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Abstract

This paper proposes a method for improving the per-
formance of web servers servicing static HTTP re-
quests. The idea is to give preference to those requests
which are short, or have small remaining processing
requirements, in accordance with the SRPT (Shortest
Remaining Processing Time) scheduling policy.

The implementation is at the kernel level and in-
volves controlling the order in which socket buffers
are drained into the network.

Experiments are executed both in a LAN and a
WAN environment. We use the Linux operating sys-
tem and the Apache web server.

Results indicate that SRPT-based scheduling of
connections yields significant reductions in delay at
the web server. These result in a substantial reduction
in mean response time, mean slowdown, and variance
in response time for both the LAN and WAN environ-
ments.

Significantly, and counter to intuition, the large re-
quests are only negligibly penalized or not at all pe-
nalized as a result of SRPT-based scheduling.

1 Introduction

A client accessing a busy web server can expect a long
wait. This delay is comprised of several components:
the propagation delay and transmission delay on the
path between the client and the server; delays due to
queueing at routers; delays caused by TCP due to loss,
congestion, and slow start; and finally the delay at the
server itself. The aggregate of these delays, i.e. the
time from when the client makes a request until the
entire file arrives is defined to be the response time of
the request.

In this paper we focus on what we can do to im-
prove the delay at the server. Research has shown that
in situations where the server is receiving a high rate
of requests, the delays at the server make up a signif-
icant portion of the response time [8], [7], [28]. More
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specifically, [8], [7] find that even if the network load
is high, the delays at a busy web server can be respon-
sible for more than 80% of the overall response time
of a small file, and for 50% of the overall response
time of a medium size file.

Measurements [27] suggest that the request stream
at most web servers is dominated by static requests, of
the form “Get me a file.” The question of how to ser-
vice static requests quickly is the focus of many com-
panies e.g., Akamai Technologies, and much ongoing
research. This paper will focus on static requests only.

Our idea is simple. For static requests, the size of
the request (i.e. the time required to service the re-
quest) is well-approximated by the size of the file,
which is well-known to the server. Thus far, almost
no companies or researchers have made use of this
information. Traditionally, requests at a web server
are scheduled independently of their size. The re-
quests are time-shared, with each request receiving
a fair share of the web server resources. We call
this FAIR scheduling. We propose, instead, unfair
scheduling, in which priority is given to short re-
quests, or those requests which have short remain-
ing time, in accordance with the well-known schedul-
ing algorithm Shortest-Remaining-Processing-Time-
first (SRPT). The expectation is that using SRPT
scheduling of requests at the server will reduce the
queueing time at the server.

Although it is well-known from queueing theory
that SRPT scheduling minimizes queueing time, [36],
applications have shied away from using this policy
for fear that SRPT “starves” big requests [10, 38, 39,
37]. This intuition is usually true. However, we have
a new theoretical paper, [30], which proves that in the
case of (heavy-tailed) web workloads, this intuition
falls apart. In particular, for heavy-tailed workloads,
even the largest requests are either not penalized at all,
or negligibly penalized by SRPT scheduling (see Sec-
tion 6 for more details). These new theoretical results
have motivated us to reconsider “unfair” scheduling.

It’s not immediately clear what SRPT means in the
context of a web server. A web server is not a single-
resource system. It is not obvious which of the web
server’s resources need to be scheduled. As one would
expect, it turns out that scheduling is only important
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at the bottleneck resource. Frequently this bottleneck
resource is the bandwidth on the access link out of the
web server. “On a site consisting primarily of static
content, network bandwidth is the most likely source
of a performance bottleneck. Even a fairly modest
server can completely saturate a T3 connection or
100Mbps Fast Ethernet connection.”[25] (also corrob-
orated by [13], [4]). There’s another reason why the
bottleneck resource tends to be the bandwidth on the
access link out of the web site: Access links to web
sites (T3, OC3, etc.) cost thousands of dollars per
month, whereas CPU is cheap in comparison. Like-
wise disk utilization remains low since most files end
up in the cache. It is important to note that although
we concentrate on the case where the network band-
width is the bottleneck resource, all the ideas in this
paper can also be applied to the case where the CPU
is the bottleneck — in which case SRPT scheduling is
applied to the CPU.

Since the network is the bottleneck resource, we
try to apply the SRPT idea at the level of the net-
work. Our idea is to control the order in which the
server’s socket buffers are drained. Recall that for
each (non-persistent) request a connection is estab-
lished between the client and the web server, and
corresponding to each connection, there is a socket
buffer on the web server end into which the web server
writes the contents of the requested file. Tradition-
ally, the different socket buffers are drained in Round-
Robin Order, each getting a fair share of the band-
width of the outgoing link. We instead propose to give
priority to those sockets corresponding to connections
for small file requests or where the remaining data re-
quired by the request is small. Throughout, we use the
Linux OS.

Each experiment is repeated in two ways:

� Under standard Linux (fair-share draining of
socket buffers) with an unmodified web server.
We call this FAIR scheduling.

� Under modified Linux (SRPT-based draining of
socket buffers) with the web server modified
only to update socket priorities. We call this
SRPT-based scheduling.

Experiments are executed first in a LAN, so as to
isolate the reduction in queueing time at the server.
Response time in a LAN is dominated by queueing
delay at the server and TCP effects. Experiments are
next repeated in a WAN environment. The WAN al-
lows us to incorporate the effects of propagation de-
lay, network loss, and congestion in understanding the
full client experience. Response time in a WAN en-

vironment represents all these factors, in addition to
delay at the server.

In the LAN setting, we experiment with two dif-
ferent web servers: the common Apache server [20],
and the Flash web server [33] which is known for
speed. Our clients use a request sequence taken from
a web trace. All experiments are also repeated using
requests generated by a web workload generator (See
Section 4.1.2). This request sequence is controlled so
that the same experiment can be repeated at many dif-
ferent server loads. The server load is the load at the
bottleneck device – in this case the network link out of
the web server. The load thus represents the fraction
of bandwidth used on the network link out of the web
server.

For lack of space, we only include the Apache re-
sults in this abstract; the Flash results, which are sim-
ilar, are in the associated technical report [31].

We obtain the following results in a LAN:

� SRPT-based scheduling decreases mean re-
sponse time in a LAN by a factor of 3 – 8 for
loads greater than

� � �
under Apache.

� SRPT-based scheduling helps small requests a
lot, while negligibly penalizing large requests.
Under a load of

� � �
,

� � �
of the requests improve

by a factor of 10 under SRPT-based scheduling.
Only the largest

� � � �
of requests suffer an in-

crease in mean response time under SRPT-based
scheduling (by a factor of only 1.2).

� The variance in the response time for most re-
quests under SRPT is far lower for all requests,
in fact two orders of magnitude lower for most
requests.

� SRPT (as compared with FAIR) does not have
any effect on the network throughput or the CPU
utilization.

Next we consider a WAN environment, consist-
ing of 6 client machines at various locations within
the U.S., feeding 1 sever. For the WAN, we use the
Apache web server and again run at different loads.

We obtain the following results in a WAN:

� The improvement in mean response time of
SRPT over FAIR under a server load of

� � �

ranged from a factor of 8 (for clients with a
Round-trip-time of 100 ms) to a factor of 20 (for
clients with an RTT of 20ms). On the other hand
there was hardly any improvement in SRPT over
FAIR for a server load of

� � �
.
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� The improvement of SRPT over FAIR in a WAN
can actually be greater than in a LAN, for the
case of high load at the server.

� Unfairness to large requests is nonexistent in a
WAN setting. All request sizes have higher mean
response time under FAIR in a WAN environ-
ment. We provide theoretical justification for this
highly counter-intuitive result in Section 6.

The poor performance of FAIR scheduling through-
out encourages us to consider several enhancements
to FAIR involving modifications to the Linux kernel.
Some of these modifications have been suggested by
previous literature and some are new. We find that
while some enhancements help somewhat, the don’t
improve the performance of FAIR to anywhere near
the performance of SRPT, in either the LAN setting
or the WAN setting.

It is important to realize that this paper is a pro-
totype to illustrate the power of using SRPT-based
scheduling. In Section 8, we elaborate on broader
applications of SRPT-based scheduling, including its
application to other resources, and to non-static re-
quests. We also discuss SRPT applied to web server
farms and Internet routers.

2 Previous Work

There has been much literature devoted to improving
the response time of web requests. Some of this lit-
erature focuses on reducing network latency, e.g. by
caching requests ([21], [12], [11]) or improving the
HTTP protocol ([19], [32]). Other literature works
on reducing the delays at a server, e.g. by building
more efficient HTTP servers ([20], [33]) or improving
the server’s OS ([18], [5], [26], [29]). Recent studies
show that delays at the server make up a significant
portion of the response time [8], [7]. Our work fo-
cuses on reducing delay at the server by using size-
based connection scheduling.

In the remainder of this section we discuss only
work on priority-based or size-based scheduling of re-
quests. We first discuss related implementation work
and then discuss relevant theoretical results.

Almeida et. al. [1] use both a user-level ap-
proach and a kernel-level implementation to prioritiz-
ing HTTP requests at a web server. In their exper-
iments, the high-priority requests only benefit by up
to

� � �
and the low priority requests suffer by up to

� � � �
.

Another attempt at priority scheduling of HTTP re-
quests is more closely related to our own because it
too deals with SRPT scheduling at web servers [15].

The authors experiment with connection scheduling at
the application level only. Via the experimental web
server, the authors are able to improve mean response
time by a factor of close to 4, but the improvement
comes at a price: a drop in throughput by a factor of
almost 2.

The papers above offer coarser-grained implemen-
tations for priority scheduling of connections. Very
recently, many operating system enhancements have
appeared which allow for finer-grained implementa-
tions of priority scheduling [22, 34, 3, 2].

Several papers have considered the idea of SRPT
scheduling in theory.

Bender et. al. [10] consider size-based scheduling
in web servers. The authors reject the idea of using
SRPT scheduling because they prove that SRPT will
cause large files to have an arbitrarily high max slow-
down. However, that paper assumes a worst-case ad-
versarial arrival sequence of web requests. The paper
goes on to propose other algorithms, including a theo-
retical algorithm which does well with respect to max
slowdown and mean slowdown.

Roberts and Massoulie [35] consider bandwidth
sharing on a link. They suggest that SRPT scheduling
may be beneficial in the case of heavy-tailed (Pareto)
flow sizes.

The primary theoretical motivation for this paper,
comes from our own paper, [30] which will be dis-
cussed in Section 6.

3 Implementation of SRPT

In Section 3.1 we explain how socket draining works
in standard Linux. In Section 3.2 we describe how to
achieve priority queueing in Linux versions 2.2 and
above. One problem with size-based queueing is that
for small requests, a large portion of the time to ser-
vice the request is spent before the size of the request
is even known. Section 3.2.1 describes our solution to
this problem. Section 3.3 describes the implementa-
tion end at the web server and also deals with the algo-
rithmic issues such as choosing good priority classes
and setting and updating priorities.

3.1 Default Linux configuration

Figure 1 shows data flow in standard Linux.
There is a socket buffer corresponding to each con-

nection. Data streaming into each socket buffer is en-
capsulated into packets which obtain TCP headers and
IP headers. Throughout this processing, the packet
streams corresponding to each connection is kept sep-
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Figure 1: Data flow in Standard Linux. The important thing to observe is that there is a single priority queue
into which all connections drain fairly.

arate. Finally, there is a single
�

“priority queue”
(transmit queue), into which all streams feed. In the
abstract, these flows take equal turns feeding into the
priority queue. Although the Linux kernel does not
explicitly enforce fairness, we find that in practice,
TCP governs the flows so that they share fairly on
short time scales.

This single “priority queue,” can get as long as 100
packets. Packets leaving this queue drain into a short
Ethernet card queue and out to the network.

3.2 How to achieve priority queueing in
Linux

To implement SRPT we need more priority levels.
Fortunately, it is relatively easy to achieve up to 16
priority queues (bands), as follows:

First, we build the Linux kernel with support for the
user/kernel Netlink Socket, QOS and Fair Queueing,
and the Prio Pseudoscheduler. Then we use the tc[3]
user space tool to switch the device queue from the
default 3-band queue to the 16-band prio queue. Fur-
ther information about the support for differentiated
services and various queueing policies in Linux can
be found in [22, 34, 3, 2].

Figure 2 shows the flow of data in Linux after the
above modification: The processing is the same until
the packets reach the priority queue. Instead of a sin-
gle priority queue (transmit queue), there are 16 pri-
ority queues. These are called bands and they range
in number from 0 to 15, where band 15 has lowest
priority and band 0 has highest priority. All the con-
nections of priority

�
feed fairly into the

�
th priority

queue. The priority queues then feed in a prioritized
fashion into the Ethernet Card queue. Priority queue�

is only allowed to flow if priority queues
�

through
�
The queue actually consists of 3 priority queues, a.k.a. bands.

By default, however, all packets are queued to the same band.

��� �
are all empty.

Besides the above modifications to Linux, there is
another fix required to make priority queueing effec-
tive.

3.2.1 An additional fix – Priority to SYNACKs

An important component of the response time is the
connection startup time. In SRPT scheduling, we are
careful to separate the small requests from the large
ones. However during connection startup, we don’t
yet know whether the request will be large or small.
The packets sent during the connection startup might
therefore end up waiting in long queues, making con-
nection startup very costly. For short requests, a long
startup time is especially detrimental to response time.
It is therefore important that the SYNACK be isolated
from other traffic. Linux sends SYNACKs, to priority
band 0. It is important that when assigning priority
bands to requests that we:

1. Never assign any sockets to priority band 0.

2. Make all priority band assignments to bands of
lower priority than band 0, so that SYNACKs al-
ways have highest priority.

Observe that giving highest priority to the
SYNACKs does not negatively impact the perfor-
mance of requests since the SYNACKs themselves
make up only a negligible fraction of the total load.
Another benefit of giving high priority to SYNACKs
is that it reduces their loss probability, which we’ll see
is sometimes helpful as well.

3.3 Modifications to web server and al-
gorithmic issues in approximating
SRPT

The Linux kernel provides mechanisms for prioritized
queueing. In our implementation, the Apache web
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Figure 2: Flow of data in Linux with priority queueing. It is important to observe that there are several priority
queues, and queue

�
is serviced only if all of queues

�
through

� � �
are empty.

server uses these mechanisms to implement the SRPT-
based scheduling policy. Specifically, after determin-
ing the size of a request, Apache sets the priority of
the corresponding socket by calling setsockopt.
As Apache sends the file, the remaining size of the
request decreases. When the remaining size falls
below the threshold for the current priority class,
Apache updates the socket priority with another call
to setsockopt.

3.3.1 Implementation Design Choices

Our implementation places the responsibility for pri-
oritizing connections on the web server code. There
are two potential problems with this approach. These
are the overhead of the system calls to modify priori-
ties, and the need to modify server code.

The issue of system call overhead is mitigated by
the limited number of setsockopt calls which
must be made. In the worst case, we make as many
setsockopt calls as there are priority classes (6 in
our experiments).

The modifications to the server code are minimal.
Based on our experience, a programmer familiar with
a web server should be able to make the necessary
modifications in just a couple of hours.

A clean way to handle the changing of priorities
totally within the kernel would be to enhance the
sendfile system call to set priorities based on the
remaining file size. We do not pursue this approach
here as neither Apache nor Flash uses sendfile.

3.3.2 Size cutoffs

SRPT assumes infinite precision in ranking the re-
maining processing requirements of requests. In prac-
tice, we are limited to a small fixed number of prior-
ity bands (16). We have some rules-of-thumb for par-
titioning the requests into priority classes which ap-
ply to the heavy-tailed web workloads. The reader
not familiar with heavy-tailed workloads will benefit

by first reading Section 6. Denoting the cutoffs by
� ��� ��� � � � � � � � :

� The lowest size cutoff � � should be such that
about 50% of requests have size smaller than � � .
The requests comprise so little total load in a
heavy-tailed distribution that there’s no point in
separating them.

� The highest cutoff ��� needs to be low enough
that the largest (approx.) .5% – 1% of the re-
quests have size � � � . This is necessary to pre-
vent the largest requests from starving.

� The middle cutoffs are far less important. Any-
thing remotely close to a logarithmic spacing
works well.

In the experiments throughout this paper, we use
only 6 priority classes to approximate SRPT. Using
more improved performance only slightly.

3.3.3 The final algorithm

Our SRPT-like algorithm is thus as follows:

1. When a request arrives, it is given a socket with
priority 0 (highest priority). This is an important
detail which allows SYNACKs to travel quickly.
This was explained in Section 3.2.1.

2. After the request size is determined (by looking
at the URL of the file requested), the priority of
the socket corresponding to the request is reset
based on the size of the request, as shown in the
table below.
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Priority Size (Kbytes)
0 (highest) -

1
�

1K
2 1K - 2K
3 2K - 5K
4 5K-20K
5 20K - 50K

6 (lowest) � 50K

3. As the remaining size of the request diminishes,
the priority of the socket is dynamically updated
to reflect the remaining size of the request.

4 LAN setup and experimental
results

In Section 4.1 we describe the experimental setup and
workload for the LAN experiments. Section 4.2 illus-
trates the results of the LAN experiments. Section 4.3
proposes some enhancements to improve the perfor-
mance of FAIR scheduling and describes the results of
these enhancements. Lastly Section 4.2.1 illustrates
a simplification of the SRPT idea which still yields
quite good performance.

4.1 Experimental Setup (LAN)

4.1.1 Architecture

Our experimental architecture involves two machines
each with an Intel Pentium III 700 MHz processor and
256 MB RAM, running Linux 2.2.16, and connected
by a 10Mb/sec full-duplex Ethernet connection. The
Apache web server is running on one of the machines.
The other machine hosts the clients which send re-
quests to the web server.

4.1.2 Workload

The clients’ requests are generated either via a web
workload generator (we use a modification of Surge
[9]) or via traces. Throughout this paper, all results
shown are for a trace-based workload. We have in-
cluded in the associated technical report [31] the same
set of results for the Surge workload.

4.1.3 Traces

The trace-based workload consists of a 1-day trace
from the Soccer World Cup 1998, from the Internet
Traffic Archive [23]. The 1-day trace contains 4.5 mil-
lion HTTP requests, virtually all of which are static.

An entry in the trace includes: (1) the time the re-
quest was received at the server, (2) the size of the
request in bytes, (3) the GET line of the request, (4)
the error code, as well as other information. In our
experiments, we use the trace to specify the time the
client makes the request and the size in bytes of the
request.

The entire 1 day trace contains requests for approx-
imately 5000 different files. Given the mean file size
of 5K, it is clear why all files fit within main memory.
This explains why disk is not a bottleneck.

Each experiment was run using a busy hour of the
trace (10:00 a.m. to 11:00 a.m.). This hour consisted
of about 1 million requests, during which over a thou-
sand files are requested.

Some additional statistics about our trace workload:
The minimum size file requested is a 41 byte file.
The maximum size file requested is about 2 MB. The
distribution of the file sizes requested fits a heavy-
tailed truncated Pareto distribution (with � -parameter
� � � �

). The largest ��� �
of the requests make up

� � � �
of the total load, exhibiting a strong heavy-

tailed property.
� � �

of files have size less than 1K
bytes.

� � �
of files have size less than 9.3K bytes.

4.1.4 Generating requests at client machines

In our experiments, we use sclient [6] for creat-
ing connections at the client machines. The original
version of sclient makes requests for a certain file
in periodic intervals. We modify sclient to read in
traces and make the requests according to the arrival
times and file names given in the trace.

To create a particular load, we simply scale the in-
terarrival times in the trace’s request sequence. The
scaling factor for the interarrival times is derived both
analytically and empirically.

4.1.5 Performance Metrics

For each experiment, we evaluate the following per-
formance metrics:

� Mean response time. The response time of a re-
quest is the time from when the client submits
the request until the client receives the last byte
of the request.

� Mean slowdown. The slowdown metric attempts
to capture the idea that clients are willing to tol-
erate long response times for large file requests
and yet expect short response times for short re-
quests. The slowdown of a request is therefore
its response time divided by the time it would
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require if it were the sole request in the sys-
tem. Slowdown is also commonly known as nor-
malized response time and has been widely used
[10, 35, 17, 24].

� Mean response time as a function of request size.
This will indicate whether big requests are being
treated unfairly under SRPT as compared with
FAIR-share scheduling.

4.2 Main Experimental results (LAN)

Before presenting the results of our experiments, we
make some important comments.

� In all of our experiments the network was the
bottleneck resource. CPU utilization during our
experiments ranged from

� �
in the case of low

load to
� �

in the case of high load.

� The measured throughput and bandwidth utiliza-
tion under the experiments with SRPT schedul-
ing is identical to that under the same experi-
ments with FAIR scheduling. The same exact
set of requests complete under SRPT scheduling
and under FAIR scheduling.

� There is no additional CPU overhead involved
in SRPT scheduling as compared with FAIR
scheduling. Recall that the overhead due to up-
dating priorities of sockets is insignificant, given
the small number of priority classes that we use.

Figure 3 shows the mean response time under
SRPT scheduling as compared with the traditional
FAIR scheduling as a function of load. For lower
loads the mean response times are similar under the
two scheduling policies. However for loads � � � �

,
the mean response time is a factor of 3 – 8 lower un-
der SRPT scheduling. These results are in agreement
with our theoretical predictions in [30].

The results are even more dramatic for mean slow-
down. For loads 0.5, the mean slowdown improves by
a factor of 4 under SRPT over FAIR. Under a load of� � �

, mean slowdown improves by a factor of 16.
The important question is whether the significant

improvements in mean response time come at the
price of significant unfairness to large requests. Fig-
ure 4 shows the mean response time as a function of
request size, in the case where the load is

� � �
,

� � �
,

and
� � �

. In the left column of Figure 4, request sizes
have been grouped into 60 bins, and the mean re-
sponse time for each bin is shown in the graph. The 60
bins are determined so that each bin spans an interval� ��� � � � � � . It is important to note that the last bin ac-
tually contains only requests for the very biggest file.
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Figure 3: Mean response time under SRPT versus
FAIR as a function of system load, under trace-based
workload, in LAN environment.

Observe that small requests perform far better under
SRPT scheduling as compared with FAIR schedul-
ing, while large requests, those � 1 MB, perform
only negligibly worse under SRPT as compared with
FAIR scheduling. For example, under load of

� � �
(see

Figure 4(b)) SRPT scheduling improves the mean re-
sponse times of small requests by a factor of close to� �

, while the mean response time for the largest size
request only goes up by a factor of

� � �
.

Note that the above plots give equal emphasis to
small and large files. As requests for small files are
much more frequent, these plots are not a good mea-
sure of the improvement offered by SRPT. To fairly
assess the improvement, the right column of Figure 4,
presents the mean response time as a function of the
percentile of the request size distribution, in incre-
ments of half of one percent (i.e. 200 percentile buck-
ets). From this graph, it is clear that at least

� � � � �
of

the requests benefit under SRPT scheduling. In fact,
the

� � �
smallest requests benefit by a factor of

� �
,

and all requests outside of the top
� �

benefit by a fac-
tor of � �

. For lower loads, the difference in mean
response time between SRPT and FAIR scheduling
decreases, and the unfairness to big requests becomes
practically nonexistent. For higher loads, the differ-
ence in mean response time between SRPT and FAIR
scheduling becomes greater, and the unfairness to big
requests also increases. Even for the highest load
tested though (.95), there are only 500 requests (out
of the 1 million requests) which complete later un-
der SRPT as compared with FAIR. These requests are
so large however, that the effect on their slowdown is
negligible.
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Figure 4: Mean response time as a function of request size under trace-based workload, shown for a range of
system loads, in a LAN. The left column shows the mean response time as a function of request size. The right
column shows the mean response time as a function of the percentile of the request size distribution.
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Figure 5: Variance in response time as a function of
the percentile of the request size distribution for SRPT
as compared with FAIR, under trace-based workload
with load =

� � �
, in a LAN.

Figure 5 shows the variance in response time for
each request size as a function of the percentile of
the request size distribution, for load equal to

� � �
.

The improvement under SRPT with respect to vari-
ance in response time is 2 – 4 orders of magni-
tude for the

� � � � �
smallest files. The improvement

with respect to the squared coefficient of variation
(variance

�
mean

�
) is about 30.

4.2.1 Parameter Sensitivity in SRPT (LAN)

To evaluate the importance of choosing precise cut-
offs, we evaluate SRPT with only two priority classes.
We define small requests as the smallest 50% of re-
quests and large requests as the largest 50% of re-
quests (note, this is not the same thing as equalizing
load) The cutoff falls at 1K. We find that this simple
algorithm results in a factor of

� � �
improvement in

mean response time and a factor of 5 improvement in
mean slowdown over FAIR.

4.3 Enhancements to FAIR (LAN)

At this point it is natural to wonder why the FAIR
policy performs so poorly. The obvious reason is that
the time-sharing behavior of FAIR causes all requests
to be delayed, which leads to high response times and
high numbers of requests in the system. By contrast,
SRPT works to minimize the number of requests in
the system, and thus the mean response time as well.

Despite the above argument, one can’t help but

wonder whether Linux or Apache/Flash itself is caus-
ing FAIR to perform especially badly.

To answer this question, we instrumented the web
server’s kernel to provide statistics including: the oc-
cupancy of the SYN and ACK (listen) queues, the
number of incoming SYNs dropped due to the SYN
queue being full, the number of times a client’s ac-
knowledgement of a SYNACK was discarded due to
the ACK queue being full, and the number of outgo-
ing SYNACKs dropped inside the kernel.

Under the newly instrumented kernel, we reran all
the LAN experiments. Below we discuss our findings
just for the case of load

� � �
. For this case the response

time was 452ms under FAIR and 38ms under SRPT.
Our measurements indicate that under FAIR, a signif-
icant fraction (5%-10%) of connections suffered long
delays due to loss at the server. Under SRPT, this ef-
fect is virtually non-existent.

Effect of length of transmit queue

Consider Figure 1 which shows flow of control in
standard Linux (FAIR). Observe that all socket buffers
drain into the same single priority queue. This queue
may grow long. Now consider the effect on a new
short request. Since every request has to wait in the
priority queue, which may be long, the short request
typically incurs a cost of close to 120 ms just for wait-
ing in this queue (assuming high load). This is a very
high startup penalty, considering that the service time
for a short request should really only be about 10-20
ms.

In our first experiment, we shortened the length of
the transmit queue. This resulted in an increase in
mean response time — from 452ms to 629ms under
FAIR. The problem is that by shortening the length of
the transmit queue, we increase the loss.

We next tried to lengthen the transmit queue, in-
creasing it from 100 to 500, and then to 700. This
helped a little — reducing mean response time from
452ms to 342ms. The reason was a reduction in loss.
Still, performance was nowhere near that of SRPT –
38ms.

Effect of length of SYN and ACK queues

We observe that in the LAN experiments neither the
SYN queue nor the ACK queue ever fills to capacity.
Therefore increasing its length has no effect.

Effect of giving priority to SYNACKs

Recall in Section 3.2.1 we showed that giving priority
to SYNACKs was an important component of imple-
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menting SRPT. We therefore decided to try the same
idea for FAIR. We found that when SYNACKs were
given priority the mean response time dropped from
452ms to only 265ms – a decent improvement, but
still nowhere close to the performance of SRPT.

Lastly we combined all 3 enhancements to FAIR.
The performance remained at 265ms for FAIR.

5 WAN setup and Experimental
Results

In Section 5.1 we describe the setup for the WAN ex-
periments. In Section 5.2 we describe the results of
the WAN experiments. In Section 5.3 we consider the
effect of several enhancements to FAIR scheduling in
the WAN environment.

5.1 Experimental setup (WAN)

We use the same server machine as for the LAN ex-
periment. This time we have 6 client machines located
throughout the Internet. The clients generate the re-
quests in the same way as before based on a trace.
Again each experiment again spans 1 hour (about 1
million requests).

The clients are located at various distances from the
server (indicated by round trip times, RTT) and have
varying available bandwidth, as shown in the table be-
low.

Location Avg. RTT Avail. Bndwth
IBM, New York 20ms 8Mbps
Univ. Berkeley 55ms 3Mbps

UK 90-100ms 1Mbps
Univ. Virginia 25ms 2Mbps

Univ. Michigan 20ms 5Mbps
Boston Univ. 22ms 1Mbps

5.2 Experimental results for the WAN
setup

Figure 6 shows the mean response time (in ms) as a
function of load for each of the six hosts. This figure
show that the improvement in mean response time of
SRPT over FAIR is a factor of 8–20 for high load (0.9)
and only about 1.1 for lower load (0.5).

Figure 7(a) and 7(b) shows the mean response time
of a request as function of the percentile the request
size at a load of 0.8 for the hosts at IBM and UK re-
spectively. It’s not clear from looking at the figures
whether there is any starvation. It turns out that all
request sizes have higher mean response time under
FAIR, as compared with SRPT. For the largest file, the

mean response time is almost the same under SRPT
and FAIR.

We also measured the variance in response time
(graph omitted for lack of space) in the WAN environ-
ment for a load of

� � �
. While the variance for FAIR

stayed the same under the LAN and WAN environ-
ments, the variance for SRPT increased somewhat in
the WAN environment due to losses. Still, however,
the variance in response time under SRPT remains
over an order of magnitude below that in FAIR, for
a load of

� � �
.

We make the following observations:

Observation 1 The improvement of SRPT over FAIR
in mean response time is greater at higher loads.

For example in Figure 6 the mean response time for
the IBM host under SRPT improves over FAIR by a
factor of 20,3,1.5 and 1.1 at loads 0.9,0.8,0.7 and 0.5
respectively. Explanation: We already saw in a LAN
that under higher load, the difference between SRPT
and FAIR is higher. This is coupled with the fact that
at higher load the queueing delay at the server makes
up a larger component of response time.

Observation 2 The improvement of SRPT over FAIR
is less for far away clients.

For example in Figure 6, at load 0.8, the mean re-
sponse time for the IBM host (RTT 20ms) improves
by a factor of about 3 under SRPT over FAIR, whereas
there is only a factor 1.6 improvement for the far away
host at UK (RTT 90 ms). Explanation: The delays
caused by propagation and Internet congestion miti-
gate the effect of the queueing delay on total response
time.

Observation 3 The improvement of SRPT over FAIR
in a WAN environment can actually be greater than in
a LAN environment, for the case of high load at the
server.

For example in Figure 6 the mean response time for
the host at IBM is 2500 ms under FAIR scheduling,
vs. 125 ms under SRPT scheduling, hence about 20
times better. However, in the LAN setup the mean
response time improved by a factor of about 12 at load
0.9 (See Figure 3).

Explanation: This surprising observation is due to
effects not yet considered: loss, and the effect of loss
on TCP.

Observe that the mean response times under FAIR
are very high (at least 2500 ms) at load 0.9. This
suggests that some loss is occurring during the early
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Figure 6: Mean response time under SRPT versus FAIR in a WAN under load (a) 0.9, (b) 0.8, (c) 0.7, and (d) 0.5.
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parts of the connections (when the retransmit time-
out penalties are high). Our measurements show the
server under FAIR is in fact dropping about 7% of the
SYN – connection requests from the IBM client, as
compared with only 0.2% under SRPT.

The reason that SYNs are being dropped is that the
SYN queue (which stores SYNs at the server) under
FAIR is almost always full. For a SYN to be removed
from the SYN queue, requires that a SYNACK (ac-
knowledgement for the SYN) be sent by the server
and a final ACK received from the client. The prob-
lem is that the SYNACKs are delayed in leaving the
server under FAIR (they wait up to 120 ms in the
transmit queue), causing the SYN to sit in the SYN
queue an unduly long time.

Observation 4 The mean response times under SRPT
are close to optimal even under high loads.

For example, for the host at Berkeley (RTT 55ms),
the mean response times are 186, 209, 210 and 270
ms at loads 0.5,0.7,0.8 and 0.9 respectively under
SRPT scheduling. Observe that these are quite close
to 170ms, which is the optimal mean response time
(i.e. when the load at the server is close to 0) for this
host.

Observation 5 While the penalty of SRPT to large re-
quests is almost absent in the LAN setting (see Figure
4), we observe that it is even less of an issue in the
WAN environment.

As explained above now all request sizes have
higher mean response time under FAIR, as compared
with SRPT. Explanation: The reason is simply that
the propagation delay in the case of a WAN mitigates
the effect of the queueing delay (in particular the dif-
ference between the queueing delay under SRPT and
that under FAIR).

5.3 Enhancements to FAIR (WAN)

In Section 4.3 we considered several enhancements to
FAIR scheduling. For completeness, we again tried
these enhancements in the WAN setting. We find
that increasing the length of both the SYN and ACK
queues simultaneously improves upon the response
time of FAIR by almost a factor of 2. This corrob-
orates our explanation of Observation 3. Prioritizing
SYNACKs did not have significant effect. Increasing
the length of the transmit queue reduced performance.
Note that SRPT improves upon the performance of the
best FAIR configuration by a factor of 5-10 (depend-
ing on the client host) under load 0.9.

6 How can every request prefer
SRPT to FAIR in expectation?
Theoretical Explanation

It has been suspected by many that SRPT is a very
unfair scheduling policy for large requests. The above
results have shown that this suspicion is false for web
workloads. It is easy to see why SRPT should pro-
vide huge performance benefits for the small requests,
which get priority over all other requests. In this sec-
tion we describe briefly why the large requests also
benefit under SRPT, in the case of a heavy-tailed
workload.

In general a heavy-tailed distribution is one for
which ��� � � � ����� ��	�
��

where
� � � � �

. A set of request sizes following a
heavy-tailed distribution has some distinctive proper-
ties:

1. Infinite variance (and if �
� �

, infinite mean). In
practice there is a finite maximum request size,
which means that the moments are all finite, but
still quite high.

2. The property that a tiny fraction (usually � � �
)

of the very longest requests comprise over half of
the total load. We refer to this important property
as the heavy-tailed property.

The lower the parameter � , the more variable the dis-
tribution, and the more pronounced is the heavy-tailed
property, i.e. the smaller the fraction of long requests
that comprise half the load.

Request sizes are well-known to follow a heavy-
tailed distribution [14, 16]. Our traces also have
strong heavy-tailed properties. (In our trace the
largest � � �

of the requests make up � � � �
of the

total load.)
Consider a workload where request sizes exhibit

the heavy-tailed property. Now consider a large re-
quest, in the

� � �
-tile of the request size distribution.

This request will actually do much better under SRPT
scheduling than under FAIR scheduling. The reason is
that this big request only competes against

� � �
of the

load under SRPT (the remaining
� � �

of the load is
made up of requests in the top

� �
-tile of the request

size distribution) whereas it competes against
� � � �

of the load under FAIR scheduling. The same argu-
ment could be made for a request in the

� � � � �
-tile of

the request size distribution.
However, it is not obvious what happens to a re-

quest in the
� � � �

-tile of the request size distribution
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Figure 7: Response time as a percentile of request size under SRPT scheduling versus traditionalFAIR scheduling
at load 0.8, measured for (a) the IBM host and (b) the UK host.

(i.e. the largest possible request). It turns out that,
provided the load is not too close to 1, the request
in the

� � � �
-tile will quickly see an idle period, dur-

ing which it can run. As soon as the request gets a
chance to run, it will quickly become a request in the� � � � �

-tile, at which time it will clearly prefer SRPT.
For a formalization of the above argument, we refer
the reader to [30].

7 Conclusion

This paper demonstrates that the delay at a busy server
can be greatly reduced by SRPT-based scheduling of
requests at the server’s outgoing link. We show fur-
ther that the reduction in server delay often results in
a reduction in the client-perceived response time.

Our SRPT-based scheduling algorithm reduces
mean response time in a LAN setting significantly un-
der high server loads, over the standard FAIR schedul-
ing algorithm. In a WAN setting the improvement is
similar for very high server loads, but is less signifi-
cant at moderate loads.

Surprisingly, this improvement comes at no cost to
large requests, which are hardly penalized, or not at
all penalized. Furthermore these gains are achieved
under no loss in byte throughput or request through-
put.

8 Limitations and Future work

Our current setup involves only static requests. In fu-
ture work we plan to expand our technology to sched-

ule cgi-scripts and other non-static requests. Deter-
mining the size (processing requirement) of non-static
requests is an important open problem, but much
progress is being made on better predicting the size
of dynamic requests, or deducing them over time.

Our current setup considers network bandwidth
to be the bottleneck resource and does SRPT-based
scheduling of that resource. In a different application
(e.g. processing of cgi-scripts) where some other re-
source was the bottleneck (e.g., CPU), it might be de-
sirable to implement SRPT-based scheduling of that
resource.

Although we evaluate SRPT and FAIR across many
server loads, we do not in this paper consider the case
of overload. This is an extremely difficult problem
both analytically and especially experimentally. Our
preliminary results show that in the case of transient
overload SRPT outperforms FAIR across a long list
of metrics, including mean response time, throughput,
server losses, etc.

Our SRPT solution can also be applied to server
farms. In this scenario the bottleneck moves from the
outgoing link at each server to the access link for the
server farm — thus scheduling needs to be applied at
the access link. To achieve this, servers would mark
packets to designate their priority. These priorities
would be enforced by the router at the access link.

Lastly, at present we only reduce mean delay at
the server. A future goal is to use SRPT connection-
scheduling at proxies. Our long-term goal is to ex-
tend our SRPT connection-scheduling technology to
routers and switches in the Internet.
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