particular wave number (fixed by the preceding token)
is at most 2% (p2~%~1) < 1/2.

Thus the expected number of delay sequences is at most

)IREDVED DD DD DD BN (V57

k<Alogn f>logn PcP d>Klogn a1,---,8k s5:5€J
r\({r+A—1\ _,_
<> > s ()3
k<Alognd>Klogn f>logn -1

1 2¢ \*" (2 \M" 1\’
n? kSAzlogn dZKZIOgn fZlZogn ( k/’l" /\/T 2
1 2\"
> 2 x )

- n? k<Alogn d>Klogn f>logn

(for sufficiently large ¢, K)

1 2 Klogn 1
2 G e
n? 3 1— (2/3)s2

k<Alogn

which can be made O(n~B) for any positive constant B by choosing K suf-
ficiently large.

Let us now deal with Assumption A. One cannot assert that the desti-
nations of packets in the network at time 7 are random. There is a tendency
for “bad” configurations to “linger”. However, one can assert that the desti-
nations of packets with wave numbers in [w,w + k — 1] are random for any
fized w. What we have actually proved is that there is unlikely to be a delay
sequence made up from random packets with wave numbers in [w, w + k — 1]
where w = w,. We know however that

w*(1) < wr <w*(r) + Alogn,
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and thus we can assume conservatively that if 7o = 7 — 24AnSlogn and
wo = w*(7p) then

wo + 2Alogn < w,; < wo + A(2nS + 1) log n.

Here S is a polynomial upper bound (proved below in Lemma 3.1) on the
time taken for an active packet or token to get through the network. We use
the facts:

(a) w(t—1) <w(t)<w(t-1)+1.

(b) w*(t+nS) > w*(t) + 1.
Of course wy itself is a random variable. the conditional distribution of the

destinations in wave w for w > wg+ A logn are random because no packet in
this wave could have been in the network at time 7. Let us therefore define

&, = There exists w € [wo + 2A4logn,we + A(2nS + 1)logn + (K +
1)logn] and a delay sequence of length exceeding K logn made from
packets in waves [w,w + Alogn].

The probability of &, is O(Snlogn/nP) and can be made suitably small.
If £, does not occur then all of the eligible packets among the first m in each
queue at time 7 will be serviced in time (K + 1)logn.

We have therefore dealt with eligible packets at time 7. Some of the first
m packets in the queue can be ineligible. If £ does not occur then they will
be serviced in a further (K + 1)logn time because they will be eligible at
time 7 + (K + 1)logn (all eligible packets in the network at time 7 will be
out) and the extra (K + 1)logn in the definition of £, means there are no
delay paths for them either. We thus take T' = 2(K + 1) logn.

We now have to give an estimate for S.

Lemma 3.1 Under this protocol, no packet takes more than S < 4Anlog®n
steps to complete its service once it has become active.

Proof: If we trace an input-output path then the tokens we meet have wave
numbers which decrease by one each time. This is a basic property of the
scheduling protocol. At each time step at least one packet or token of lowest
wave number moves. Thus if X denotes the set of lowest wave tokens or
packets at time ¢, then X will be through the network at time ¢ + 2n logn.
The network can have no more than Alogn distinct eligible wave numbers
at any time and so we get an upper bound of 24n log?® n for eligible packets.
An active but ineligible packet might then have to wait this long to become
eligible. O
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From our definition of £, we see that it depends only on the destinations
of packets that have wave numbers in the range [wg+2A4logn,we + A(2nS +
1)logn + (K + 1)logn|. Every packet that has already made a choice of
its destination by time f3 — S is out of the system by time ¢3 and thus has
wave number at most wg + Alogn. On the other hand, packets that enter
the network after time to + nS(A(2nS + 1) + K + 1)logn has wave number
> wo+ (A(2nS+1)+ K +1)logn. Hence &, depends only on the destination
of packets enter the network at times in the range [r — 24AnSlogn — S, 7 +
(A(2nS —1)+ K +1)nSlogn]. We can thus take b = 5 in the main theorem.
To define a suppose a packet II becomes active at time 7. Then all packets
currently in the network will have left it by the time 7 + S. If II has not
left the queue by this time then II will certainly be eligible and can now
enter. Thus we can take a = 2. Thus, all the conditions of Theorem 2.1 are
satisfied, and we have proved:

Theorem 3.1 There is a constant C, such that the above algorithm is stable
for any inter-arrival distribution with expectation at least C. The expected
time a packet spends in the network is O(logn), and in the case of geometric
inter-arrival time the expected time a packet spends in the system is O(logn).

After running the algorithm for a long time, wave numbers could be come
very large. To avoid the storage of very large numbers, wave numbers can
be stored mod 2Alogn and eligibility defined to take account of this in the
obvious way.

4. Greedy dynamic routing on a butterfly with
bounded buffers and injection rate O(1/logn)

We present in this section a simple greedy algorithm (“pure queueing
protocol”) that can sustain an inter-arrival distribution with expectation
Y(log n) using buffers of size ¢ = O(1) in the routing switches. The algorithm
and analysis is based on the static result of Maggs and Sitaraman [9].

We first describe the behavior of switches in the network:

e Packets are selected from buffers in FIFO order.

e A switch V alternates between the two switches W, W’ feeding it. If
at time ¢ — 1 switch V received a packet from switch W, at time ¢ it

18



first checks switch W’. If the buffer of W’ is non-empty then W' send
a packet to V, otherwise V returns to switch W.

The dynamic algorithm uses a token based flow control mechanism. Each
input has m = O(1) tokens. A token can be in one of three modes: enabled,
used or suspended. Initially all tokens are in enabled mode. To inject a packet
into the network the input needs an enabled token. A packet is sent with a
token and the mode of the token switches to used mode. When a packet is
delivered the token (acknowledgment) is returned to the input node. Let ¢,
be the last time a given token was sent with a packet, let £, be the last time
it returns to the input node. If ¢, —t, < Klogn then the token becomes
enabled again at time ¢+ K'logn. If t,—t; > Klogn then the token mode is
switched to suspended mode for 3mnS = O(n?) steps (S is defined in Lemma
4.1). Then it is switched back to enabled mode (K is a constant fixed in the
proof). This flow mechanism guarantees that an input cannot inject more
than m packets in each interval of K logn steps, and that the input does not
inject new packets when the network is congested.

We use a separate butterfly network I'(n) to route tokens back to their
sources. The output nodes of I'(n) are identified with the inputs for I''(n). A
token from input j of I'(n) which reaches output k£ of I'(n) must travel from
input & of I"(n) to output j of I'(n).

Lemma 4.1 Under this protocol no packet takes more than S = 4qn? +
2K logn steps to complete its service once it has become active.

Proof: Our network I'(n) UI"(n) has 2logn levels. We prove by induction
on ¢ that if a buffer B at level ¢ is non-empty (level 0 is the output level of
['(n) which is the input level of I'(n)) then after at most 2¢ steps the front of
the queue moves onto the next level. This is clear for ¢ = 0 and our protocol
ensures that after at most 2 x 2¢~1 steps the switch will be able to move the
front of B. Let u be some packet waiting in B. FIFO selection then ensures
that a packet spends at most ¢2° time steps at level ;. Thus a token takes
at most 2gn? time steps to reach its output once it obtains a packet. By the
same argument, a packet has to wait at most 2gn® + K logn time steps to
obtain a token, once it has become active. O

The proof in [9] is based on a delay tree argument. To apply this proof
technique here we analyze the delays in I'(n) and I'(n) separately. Note
that since we assume that a processor has sufficient buffer space to receive
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all packets sent to it, delays in one network do not propagate to the other
network. In our setting the delay tree in I'(n) is defined as follows: Fix a
packet II which is one of the first m packets of an input queue at time 7. Let
M (II) be the set of packets that were in the network during any step ¢ in
which II was in the network. A node v of I'(n) is full with respect to II if at
least ¢ packets in M(II) traversed v during this time. The spine SP(II) of
I’s delay tree DT = DT(II) is the path in I'(n) from the input node, j say,
to II’'s output node back to the output node of I'(n) labeled j. Let F(II) be
the set of full nodes with respect to II in the network I'(n). DT(II) consists
of SP(II) plus any node reachable from it by a path consisting entirely of
nodes in F(II). (Paths are directed from nodes of the spine down to lower
numbered levels.) The number of packets on the delay tree DT(II), denote
by hy(II), is the sum over all the nodes of the tree, of the number of packets
in M(II) visiting each of the nodes. (Note that packets can be counted
several times in this count). A similar construction gives DT'(II), a delay
tree of IT in I''(n). Let hy(II), denote the number of packets on DT, and let
h(IT) = hy (IT) + ho(II).

By Theorem 2.1 in [9] the time a packet II spends in the network is
bounded by logn + h;(IT), and the time it takes the corresponding token to
return to the source is logn + hy(II) .

Let

T = 2K logn,

and define the event:

&.: There exist delay trees DT and DT’ such that considering all the
packets and tokens that are in the network at time 7, and the packets and
tokens entering the network during the interval |7, 7 + T,

h(II) > (K —1)logn.

(For each pair of trees DT and DT’ we imagine a packet II that followed
SP(DT), and a token that followed SP(DT’), both were in the network
during the interval [7,7 + T|. We compute the maximum of A(II) over all
DT and DT'.)

Clearly —&, implies that any packet that is among the first m packets in
its queue at time 7 will be delivered, and its token returned to the source,
before time 7 4+ T', since a packet waits no more than K logn till it has an
enabled token, and then its routing takes no more than K logn steps.
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Lemma 4.2 For any a > 0 there exists K = K(a) such that if T—2K logn <
t<71— Klogn then
Pr(&, | H:) < n7°,

provided H, C &,.

Proof: Under the conditions of the lemma, any packet and token in the
network at time ¢ will have left the network by time 7. The destinations of
packets generated in the interval [t 4+ 1,7 + T'| are random and independent
of H;. Once a token changes to a used state, it requires at least K logn steps
in order to become enabled again. Thus each input node can inject at most
4m new packets between times £ 4+ 1 and 7 4+ T, each having a new random
destination.

Theorem 2.5 of [9] shows that if each input node injects 1 packet to a
random destination then for some Ky = Ky(a) and g sufficiently large

Pr(3I1: hy(II) > Kylogn) = O(n™).

So if each input injects at most 4m packets with random destinations into
the network then

Pr(3II: hy(II) > 4mKjylogn) = O(n™?).
A symmetric argument proves the same bound for hy(II). Choosing K =

4mK, + 1 yields the lemma. O

Let 7 = 7 — 2mnS and

BT: ﬂ 8t-

t=710

Corollary 4.1
Pr(&, | o) < Pr(B, | Hy) + 2mSn' .

Lemma 4.3
Pr(B, | Hn) <n~

Proof: The network at time 7 contains at most m packets per input node.
We must must find a way to be able to treat the destinations of these packets
as random given H,,. For input ¢ and time ¢ let D;, be the set of m destina-
tions associated with the tokens for i. The occurrence of events &, t € [, 7|
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can be determined from the sets D;;,t € [0, 7 + T]. Imagine that initially
i.e. at time 7y each token has a destination and it gets a new one when-
ever it returns from a trip through the network. We will view the sequence
D;;,t = 19,...,7 + T as being produced as follows: We start with an ar-
bitrary set of destinations D; .. Each token j has due time d; for its next
change of destination. At time d; the destination of token j is replaced with
a new random destination and d; is replaced by d; + K logn unless either (i)
Jj is late and becomes suspended at some time in the interval [d;,d; + S| or
(ii) there is no active packet waiting for j at time d; + K logn, in which case
j gets a new due date determined by the arrival distribution and not by the
workings of the network, which we treat as an adversary. This adversary is
limited to arbitrarily choosing tokens to make late. We can assume that the
adversary makes its decision on token j at time d;.

Suppose that there is a time ¢ € |7, 7 — 2K log n] such that the adversary
decides not to make any token late during the interval [¢,¢ + S]. Then at
the end of this time interval the destinations of unsuspended tokens are
completely random and so the (conditional) probability Pr(&;.s) < n~*. On
the other hand, if the adversary tries to delay at least one token in every such
interval then there will be no tokens in the network at time 7/ = 75 + mnS
and &, will occur, unless there are fewer than m new arrivals at some input
in the period [r, 7+ mnS]. The probability of the latter is negligible and the
lemma follows. O

Combining Corollary 4.1 and Lemma 4.3 we obtain
Pr(&; | Hr—amns) = O(mSn'™®).

Taking T = 2K logn, m = O(1), a = b = 3, a = 16 and applying
Theorem 2.1 we obtain

Theorem 4.1 There is a constant C, such that the above algorithm is stable
for any injection rate with expected inter-arrival time greater than Clogn.
The expected time a packet spends in the network is O(logn). In the case of
geometric inter-arrival time the expected time a packet spends in the system
is O(logn).
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5. Greedy dynamic routing on a butterfly with
buffers of size O(logn) and constant injec-
tion rate

The algorithm in the previous section sustains an injection rate which is only
up to O(1/log n) of the network capacity. We now present a greedy algorithm
that is stable for any inter-arrival distribution with expectation bounded by
some constant C, thus a constant fraction of the network capacity. This
algorithm, however, requires buffers of size ¢ = O(log n).

The algorithm and analysis is based on the static result in [8] Section 3.4.4.
When a packet II is injected into the network it receives a random priority
number r(IT) chosen uniformly at random from the interval [1, ..., 8eK logn|
(K is a constant fixed in the proof). Packets are generally selected from the
buffers according to their random priority numbers. This does not guarantee
that a packet will get through the network in a reasonable time, since it is
conceivable that under this protocol a packet could stay in the network for
a very long time. Consequently, once every 10K logn steps we change the
selection rule for one step so that packets are selected according to age and
FIFO order. We call this a special step.

The algorithm uses the same token based flow control mechanism as the
one described in the previous section, only the values of K and S will change.
It also uses a second network ['(n) to route the tokens back to the inputs.
The tokens inherit the priorities of their packets, for the return phase, as well
as their age status.

This time m is of order log n.

Lemma 5.1 Under this protocol no packet takes more than S = 40Kqn?logn
+Klogn steps to complete its service once it has become active.

Proof: An argument similar to that given in the proof of Lemma 4.1 ensures
that a packet’s token arrives back at its input within 4gn? special steps of
getting a packet. O

Let
T =2Klogn

and define the event:
&:: There is a delay sequence (in I'(n) UI"(n)) of length K logn at some
time in the interval [7, 7 + T.
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The definition of a delay sequence is similar to that given in Section 3.
A full definition can be found for example on p550 of [8]. It is basically
a path P from an input node to an output node (back to an input node)
plus a sequence of nodes vq,vy,...,v, of P. The nodes are in order on P
but there can be repetition in the sequence. There is a sequence of packets
I1,, Iy, ..., II, where II; is required to go through node v;. Finally, there is
the condition that r(II;) < r(Il;41) for 1 < ¢ < p. Because of our special
steps we have to relax this last condition for [p/(10K logn)| values of .

Assume first that the buffers are unbounded. Then (see e.g. the proof
of Theorem 3.26 in [8]) the event —~&, implies that a packet that received an
enabled token in the interval 1, 7+ K log n| is delivered within K logn steps,
i.e. before time 7+ T'. In these circumstances each token becomes enabled
at least once in the interval [7,7 4+ K logn], and so the first m packets in
each queue at time 7 are delivered by time 7 + T. However, if no packet
was delayed more than K logn steps, then no buffer had more than K logn
packets at any step in that interval and we get the same performance as if
each buffer had size ¢ = K logn. Thus with this queue size, =&, implies that
the first m packets in each queue at time 7 are delivered by the time 7+ 7.

Using the almost identical argument to that given in the previous section
we can prove that for any 8 > 0 we can choose K = K () such that

P’I"((C,'T | HT—2mnS) < n_ﬂ-

Taking T = 2K logn, m = O(logn), a = b = 3, 8 = 13 and applying
Theorem 2.1 we obtain

Theorem 5.1 There is a constant C, such that the above algorithm is stable
for any injection rate with expected inter-arrival time greater than C. The
expected time a packet spends in the network is O(logn). In the case of

geometric inter-arrival time the expected time a packet spends in the system
is O(logn).

6. Dynamic routing on a two-dimensional mesh
with bounded buffers under injection rate

O(1/n)

Our dynamic algorithm is based on the Greedy Algorithm of Section 1.7 of
Leighton [8].
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A packet takes the shortest one-bend route from origin to destination,
first (left or right) on its origin row to its destination column, then up or
down on that column to the packet’s destination.

We assume that a switch can receive up to four packets per step, one
from each incoming edge, and send four packets per step, one through each
outgoing edge. A switch maintains a buffer for each outgoing edge. When
there is a space in a buffer the switch receives packets to that buffer according
to the following rule: Except for special steps, packets that have to travel
farthest have the highest priority. There will be a special step every 10Kn
steps, where K is a sufficiently large constant (K > 2e® will do). In such a
step, priority is given to age, oldest first. Packets of the same age are dealt
with in lexicographic order of pair (origin,destination).

The algorithm uses a token based admission control mechanism similar
to that in the previous two sections, with one packet per input i.e. m = 1.
Let t; be the last time a given token was sent with a packet, and let ¢, be the
last time it returns to its input node. If ¢, —t, < Kn then the token becomes
enabled again at time t; + Kn 4+ Z, where Z is a random number chosen
uniformly from [0, Kn|. If ¢, —t; > Kn then the token mode is switched to
suspended mode until time ¢, + 3n2S + Z steps, then it is switched again to
enabled mode, where S is defined in Lemma 6.1 below and Z is chosen as
above.

We use a separate network to route tokens back to their sources and the
routing mirrors that of the main network.

This flow mechanism guarantees that an input cannot inject more than
one packet within each interval of Kn steps. Furthermore, the probability
that a token becomes enabled at any fixed time is at most 1/(Kn).

Lemma 6.1 Under this protocol no packet takes more than S = 100KnS®
steps to reach its destination once it has become active.

Proof: Consider a packet P. Let P, be its predecessor in the queue. P, does
not leave the queue until it has an enabled token. At that time there are
no more than n? other packets in the network. Consider the progress of the
highest priority old packet II in the network. If II is moving along a column
then it moves at every special time step. If it is moving along a row, then
it could fail to move because further along that row there is contention for
a column buffer at that special time step. II waits at most Kn + n? special
steps before making another move. This is because the packet waiting to
move along the column in question will be the oldest packet trying to get
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into the column edge buffer. Thus after Kn + Kn? + n? special steps II will
have reached its destination column and will reach its final destination within
a further n special steps. So after at most Kn® + Kn* + n5 special steps, B,
will be the highest priority packet in the network and will be delivered within
a further Kn + Kn? + n? special steps. Thus P, gets to its destination at
most Kn+ Kn?+ (K +1)n®+ Kn* +n5 < 2n’ special steps after leaving the
queue. The used token comes back after at most another 2n® special steps
and after at most 2Kn steps is re-activated. Finally, after at most another
2n° special steps the packet P is delivered. The sum of these delays is less
than 100Kn5. O

Next we turn to the definition of the event £.. Our analysis is based on
the the technique in [7] as described in [8] [Sect. 1.7.2]. As in [7] we relate
the execution of the algorithm to an artificial execution on a wide-channel
model in which an arbitrary number of packets can traverse an edge at any
step, and no packet is ever delayed. We assume that the execution on the
wide-channel starts at time 7.

Let o and g be constants to be defined later, let

do = (o +3)logn +log(4K) +1 .

This serves as a suitable high probability upper bound on the delay of any
given packet. We now define the events &£, as the union of the following
events:

1. There is a row edge e (in the network that routes the packets), a ¢ > 0,
and an interval [tg, to +t+do) C [, 7+ Kn, such that at least ¢ +dy—1
packets traverse edge e in that interval in the wide-channel model.

2. There is a column edge e (in the network that routes the packets), a
t > 0, and an interval [to, tq + ¢ + 2dg] C [1, 7 + Kn], such that at least
t + do — 1 packets traverse edge e in that interval in the wide-channel
model.

3. A routing buffer (in the network that routes the packets) has ¢ packets
in some step in the interval [1,7 + Kn].

4. There is a row edge e (in the mirror network that routes the tokens), a
t > 0, and an interval [tg,to + ¢t + dp] C [7,7 + Kn], such that at least
t + dy — 1 tokens traverse edge e in that interval in the wide-channel
model.
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5. There is a column edge e (in the mirror network that routes the tokens),
at > 0, and an interval [tg, o+t +2dp] C [1, 7+ Kn|, such that at least
t + dy — 1 tokens traverse edge e in that interval in the wide-channel
model.

6. A routing buffer (in the network that routes the tokens) has g tokens
in some step in the interval [1,7 + Kn].

We say that a packet was delayed d steps in traversing an edge if there is a
d step gap between the time it traverses the edge in the wide-channel model
and the time it traverses the edge in the standard model. Leighton’s analysis
in [7] is based on the following fact (see Corollary 1.9 and Lemma 1.10 in
[8]): If buffers are unbounded and the farthest to go packet always has the
highest priority, then a packet is delayed d steps in traversing a row edge e
only if there is an interval of ¢ + d steps such that ¢ + d packets cross edge e
in that interval in the wide-channel model.

This must be modified to account for the special steps. Then we can only
postulate that at least ¢ + d — [(t + d)/(10Kn)| packets cross e. Similarly,
if a packet is delayed d steps in crossing a column edge e then, assuming no
packet is delayed more than dy steps on a row, there is an interval of t+dy+d
steps in which at least ¢ +d — [(¢ + d)/(10Kn)]| packets cross edge e in the
wide-channel model (see [8] for a detailed proof). Thus we have the following
corollary that satisfies requirement (2.b) in the general theorem:

Corollary 6.1 The event =&, implies that any packet with an enabled token
at time T is delivered within the next 2n + 2dy < Kn steps.

Proof: Any packet with an enabled token is delivered within 2n steps in the
wide-channel model. In the standard model its additional delay is at most
2dy. O

It follows that if £, does not occur then any packet which is active at time 7
is delivered within 7' = 3Kn time steps.

We now bound the probability of the event £, given H,_s,25. Once we
have proved the equivalent of Lemma 4.2 we can make the same arguments
as in Corollary 4.1 and Lemma 4.3, with 75 = 7 — 2n2S. The effect of adding
Z is similar to that of waiting for a packet to arrive in the butterfly examples
i.e. it is outside the control of the adversary. We will argue next that for any
a > 0 there is a K = K(a) such that if 7 — 2Kn <t <7 — Kn then

PI‘((C,'T | Ht) = O(n_a)a (10)
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provided H; C &,.

For an edge e and an interval [t;,t5] C [7,7+ Kn| let (e, ty,t2,7) be the
event that in the wide-channel model r packets cross e during time interval
[t1,t2]. Note that every token is used at most once in the interval and its
destination can be treated as random.

Case 1: e is a row edge:

Pr(&y(e, t1,ta, 7)) < (:) (tzK_nh)T = (%)T

(The nodes on the row under consideration have a total of n tokens. Each
token is used at most once in the interval. Choose r of them to transport
the packets of interest. The probability that a token becomes enabled at any
fixed time is at most 1/(Kn).)

Case 2: e is a column edge:

Pr(&(e,t1,ta,7)) < (T) (tz}{:;l)T < (%)T

(There is a total of n? tokens. Each token is used at most once in the inter-
val. Choose r of them to transport the packets of interest. The probability
that a token becomes enabled at any fixed time is at most 1/(Kn) and the
probability that the token uses a particular column is 1/n.)

Thus the probability that there is a row edge e, a ¢ > 0, and an interval
[to,to +t + do] C [, 7+ Kn], such that ¢+ dy packets traverse edge e in that
interval in the wide-channel model is bounded by

dO +t) do+t—1 e do—1 B
2Kn? Y (S0 TY < 4Kn? (-) <ne
nZ(do—i—t—l)K) =52Mk) ="

t>0

for K > €®. (There are Kn possible values for t5 and < 2n? edges.)

Similarly the probability that there is a column edge e, a ¢ > 0, and an
interval [tg,to +t + 2dg] C [, 7 + Kn], such that t + dy packets traverse edge
e in that interval in the wide-channel model is bounded by

2o +1) O 2\ do+t 2e\%-1
oKn3 Y (0T < 2Kn? (-) < AK ( ) <n-o
nZ(do—i—t—l)K) <263 (i "\x) ="

>0 >0

provided that K > 2€2.
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Remark 1 It follows (see [8, Sect. 1.7.2, Lemma 1.10]) that with probability
at least 1 — 2n~%, for every edge w and time interval I of dy steps, there is
a step in I in which w is empty.

Next we bound the probability that any buffer is full in the interval [r, 7+
Kn). From Remark 1 we can assume that some row edge has ¢ packets in
its buffer only if there is a window of dy steps in which some input tries to
inject at least ¢ packets. The probability of this is at most

do 1\
o (8) (&) o0
n (q) on (n™%)
for sufficiently large q.

From Remark 1 we can further assume that a column edge has g packets
in its buffer only if there is a window of dy steps in which ¢ packets turn at
e, Assuming no row delay of dy or more, the probability of this is bounded

by
w0 (34 <o

for sufficiently large g (see [8, Sect. 1.7.2, Theorem 1.13]). (The factor Kn?
bounds the number of (interval I = [t1,%5], edge e) pairs. There are (2)
choices of token. There is a probability 1/n that its destination uses e.
There is a probability of at most 2dy/(Kn) that it becomes enabled at a

time which means it would cross e during [t; — dg, t2] in the wide-channel
model.)

This completes the proof of (10).

Taking T' = 3Kn, m =1, a = b = 9, a = 50 and applying Theorem 2.1
we obtain

Theorem 6.1 There is a constant C, such that the above algorithm is stable
for any injection rate with expected inter-arrival time greater than Cn. The
expected time a packet spends in the network is O(n). In the case of geometric
inter-arrival time the expected time a packet spends in the system is O(n).
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7. Adversarial model

In order to avoid probabilistic assumptions on the input, Borodin et al. [1]
defined the adversarial input model. Instead of probabilistic assumptions,
restrictions are placed on the amount of required traffic through each edge.
More precisely, for an edge e of the network and a time interval I we let 0(e, I)
denote the number of messages arriving during interval I whose input-output
path contains e. An adversary has injection rate « if for all e and I:

O(e, I) < all (11)

where |I| is the length of I.
Surprisingly, the main results of this paper can be extended to this model.

7.1 Butterfly with constant injection rate a and bounded
buffers

We will show how to extend the result of Section 3 to the adversarial model.
We assume that (11) holds for some (sufficiently small) a > 0.

When a packet arrives it now adds a random offset between 1 and clogn to
its wave number. We route packets in the way previously described. The only
issue is the likelihood of a long delay sequence. As described previously, we
have a set of buffers s;, j € J and a set of wave numbers W = [w, w+ Alogn).
For each buffer we have a wave number w; € W, where w;;; < w; and there
is a set P; of packets which want to use this edge. Let F; be the event: there
exists a choice II; € P; such that

(i) II; has wave number w; and

(ii) HJ € {Hl, Hz, ce ey Hj—l}-
Our assumptions about input rate imply that Pr(F;) < 8 = a(c+A)/c < 1.
More importantly, we have

PI‘(J:J' | .7:1,.7:2, - ,.7:]'_1) S ,8 (12)

Condition on the occurrence of Fi,Fs, ..., Fj1, let P/ = P; \ {Ily,1Iy,.. .,
II;_1} be the current set of choices for II;. The choice of wave number
offset by packets is done independently and so the probability of F; does not
increase. Inequality (12) is enough to prove the unlikelihood of long delay
sequences. The event £, can be defined in the same way as before. Thus we
prove the following theorem:
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Theorem 7.1 There is a constant o > 0, such that for any adversary with
injection rate o the system is stable, and the expected time a packet spends
in the system is O(logn).

7.2 Butterfly with O(1/logn) injection rate and bounded
buffers

Let II be the first packet that takes time D + logn to reach its destination
after becoming active at time ¢. From [9] we know that the delay tree of II is
hit at least D times. We need only consider hits from messages in the time
interval [t — D —logn,t + D + logn|. By assumption there are at most

((2D+2logn+1)a) (D )
— + logn
logn q

such hits. So if D = Alogn and

2A + 1) (% + 1) <A, (13)

then II cannot be delayed by more than D. Now for small o and large g,
A = 3« satisfies (13) and we conclude that every packet is delivered in time
(1+ 3a)logn.

7.3 Butterfly with constant injection rate a and buffers
of size O(logn)

In this case we will have to use our stability theorem (Theorem 2.1). Putting

p = 2a we know that in time interval of length |7, 7 + K log n|, no more than

2aK logn packets will arrive at any input. Also, the existence of a delay

sequence depends only on the priority calculation, since we are guaranteed

that no edge sees more than aK logn packets in the interval (removing the
necessity to prove Theorem 3.2.5 of [8].

7.4 Mesh with injection rate a/n,a < 1/2 and bounded
buffers

This case is straightforward. The assumption (11) implies that in the wide-
channel model, fewer packets cross an edge e than are required for the first
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two possibilities of event &, assuming dy > 1/(1 — 2a). We can take g = dy
since for every edge e we can argue that in any interval of d; steps there is a
step in which e is empty.
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