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Abstract

We examine generalizations of the classical balls and bins models, where the probability
a ball lands in a bin is proportional to the number of balls already in the bin raised to some
exponent p. Such systems exhibit positive or negative feedback, depending on the exponent
p, with a phase transition occurring at p = 1. Similar models have proven useful in economics
and chemistry; for example, systems with positive feedback (p > 1) tend naturally toward
monopoly. We provide several results and useful heuristics for these models, including
showing a bound on the time to achieve monopoly with high probability.

1 Introduction

There have been several recent instances in technology where a small number of companies
compete in a market until one obtains a non-negligible advantage in the market share, at which
point its share rapidly grows to a monopoly or near-monopoly. Economists have described this
tendency toward monopoly in terms of positive feedback [12]. One loose explanation for this
principle, commonly referred to as Metcalfe's Law, is that the inherent potential value of a
system grows super-linearly in the number of existing users. For example, in a system with n
users, there are

�
n
2

�
possible pairwise connections, and this may more accurately re
ect the value

of the system than the number of users.
The video recording battle between VHS and Beta formats is often cited as a classic example

of the power of positive feedback; VHS won out thanks to early user adoption, even though
Beta was argued to be technically superior. In the Microsoft anti-trust trial, economists argued
about the relationship of positive feedback and Microsoft's operating systems monopoly. Even
the long-lasting dominance of the QWERTY keyboard has been ascribed to positive feedback
[1, 12].

Similarly, there are situations where negative feedback occurs, so that a competitor with a
larger market share has diÆculty keeping its advantage. When large competitors su�er from
ineÆciencies, negative feedback is likely to occur [12].

In this paper, we provide a simple mathematical model that elucidates the power of positive
and negative feedback. Our model is a non-linear generalization of classical balls and bins
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models. While we developed this model independently, we have found since that these variations
on standard balls and bins models have been known and applied by economists [1]. For example,
it has previously been shown that under certain conditions positive feedback provably leads
to monopoly in the limit [2]. From these limiting results, however, it is unclear how quickly
monopoly will occur.

In this paper, we follow a more concrete approach, examining a speci�c family of models: the
probability that a ball lands in a bin with x balls is proportional to xp. We call p the exponent
of the model. In the case where p = 0, this is just the standard model of throwing balls into
bins independently and uniformly at random. In the case where p = 1, this is equivalent to the
P�olya{Eggenberger model [8].

In economic terms, the model captures the e�ect of positive feedback in competitive situa-
tions. For example, suppose that there are two instant messaging services that do not interoper-
ate well from which to choose. There is strong incentive to choose the service with more current
users, as it o�ers more potential interactions. Of course this does not necessarily mean that all
new users 
ock to a single system. We model the e�ect here as a probabilistic one, where new
users are more likely to sign up to more popular services, and the strength of this feedback is
governed by the exponent p.

We focus our analysis on the case of two bins. This is most interesting in practice; generally
two companies are �ghting to attract users for their competing systems [12]. Moreover, a simple
union bound argument in Section 4 demonstrates that the problem of two bins encapsulates the
signi�cant behaviors.

It is well known in the case of p = 1 that if we start with two bins, each with one ball, the
resulting distribution when there are n balls in the system is uniform; the probability of ending
with k balls in the �rst bin is 1=(n� 1). More generally, it is clear that if one bin has a fraction
q of the balls, it tends to maintain a fraction q of the balls in the future [7]. Positive feedback
occurs when the exponent p is greater than 1. To see the di�erence in behavior when p > 1,
note that if we start with one ball in each bin, the probability that a speci�c bin obtains all the
balls is

1Y
x=1

�
1� 1

1 + xp

�
;

which for p > 1 is a constant depending on p. We demonstrate that for any constant exponent
p > 1, any constant � > 0, and a suÆciently large number n of balls thrown, the probability that
neither of the bins obtains a 1 � � fraction of the balls is inversely polynomial in n. The exact
polynomial depends on � and p. An interpretation of this statement is that monopoly occurs
quickly with high probability. Similarly, negative feedback occurs when the exponent p is less
than 1. For any constant p < 1, any constant � > 0, and a suÆciently large number of balls
thrown n, the probability a bin obtains more than a 1=2 + � fraction of the balls is inversely
polynomial in n. This result emphasizes the phase transition in this model at p = 1.

Our belief is that these non-linear balls and bins models, which naturally arise in economic,
chemical, and biological systems, may also be useful for describing phenomena in computer
science. As an example, we suggest how we may generalize random Web graph models using
similar non-linear models. We also provide heuristics and calculation methods that may prove
useful for analyzing such systems.

We wish to note that after submitting this paper, we learned of other work being done on
this problem by Spencer and Wormald. They provide an elegant framework for the problem that
gives many additional insights into the behavior of these types of systems, particularly in the
case of many bins [13].
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2 The case p > 1

We begin with some useful de�nitions.

De�nition 1 If there are n balls divided among m bins, we say that one bin has an �-advantage
if it has at least a 1=m + � fraction of the balls. Similarly, a bin is all-but-�-dominant if it has

at least a 1� � fraction of the balls.

Consider a �xed p > 1. In this section we cover the case of two bins. We will prove that
when a ball lands in a bin with x balls with probability proportional to xp, and we start with
one ball in each bin, one bin becomes all-but-Æ-dominant with probability q after n balls, where
n is polynomial in q and 1=Æ. We note that the starting point is chosen for convenience, and in
Section 4 we use a simple union bound argument to extend the result to m > 2 bins.

Our proof follows a sequence of steps. We �rst show that one bin obtains an �0-advantage for
some �0. From here, we show that the separation grows. Roughly, if we double the number of
balls in the system, we increase the advantage by a constant factor (with high probability). We
then show that if one bin becomes all-but-�1-dominant for a suÆciently small �1, the dominance
improves (that is �1 shrinks) by a constant factor when we double the number of balls in the
system. Putting it all together gives our result. We note that in what follows, we make no e�orts
to optimize the various constants used in the theorems.

2.1 Initial separation

We �rst show that if p > 1, the probability that neither of the bins gains an �0-advantage is
inversely polynomial in the number of balls thrown for some constant �0. While this can be
proven regardless of the initial state, for convenience we start with one ball in each bin.

Theorem 1 Consider a system with exponent p and two bins B0 and B1 that begin with one

ball each. Then there exist constants �0 > 0 and 
 > 0 such that after n steps, the probability

that the two bins fail to �0-separate is at most O(n�
).

Proof: See the Appendix. 2

2.2 Increasing advantage

Assume that B0 (w.l.o.g.) has a constant �-advantage over B1 after n balls have been thrown
into the system. Let x(t) and y(t) be the loads of B0 and B1 respectively when there are t balls
in the system. We would like to say that as we continue throwing balls into the system, the
probability of a ball going into B0 is

x(n)p

x(n)p + y(n)p
;

and use this to show that the advantage grows. This is not quite the case, however, since a
new ball may go into B1, in which case the probability the next ball falls into B0 sinks below

x(n)p

x(n)p+y(n)p
.

To circumvent this issue, we consider throwing balls in waves of �n=k, for some k � 1. If we
throw in �n=k balls k=� times, then the number of balls in the system doubles. Consider the �rst
wave. Let X be the number of new balls that land in B0 and Y the number of new balls than
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land in B1. We underestimate the probability that a new ball lands in B0 by assuming that all
previous balls in the wave have landed in B1. Even in this worst case situation,

x(t)

y(t)
�
 

1
2 + �

1
2 � k�1

k �

!p

for all t in [n; n+�n=k]. Hence, by use of Cherno� bounds, we �nd that with all but exponentially
small probability,

X

Y
�
 

1
2 + �

1
2 � k�1

k �

!p

� �0

for some constant �0. For n suÆciently large, we may take k large enough and �0 small enough

so that the di�erence between X
Y and

�
1
2+�
1
2��

�p
is an arbitrarily small constant. Note that this

implies that B0 will continue to have an � advantage over the next wave.

Suppose we show that
�
1=2+�
1=2��

�p
> 1=2+��

1=2��� , for some � > 1. Then

x(2n)

y(2n)
>

�
1
2 + �

�
n+

�
1
2 + ��

�
n�

1
2 � �

�
n+

�
1
2 � ��

�
n
=

1
2 +

1+�
2 �

1
2 � 1+�

2 �
:

(Note that the arbitrarily small constant between X
Y and

�
1
2+�
1
2��

�p
will get absorbed.) Hence our

�-advantage increases to 1+�
2 � once we double the number of balls, with high probability.

Theorem 2 Suppose that B0 has an � � �0 advantage over B1 when n balls are in the system.

If we throw n more balls into the system then with high probability B0's advantage increases by

a factor of 1 + (p�1)(1�2�)
1+2�(p�1) .

Proof: �
1=2 + �

1=2� �

�p
=

�
1 +

4�

1� 2�

�p
> 1 +

4p�

1� 2�
=

1=2 + �

1=2� �

where

� =

�
1 +

(p� 1)(1� 2�)

1 + 2�(p� 1)

�
�:

2

So if for example, � < 0:4, the advantage, with high probability, increases by a factor of at least
1 + p�1

5+4(p�1) .

2.3 To Complete Dominance

By Theorem 2, the advantage increases until one bin is all-but-0:1-dominant. At this point, a
similar argument shows the dominance improves (that is, the initial 0:1 shrinks) geometrically.

Theorem 3 If B0 is all-but-�1-dominant for �1 � 0:2, then when we double the number of balls

in the system, B0 becomes all-but-p+12p �1-dominant with high probability.

Proof: As before, by breaking the next group of balls into suitable blocks, we obtain that
X
Y can be made arbitrarily close to

�
1��1
�1

�p
with high probability. Now if

�
1��
�

�p � 1��=p
�=p > 0,

then with high probability

x(2n)

y(2n)
>

(1� �1)n+ (1� �1=p)n

�1n+ �1n=p
=

1� �1
p+1
2p

�1
p+1
2p

;
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proving the lemma.

Let g(�; p) =
�
1��
�

�p � 1��=p
�=p . To show g(�; p) > 0 for p > 1 and 0 < � � 0:2, we consider the

function

�p(�) =
�(1� �)p

(p� �)�p
:

We need to show that �p(�) > 1 for � < 0:2. Now

�p(0:2) =
4p

5p� 1
> 1

and taking logarithms and di�erentiating gives

�0p(�)

�p(�)
= �p� 1

�
� p

1� �
+

1

p� �
< 0:

Hence �p(�) > 1 for 0 < � � 0:2. 2

2.4 Wrapping up

The following lemma estimates the number of balls in the system when B0's advantage is ar-
bitrarily close to 1, or in other words, when B0 is all-but-Æ-dominant for an arbitrarily small
constant Æ. Suppose we start with B0 having an �0-advantage and n0 balls in the system, as
given in Theorem 1.

Theorem 4 Assume that we throw balls into the system until B0 is all-but-Æ-dominant for some

Æ > 0. Then, if p > 1, with probability 1� e
(n0), B0 is all-but-Æ-dominant when the system has

2x+z � n0 balls, where x = log1+ p�1
5+4(p�1)

0:4
�0

and z = log 2p
p+1

0:1
Æ .

Proof: Recall that in each doubling stage, we succeed with all but exponentially small proba-
bility in the number of balls in the system, which is greater than n0. Each time we double the
number of balls in the system, the initial advantage �0 increases by a factor of at least 1+

p�1
5+4(p�1)

until it becomes 0:4; this requires x = log1+ p�1
5+4(p�1)

0:4
�0

doubling stages. From then on, B0 goes

from all-but-0:1-dominant to all-but-Æ-dominant, shrinking the fraction of balls not in B0 by a
factor of p+1

2p with each doubling stage. Hence, we need z = log 2p
p+1

0:1
Æ doubling stages until B0

is all-but-Æ-dominant. 2

Essentially, our argument shows that once we achieve a little separation, the separation
continues to grow with very high probability. In fact, the only reason our probability bounds are
polynomial in the number of balls is because of the need to establish an initial gap in Theorem 1.

3 The case p < 1

In the case where p < 1, we have similar results, except that in this case the system tends to
converge toward an equal number of balls in each bin. That is, we have negative feedback. For
convenience, we consider only the case where 0 < p < 1. (The case where p � 0 is trivial.)

Consider a �xed exponent p < 1 in a system with two bins, B0 and B1. Suppose that n balls
are in the system and B0 (w.l.o.g.) has an �0-advantage. We show that the advantage shrinks.
We �rst show that if �0 is at least 1=

p
2(p+ 1)(p+ 2), the corresponding all-but-Æ-dominance

for B0 increases. Once its advantage becomes suÆciently small, it decreases by a constant factor
by throwing n more balls in the system.
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Theorem 5 Suppose that B0 has an �-advantage. If we throw n more balls in the system and

� � 1=
p
2(p+ 1)(p+ 2), B0's advantage decreases by a factor of (3 + p)=4 with high probability.

Otherwise, suppose B0 is an all-but-�-dominant, where 0 < � � 1
2 � 1p

2(p+1)(p+2)
. If we throw n

more balls in the system then B0 becomes all-but-p+1
2p �-dominant with high probability.

Proof: The proof is similar to Theorem 2. We �rst consider when the advantage shrinks
by the constant factor (3+ p)=4. Using the idea of throwing balls in waves and Cherno� bounds
as in Theorem 2, we see that the argument boils down to showing that the probability a ball

lands in the most full bin, or
�
1=2+�
1=2��

�p
, is bounded above by 1=2+(1+p)�=2

1=2�(1+p)�=2 . Therefore it suÆces

to determine where q(�; p) = 1�(1+p)�
1+(1+p)� �

�
1=2+�
1=2��

�p
< 1. Note q(0; p) = 1.

We �rst show qp(�) is decreasing in �. It is easier to look at log qp(�), which decreases when

qp(�) does. The derivative of log qp(�) with respect to � is
4p

1�4�2 �
2(1+p)

1�(1+p)2�2 . It is straightforward

to check that qp(�) is decreasing for � < 1=
p
2(p+ 1)(p+ 2) and increasing past that point. Hence

qp(�) < 1 in the range (0; 1=
p
2(p+ 1)(p+ 2)], and the advantage shrinks by a constant factor

when we double the number of balls in the system for � � 1=
p
2(p+ 1)(p+ 2).

Now suppose B0 ia all-but-�-dominant. Here we follow Theorem 3. Let g(�; p) =
�
1��
�

�p �
1��=p
�=p . We study g(�; p) for 0 < p < 1 and � 2 (0; 12 � 1p

2(p+1)(p+2)
]. It is easy to check that

g(�; p) is increasing in � and (by use of Maple) that g( 12 � 1p
2(p+1)(p+2)

; p) < 0, for all 0 < p < 1,

so the lemma is proved. 2

Theorem 5 can be used to show that from any non-trivial starting state, even if one bin has
a large advantage, when p < 1 the system will quickly return to a near-equal state.

4 From Two to Many

We use the results for the case of two bins to obtain similar results for the case of many bins
using standard union bounds. A key point is that if we look at a pair of bins from a system with
many bins, the evolution of this pair of bins is just that of a system with exponent p. That is
because when we condition on a ball landing in the pair of bins, the probability that it falls into
a bin with x balls is still proportional to xp. The following simple proof avoids any conditioning
issues, and applies when p > 1.

Lemma 1 Suppose that when n balls are thrown into a pair of bins, the probability that neither

is all-but-�-dominant is upper bounded by p(n; �). Here we assume p(n; �) is non-increasing in n.
Then when 1+mn=2 balls are thrown into m bins, the probability that none is all-but-
-dominant

is at most
�
m
2

�
p(n; �) for 
 = �=(�+ (1� �)=(m� 1)).

Proof: Consider the two bins with the most balls, B0 and B1, with B0 having more balls.
The two bins together have at least n balls since 1 +mn=2 total balls are thrown. If B0 is not
all-but-
-dominant over all the bins, then it has less than a 1 � 
 fraction of the balls and B1

has at least a 
=(m� 1) fraction of the balls. For the value of 
 stated,

1� 



=(m� 1)
=

1� �

�
:

Hence in this case B0 is not all-but-�-dominant when considering the pair of bins B0 and B1.
But the probability that there is a pair of bins where neither is all-but-�-dominant is bounded
above by

�
m
2

�
p(n; �). 2
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Essentially this lemma says that going from two bins to m bins increases the number of balls
thrown by a factor and the probability that all-but-�-dominance does not occur by polynomial
factors in m. Hence the probability one bin fails to all-but-�-dominate is inversely proportional
to a polynomial in the number of balls thrown, the number of bins, and 1=�.

A similar lemma applies for the case p < 1.

Lemma 2 Suppose that when n balls are thrown into a pair of bins, the probability that one

obtains an �-advantage is upper bounded by p(n; �). Here we assume p(n; �) is non-increasing in

n. Then when 1+mn balls are thrown into m bins, the probability that one bin has a 
-advantage
is at most

�
m
2

�
p(n; �) for 
 = 4�(m� 1)=(m(m� 2(m� 2)�)).

Proof: Consider the bin with the most balls, B0, and the bin with the fewest balls, B1.
The bin B0 has at least n balls since 1+mn total balls are thrown. If B0 has 
-advantage, then
it has at least a 1=m+ 
 fraction of the balls, and B1 has at most a 1=m � 
=(m� 1) fraction
of the balls. For the value of 
 stated,

1=m+ 


1=m� 
=(m� 1)
=

1=2 + �

1=2� �
:

Hence in this case B0 has an �-advantage when considering the pair of bins B0 and B1. But
the probability that there is a pair of bins where one bin has an �-advantage over the other is
bounded above by

�
m
2

�
p(n; �). 2

5 Relation to Web models

Our original motivation for studying this problem arose when we considered related dynamic
Web graph models. Several recently proposed dynamic Web models are similar to balls and
bins models, with the pages being bins and the links being balls. The di�erence for Web graph
models is that new pages and links both enter the system; hence, new bins arise as new balls are
thrown. Proposed Web models have all been linear; for example, in most models the probability
a new page links to an extant page is proportional to its indegree [3, 5, 10, 11].

Recent Web models, while capturing certain properties of the Web graph, do not appear
completely accurate. For example, recent studies suggest that the Web has many long, stringy
pieces [4]. Also, certain Web sites contain central pages, that everything links to. Let us consider
a dynamic Web graph model where a new page with one outedge links to an extant page with
probability proportional to the indegree to the pth power. The limiting cases for this model are
interesting: when p ! 1, essentially all edges point to a single node, and when p ! �1, the
graph is essentially a single path. It is possible that some areas of the Web may be similar to this
more general model with properly chosen parameters. Further discussion of this issue is given in
[6, 9]; however, it suggests that non-linear systems provide interesting variations of Web graph
models.

6 A Useful Heuristic

In this section, we consider a heuristic that may prove useful in applications. Suppose we have
two bins, whose load we denote by x(t) and y(t), where the time t denotes the number of balls
in the system. As before the probability that the new ball thrown at time t falls in the bins with
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x(t) balls is (x(t))p

(x(t))p+(y(t))p . Then the expected change in x(t), or �x(t), satis�es

�x(t) = E[x(t+ 1)� x(t)] =
(x(t))p

(x(t))p + (y(t))p
;

and similarly for y(t). Using the heuristic approximation

�y(t)

�x(t)
=

dy

dx

and dropping the t from the notation where the meaning is clear, we obtain the following ap-
proximation for the expected behavior of the system:

dy

dx
=

yp

xp
:

This heuristic demonstrates the di�erent types of behavior to be expected when p < 1, p = 1,
and p > 1. When p = 1, the solution has the form y = cx. Otherwise, the solution has the form
y1�p = x1�p+ c. When p < 1, regardless of the initial values of x and y the limiting ratio of y=x
goes to 1; in the long run, the two bins each contain roughly half of the balls. When p > 1, the
limiting ratio of y=x goes to 0 or in�nity.

This heuristic is appealing in that it allows us to approximate the behavior when p > 1 of
the bins that are dominated. Speci�cally, let us consider more closely the case where the initial
loads of the bins are x(t0) and y(t0) (with y(t0) > x(t0)) and p > 1. Then the solution has the
form y1�p = x1�p + y(t0)

1�p � x(t0)
1�p. As y ! 1, our heuristic suggests that x approaches�

x(t0)
1�p � y(t0)

1�p
�1=(1�p)

. For example, consider the case where x(300) = 100, y(300) = 200,
and p = 2. The heuristic suggests that even as the number of balls thrown grows to in�nity, the
expected value of x(t) will only grow to about 200.

We point out that this heuristic is (at this point) just a heuristic. While in some cases
di�erential equations can properly be used to determine the behavior of a system, the utility
in this case is less clear. For example, from any starting point, there is some constant (though
perhaps small) probability that the smaller bin will overtake the larger. From smaller starting
points (say x(3) = 1 and y(3) = 2) there is more variation. Hence this heuristic is really valuable
for determining the limiting behavior only when one bin dominates another suÆciently so that
the probability that it is overtaken can essentially be dismissed.

We consider the performance of the heuristic with some examples. When x(300) = 100,
y(300) = 200, and p = 2, the solution of the resulting di�erential equation is

1

y
=

1

x
� 1

200
:

When there are 10,000 balls in the system, the di�erential equations predict x(10,000) = 196.
Exact calculations show that the mean value of x(10,000) is actually just above 197, although the
mode is 190. More visually, Figure 1 shows the distribution for x(10,000) is very concentrated; it
looks close to a normal distribution, although it is asymmetric with a small probability of large
values. Larger numbers of balls show similar behavior; for x(100,000) and x(1,000,000), which
have essentially the same distribution, the mean is 201 though the distribution peaks at 195.

Figure 1 displays similar results for p = 1:5. The di�erential equations predict x(10; 000)
should be about 637, which also is very acccurate. They also predict that as the number of balls
grows to in�nity, x(t) should converge to approximately 1,165, which is close to x(1,000,000).

Note this heuristic approach can easily be extended to the case of more than two bins. It
would be interesting to develop a more formal statement in terms of probabilistic bounds based
on this heuristic.
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Figure 1: Density functions, starting with 100 balls in one bin and 200 in the other, p = 2:0 and
p = 1:5.

7 Examples of Reaching Monopoly

We present some examples in order to demonstrate typical behavior for the p > 1 case, giving
exact results determined by extensive numerical calculations with the appropriate recurrence.
Speci�cally, if w(x; y) is the probability of having x balls in B0 and y balls in B1 when there are
x+ y balls in the system, then

w(x; y)=w(x� 1; y)
(x�1)p

(x�1)p + yp
+ w(x; y � 1)

(y�1)p
xp + (y�1)p :

The reason for showing these examples is to suggest that the number of balls necessary to
converge to monopoly can be extremely large, especially for smaller values of p. This provides
some evidence that the character of our result, namely that monopoly fails to happen with
probability inversely polynomial in the number of balls in the system (and moreover with a small
exponent), is correct. We point out that we do not currently have any bound that demonstrates
that this probability could not fall exponentially with the number of balls; this remains an open
question.

In Figure 2, we present the cumulative distribution for the number of balls in a bin when
we begin with one ball in each bin, and place balls until 1,000,000 balls are in the system,
using p = 1:1. While there is signi�cant bias towards the periphery, there is still a reasonable
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Figure 2: Cumulative distribution function, starting with 1 ball in each bin, p = 1:1 and 1,000,000
total balls.
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Figure 3: Cumulative distribution function, starting with 1 ball in each bin, p = 2:0 and 1,000
total balls.

probability that one bin will not completely overwhelm the other. For example, the probability
that one bin contains over 80% of the balls is less than 80%.

In contrast, consider the case of just 1,000 balls when p = 2 in Figure 3. Here almost all the
weight lies in the area where one bin has almost all of the balls. The probability that one bin
contains �ve or fewer balls is 0.864. This concentration, however, is a function of the dramatic
e�ect of inequality at the beginning of the process; leading two or three balls to one is a huge
advantage. If we begin with 1,000 balls in each bin, and place balls until there are 1,000,000 in
the system, we see that while there is clear tendency toward monopoly, it appears more similar
to the p = 1:1 case.

8 Conclusion

We have analyzed simple non-linear balls and bins models, where the probability of a new ball
going to a bin with x balls is proportional to xp. We have demonstrated a phase transition at
p = 1; fast convergence to monopoly for p > 1; and fast convergence toward equality when p < 1.

We suggest a few problems worthy of future study that this framework introduces. First, it
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seems likely that our current arguments can be improved and simpli�ed. In particular, a better
understanding of the initial separation stage and a tighter argument for more than two bins might
be helpful. Second, the impact of the initial conditions should be clari�ed. When two bins begin
with nearly the same number of balls, how does the di�erence a�ect the probability that each
will end up dominating the system? What is the distribution of the �nal state of the other bin?
While we have heuristic approaches to this problem, rigorous bounds would be useful. Third,
consideration of other natural families of functions besides xp may be useful for real systems.
In a similar vein, understanding systems where the function determining the probability that a
ball goes in a bin may vary according to time may allow more realistic models.
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Appendix

Theorem 1 Consider a system with exponent p and two bins B0 and B1 that begin with one
ball each. Then there exist constants �0 > 0 and 
 > 0 such that after n steps, the probability
that the two bins fail to �0-separate is at most O(n

�
).

Proof: We sketch the proof, which follows the same outline as Theorems 2 and 4. First,
recall that when p = 1 and we begin with one ball in each bin, the resulting distribution after n
balls are thrown is uniform. A simple coupling argument shows that when p > 1 the distribution
of the number of balls in a bin has more weight at the extremes. Hence for any n0 the probability

that after n0 balls are thrown neither bin has at least 1=2 + n
3=4
0 balls is O(n

�1=4
0 ).

We build on this small advantage using a repeated doubling argument. Suppose that when we
have n1 � n0 balls in the system and we throw n1 more balls, the advantage grows by a constant
factor with probability e�n

a

1 for some constant a > 0. Then choose any suitable constant �0, say
�0 = 1=100p. Then after O(logn0) doublings, we obtain a constant �0 advantage with probability

O(n
�1=4
0 ), and we have a polynomial in n0 number of balls in the system.
We must take a bit more care in the Cherno� bounds to obtain the high probability result

in the doubling stages. However, if we start a doubling phase with n1 balls in the system and

one bin having 1
2n1 + x balls, where x � n

3=4
1 , it suÆces to throw the next n1 balls in blocks of

size n
5=8
1 . The probability a ball lands in the bin with more balls is at least

z =

�
1
2n1 + x

�p�
1
2n1 � x+ n

5=8
1

�p
+
�
1
2n1 + x

�p :

For n0 suÆciently large, the n
5=8
1 term above does not a�ect that we expect the advantage to

grow by a constant factor over the next n1 balls, as in Theorem 2.

Moreover, by Cherno�'s bounds, inductively over each block of size n
5=8
1 , if X is the number

of balls that go into the bin with more balls,

Pr[X � zn
5=8
1 � n

1=2
1 ] � exp(�
(n3=81 )):

The n
1=2
1 term does not a�ect that the advantage grows by a constant factor with high proba-

bility for suitably large n0, and hence the theorem holds. 2
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