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1 Introduction

In this chapter we study the Hamiltonian cycle and Traveling Salesman problem
from a probabilistic point of view. Here we try to elucidate the properties of typical
rather than worst-case examples. Structurally, one hopes to bring out the surprising
properties of typical instances. Algorithmically the hope is that one can in some way
explain the successful solution of large problems, much larger than that predicted by
worst-case analysis. This of course raises the question of what do we mean by typical?
The mathematical view of this is to de�ne a probability space 
 of instances and study
the expected properties of ! drawn from 
 with a given probability measure.

Our discussion falls naturally into two parts: the independent case and the Eu-
clidean case. The independent case will include a discussion of the existence of Hamil-
tonian cycles in various classes of random graphs and digraphs. We will then discuss
algorithms for �nding Hamiltonian cycles which are both fast and likely to succeed.
We include a discussion of extension-rotation constructions and the variance reduction
technique of Robinson and Wormald. Following this we consider Traveling Salesman
Problems where the coeÆcients are drawn independently. We describe both exact
and approximate algorithms. We include a section on open problems.

After this we survey stochastic results for the total edge length of the Euclidean
TSP. Here the cities are assumed to be points in R

d and the distance between points
is the usual Euclidean distance. We describe ways to prove a.s. limit theorems and
concentration inequalities for the total edge length of the shortest tour on a random
sample of size n, as n!1. The focus is on presenting probabilistic techniques which
not only describe the behavior of the random Euclidean TSP, but which also describe
(or have the potential to describe) the behavior of heuristics. The approach centers
around the boundary functional method as well as the isoperimetric methods of Rhee
and Talagrand.
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1.1 Probabilistic preliminaries

We �rst collect some basic probabilistic tools which will be needed in the sequel.

Jensen's inequality. A function f : R ! R is called convex if for all x; y 2 R and
all 0 � � � 1 we have

f(�x + (1� �)y) � �f(x) + (1� �)f(y):

In geometric terms this says that each point on the chord between (x; f(x)) and
(y; f(y)) is above the graph of f . Jensen's inequality says that if X is a random
variable with �nite mean E [X] and if f is convex, then

E [f(X] � f(E [X]): (1.1)

Generalized Chebyshev inequality. Let f : R
+ ! R

+ be an increasing function
and let X be a positive random variable. Then for all t > 0

P[X � t] � E [f(X)]=f(t): (1.2)

If we replace X by jX � EXj and let f(x) = x2 we obtain a special case of (1.2),
namely

P[jX � EXj > t] � VarX=t2: (1.3)

With high probability. A sequence of events En; n � 1; is said to occur with high
probability (whp) if limn!1 P[En ] = 1.

Stochastic convergence. Let X1; X2; :::; X be random variables on some probability
space (
;F ; P). We say that

(a) Xn ! X almost surely, written limn!1Xn = X a:s:, if

P[! 2 
 : Xn(!) ! X(!) as n!1] = 1:

(b) Xn ! X in L1 or in mean if

E jXn �Xj ! 0 as n!1:

(c) Xn ! X completely, written limn!1Xn = X c:c:, if for all � > 0,
1X
n=1

P[jXn �Xj > �] <1:

Binomial random variable. For all n 2 N and 0 < p < 1; B(n; p) denotes a
binomial random variable with parameters n and p. Cherno�'s bound for the binomial
says that for all 0 � � � 1

P[jB(n; p) � npj � �np] � 2 exp��
2np=3 : (1.4)

See e.g. Alon and Spencer [7].

Cardinality of a set. If A is a set, then jAj denotes its cardinality.
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2 Hamiltonian Cycles in Random Graphs

2.1 Models of random graphs

In this section we describe two simple models of a random graph and their relationship.
The random graph Gn;m is chosen uniformly at random from the set Gn;m: the set
of graphs with vertex set [n] = f1; 2; : : : ; ng and exactly m edges. Since jGn;mj =�
N
m

�
; N =

�
n
2

�
, each graph in Gn;m has probability 1=

�
N
m

�
of being selected. This

model was intensely studied in a seminal sequence of papers by Erd}os and R�enyi
[29, 30] and has since become a well established branch of Combinatorics, see e.g. the
book of Bollob�as [11]. The related model Gn;p (here 0 � p � 1) is de�ned as follows:
It has vertex set [n] and each of the N possible edges is independently included with
probability p and excluded with probability 1� p. Thus if G = ([n]; E),

P[Gn;p = G] = pjEj(1� p)N�jEj:

Thus for example if p = 1
2

then all graphs with vertex set [n] are equally likely.
The next thing to observe is that conditional on havingm edges, Gn;p is distributed

as Gn;m. Thus if Pn is any graph property for the set of graphs with vertex set [n]
then

P[Gn;p 2 Pn] =

NX
m=0

�
N

m

�
pm(1� p)N�mP[Gn;m 2 Pn]: (2.1)

The number of edges of Gn;p is the binomial random variable B(N; p) and if its mean
Np is large, B(N; p) is concentrated around it. More precisely, Cherno�'s bound on
the binomial (1.4) implies that if Np= logn!1 then

P[jB(N; p) �Npj �
p
KNp log n] � 2n�K=3 (2.2)

which tends to zero as n ! 1. Thus, plausibly, with (2.1) and (2.2), one can
argue simultaneously about properties of Gn;p and Gn;m. This is not true all the
time, but it is in many cases. Much of the interest in the theory of random graphs
concerns properties that occur with high probability (whp). Erd}os and R�enyi proved
many beautiful results about random graphs from this viewpoint. Suppose p = p(n)
depends on n:

� If np� log n!1 then Gn;p is connected whp.

� If np = c > 1, c constant, then Gn;p has a unique (giant) component of size
order n, whp.

They also observed that for many properties Pn there is a threshold probability
p0 = p0(n) such that if p=p0 ! 0 then Gn;p 62 Pn whp and if p=p0 ! 1 then
Gn;p 2 Pn whp. For example if An = fG contains a copy of K4g then

P[Gn;p 2 An] = o(1) if n2=3p! 0:
P[Gn;p 2 An] = 1� o(1) if n2=3p!1:

Thus one line of research in random graphs is the determination of thresholds for
graph properties.
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2.2 Existence Results

Erd}os and R�enyi did not manage to establish the threshold for the existence of a
Hamiltonian cycle in a random graph. It took about twenty years to solve this
problem.

2.2.1 The threshold for Hamiltonicity

A breakthrough came when Posa [65] proved the following theorem.

Theorem 2.1 If K > 16 is constant and p � K logn
n

then Gn;p is Hamiltonian whp.

Proof We give the details of the proof because (i) it is very elegant, (ii) it is not
technically diÆcult, and (iii) and it illustrates well the most basic methods of proof
in this area.

We �rst show that Gn;p has a Hamiltonian path whp. For a graph G = (V;E) we
let �(G) denote the length of the longest path in G. Observe that

G has a Hamiltonian path i� �(G) > �(G� v) for all v 2 V .

For all 1 � i � n, let Ei be the event f�(Gn;p) = �(Gn;p � i)g. Then

P[Gn;p has no Hamiltonian path] �
nX
i=1

P[Ei ] = nP[En ]: (2.3)

We will show that

P[En ] � n3�K=4 + n�K=4: (2.4)

Let H = Gn;p�n and notice that H is distributed as Gn�1;p. Let P = (x0; x1; : : : ; xk)
be any longest path of H and let

X = fx : H contains a path of length k from x0 to xg:
We will show that

P[jXj � n
4
] � n3�K=4: (2.5)

Assuming (2.5) and noting that En implies there is no edge joining X to n in Gn;p, it
follows that

P[En ] � P[jXj � n
4
] + P[En j jXj > n

4
]

� n3�K=4 + (1� p)n=4

� n3�K=4 + n�K=4;

which is (2.4). We now have to prove (2.5). For each i 2 f0; 1; : : : ; k � 2g such that
(xk; xi) is an edge of H we can de�ne a new path (see Figure 2.2.1)

P 0 = rotate(P ;xk; xi) = (x0; x1; : : : ; xi; xk; xk�1; : : : ; xi+1):

We say that P 0 is obtained from P by a rotation with x0 as the �xed endpoint. Note
that P 0 is also of length k and so xi+1 2 X. Let X 0 � X be the set of endpoints
obtainable by doing a sequence of rotations, starting at P , and always using x0 as
the �xed endpoint.
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For S � V (H) let

NH(S) = fw 2 V (H) n S : 9v 2 Ssuch that(v; w) 2 E(H)g:

The following lemma is perhaps the key idea behind Pos�a's result.

Lemma 2.2
jNH(X 0)j < 2jX 0j:

Proof We show that if y 2 NH(X 0) n fx0g then there exists z 2 X 0 such that
(y; z) is an edge of P . The lemma follows immediately.

Since y 2 NH(X 0) there exists x 2 X 0 such that (x; y) 2 E(H). So there exists a
path Q of length k from x0 to x with y as an internal vertex, obtainable from P by
a sequence of rotations. Let z1 be the neighbor of y on Q between y and x. Then
z1 2 X 0 because it is the endpoint of rotate(Q;x; y). So if (y; z1) is an edge of P we
are done. If (y; z) is not an edge of P then one of the edges e = (y; z2) incident with
y in P has been deleted in the sequence of rotations which produced Q. But when
an edge e is deleted by a rotation, one of its endpoints is placed in X 0. Since y 62 X 0

we have z2 2 X 0 and the lemma follows. 2

Now for a calculation:

P[9S; 1 � jSj � n
4
; jNH(S)j < 2jSj] �

n=4X
s=1

�
n� 1

s

��
n� 1

2s

�
(1� p)s(n�3s)

�
n=4X
s=1

nsn2sn�Ks=4

� 2n3�K=4:

So (2.5) follows from this and Lemma 2.2. Applying (2.3) we see that Gn;p has a
Hamiltonian path whp.
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To �nish the proof consider the graph � = Gn;p1=5p=6 [ Gn;p2=p=6. Each of the N
possible edges appears independently with probability p1 + p2 � p1p2 < p and so

P[� is Hamiltonian] � P[Gn;p is Hamiltonian] (2.6)

Now by the previous analysis, whp Gn;p1 has a Hamiltonian path, P say. Fix one
of its endpoints x0 and let X be the set of endpoints of Hamiltonian paths with one
endpoint x0. By the above analysis, jXj � n

4
whp. Now given X, the set of edges of

Gn;p2 which join x0 and X is independent of Gn;p1 and if there is one, � is Hamiltonian.
So

P[� is not Hamiltonian] �
P[Gn;p1 has no Hamiltonian path] + P[jXj � n

4
] + (1� p2)

n=4 = o(1):

This together with (2.6) proves Theorem 2.1. 2

Now a graph with a vertex of degree 0 or 1 is not Hamiltonian. Let m = n
2
(log n+

log log n + cnn). Erd}os and R�enyi [31]) showed that

lim
n!1

P[Æ(Gn;m) � 2] =

8<
:

0 cn ! �1
e�e

�c
cn ! c

1 cn ! +1
(2.7)

(There is no mystery to the right hand side of the above when cn = c. The expected
number of vertices of degree 0 or 1 is � e�c and the distribution of this number is
asymptotically Poisson.)

The above provides a lower bound for the asymptotic probability of a graph being
Hamiltonian. Koml�os and Szemer�edi [61] proved that this was tight, essentially saying
that the best constant in Theorem 2.1 is K = 1.

Theorem 2.3

lim
n!1

P[Gn;m is Hamiltonian] = lim
n!1

P[Æ(Gn;m) � 2]:

2.2.2 Graph Process

There is an alternative stronger version of Theorem 2.3 which is quite remarkable at
�rst sight. The graph process is a random sequence G0; G1; : : : ; Gi = ([n]; Ei); : : : ; GN

where Ei = fe1; e2; : : : ; eig and ei is chosen randomly from �Ei�1. Thus starting from
the empty graph G0, we randomly add new edges until we have a complete graph.
Note the Gm has the same distribution as Gn;m.

For a graph property G, the hitting time �(G) is given by

�(G) = minfi : Gi 2 Gg:

Let H = fG is Hamiltoniang and Dk = fÆ(G) � kg. Clearly �(H) � �(D2). Bollob�as
[12] and Ajtai, Koml�os and Szemer�edi [1] showed
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Theorem 2.4
�(H) = �(D2) whp:

In other words, if we randomly add edges one by one, whp the �rst edge that raises
the minimum degree to 2, also makes the graph Hamiltonian!

Other properties
The results of Theorems 2.3 and 2.4 have been generalized in a number of ways: All
statements are claimed to hold whp.

� G�(Dk) has bk=2c edge disjoint cycles plus a further edge disjoint (near) perfect
matching if k is odd, k = O(1) [18].

� G�(D2) has (log n)n�o(n) distinct Hamiltonian cycles [21].

� G�(D2) contains k vertex disjoint cycles of size n=k, k = O(1) [35].

� G�(D2) contains a cycle of every size, 3 � k � n, [22, 62, 20]

See also [23] and the surveys [38], [44].

2.2.3 Regular Graphs

In this section we discuss the existence of Hamiltonian cycles in random regular
graphs. We use Gn;r to denote a graph chosen uniformly at random from the set of
r-regular graphs with vertex set [n].

It is easy to show that whp Gn;2 is a collection of O(log n) vertex disjoint cycles.
Thus Gn;3 or random cubic graphs is where the real interest starts. There was some
success in applying the extension-rotation methods of Section 2.2, [14],[34] and [39].
In the last mentioned paper it was shown that Gn;r is Hamiltonian whp for all constant
r � 85.

A breakthrough came with the work of Robinson and Wormald [77, 78] who used
a completely di�erent approach to solve the problem. They proved that Gn;r is
Hamiltonian whp for all constant r � 3.

2.2.4 Model of random regular graphs

We describe the con�guration model of Bollob�as [13]. This is a probabilistic interpre-
tation of a counting formula of Bender and Can�eld [10].

Thus let W = [n] � [r] (Wv = v � [r] represents r half edges incident with vertex
v 2 [n].) The elements of W are called points and a 2-element subset of W is called a
pairing. A con�guration F is a partition of W into rn=2 pairings. We associate with
F a multigraph �(F ) = ([n]; E(F )) where, as a multi-set,

E(F ) = f(v; w) : f(v; i); (w; j)g 2 F for some 1 � i; j � rg:

(Note that v = w is possible here.)
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Let 
 denote the set of possible con�gurations. Thus

j
j = �(rn)

where

�(2m) =
(2m)!

m!2m
:

We say that F is simple if the multigraph �(F ) has no loops or multiple edges. Let

0 denote the set of simple con�gurations.

We turn 
 into a probability space by giving each element the same probability.
The main properties that we need of this model are:

P1 Each G 2 G(n; r) is the image (under �) of exactly (r!)n simple con�gurations.

P2 P[F 2 
0] � e�(r
2�1)=4.

(Here � � � means that �=� ! 1 as n!1.)
Suppose now that A� is a property of con�gurations and A is a property of graphs

such that when F 2 
0; �(F ) 2 A implies F 2 A�. Then P1 and P2 imply

P[G 2 A] � (1 + o(1))e(r
2�1)=4

P[F 2 A�]

where G is chosen randomly from G and F is chosen randomly from 
. So if r is a
constant independent of n then we can use this to see that

P[F 2 A�] = o(1) implies P[G 2 A] = o(1):

2.2.5 The Robinson-Wormald approach

Suppose we wanted to use Chebyshev's inequality (1.3) to prove that the existence
of a Hamiltonian cycle! For F 2 
 let

ZH = ZH(F ) = the number of Hamiltonian cycles in H:

A reasonably straightforward calculation shows that

E [ZH ] �
r

�

2n

 �
r � 2

r

�(r�2)=2
(r � 1)

!n

:

A much more diÆcult calculation [42] gives

E [Z2
H ] � �r

2(r � 2)n

 �
r � 2

r

�r�2
(r � 1)2

!n

:

So we immediately get

P[ZH 6= 0] � E (ZH )2

E (Z2
H )

� r � 2

r
:
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So when r = 3 we see already that P[ZH 6= 0] � 1=3. We need to boost this to 1-o(1).

Let Cl denote the number of `-cycles of �(F ) for ` � 1. We will be concerned
mainly with Cl where l is odd. For c = (c1; c2; : : : ; cb) 2 N b, where N = f0; 1; 2; : : : g,
let group 
c = fF 2 
 : C2k�1 = ck; 1 � k � bg. Surprisingly,there is much less
variation in the number of Hamiltonian cycles within groups, than there is between
groups. In fact, almost all of the variance can be \explained" by variation between
group means.

For c 2 N b let

�c = P[F 2 
c]; E c = E [ZH j F 2 
c] and Vc = Var[ZH j F 2 
c]:

Then by conditioning on c we have

E [Z2
H ] =

X
c2Nb

�cE [Z2
H j F 2 
c] =

X
c2Nb

�cVc +
X
c2Nb

�cE
2
c
:

Robinson and Wormald [77, 78] prove thatX
c2Nb

�cVc � Æ E [ZH ]2; (2.8)

for some small value Æ.
The rest is an application of Chebyshev's inequality (1.3). De�ne the random

variable ẐH by

ẐH = E c ; if F 2 
c:

Then for any t > 0

P[jZH � ẐH j � t] � E [(ZH � ẐH)2=t2]

=
X
c2Nb

�cVc=t
2

� ÆE [ZH ]2=t2 (2.9)

where the last inequality follows from (2.8).
Robinson and Wormald argue that for likely values of c we �nd that E c > �E (ZH )

where Æ=�2 can be chosen arbitrarily small, though �xed as n ! 1. Putting t =
�E (ZH ) in (2.9) gives the required result

P[ZH = 0] � Æ=�2 + �

where � is the small probability that Gn;r 2 E c where E c � �E (ZH ).

2.3 Polynomial time algorithms

Here we turn our attention to algorithms for �nding Hamiltonian cycles which work
whp.
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2.3.1 Sparse case

Angluin and Valiant [8] described a randomized algorithm which whp �nds a Hamil-
tonian cycle in Gn;p provided p � K log n=n for suÆciently large K. Shamir [80]
improved this to p � (log n + (2 + �) log log n)=n which is almost best possible.

We discuss the algorithm HAM of Bollob�as, Fenner and Frieze [17] which yields a
constructive proof of Theorem 2.3. We work in Gn;m where m = n

2
(log n+ log log n+

cn) and either cn ! c or cn ! 1. Let d = 2m=n be the average degree of G. We
note that G is connected whp and we check for for minimum degree at least 2 before
running HAM.

Algorithm HAM works in stages. At the start of stage k we have a path Pk of
length k. Suppose that its endpoints are w0; w1. We start the algorithm in Stage
0 with P0 = f1g. We �rst grow a tree of paths of length k, all with endpoints w0.
(There are places in this procedure where we can jump to stage k + 1. When k is
small we are likely to do this immediately, see below.) The tree is grown in breadth
�rst fashion to a depth T , where T = dlogn=(log d� log log d)e+ 1. The children of
a node P are all those paths which can be obtained from P by a rotation with w0 as
the �xed endpoint.

Let END(w0; G) denote the set of endpoints, other than w0, of the paths produced
in this manner. Then for each x 2 END(w0; G) we start with the �rst path Qx

produced with endpoints w0; x and grow a tree of depth T , with root Qx and this time
use rotations with x as �xed endpoint. Let END(x;G) denote the set of endpoints,
other than x, of the paths produced in this manner.

We may not need to do this much work in a stage. If ever we �nd a path Q
with endpoints x; y such that (y; z) 2 E and z =2 Q then clearly we have a path
Q; z of length k + 1 and we go immediately to the next stage by a simple extension.
If (x; y) 2 E then because G is connected, there is an edge (u; v) joining the cycle
Q+ (x; y) to the rest of G. We then have a path Q+ (x; y) + (u; v)� (z; u) of length
k+ 1 where z is adjacent to u on Q. This is called a cycle extension and we call (x; y)
the closing edge. If neither of these two possibilities occurs during stage k then HAM
fails.

HAM stops successfully in stage n�1 if it manages to close one of the Hamiltonian
paths that it creates.

In the event that HAM fails, if END = END(G) = fw0g [ END(w0; G) then
we know that

x 2 END; y 2 END(x;G) implies (x; y) =2 G: (2.10)

We will show that jENDj is of order n whp and so if there were no conditioning, this
would be unlikely to happen.

Suppose now that HAM fails in stage k. Let W = W (G) denote the edges of
the paths P (0); P (1); : : : ; P (M) = Pk where P (i+1) is obtained from P (i) by a rotation,
simple or cycle extension plus the closing edges of the cycle extensions in the sequence.
Clearly

jW j � nT: (2.11)
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For X � E let GX = ([n]; E nX). The following should be clear.

Lemma 2.5 Suppose that HAM terminates unsuccessfully in stage k on input G. If
X � E n W then HAM will terminate unsuccessfully on input GX . Furthermore,
on GX , HAM will generate Pk at the start of stage k through the same sequence of
rotations and extensions.

A vertex of G is small if its degree is at most d=20 and large otherwise. The following
lemma is proved in [17].

Lemma 2.6 Assume cn 6! 1. Then

(a) G contains no more than n1=2 small vertices.

(b) G does not contain 2 small vertices at a distance of 4 or less apart.

(c) G contains no vertex of degree 5d or more.

(d) There does not exist a set of large vertices S, jSj � n=d and jNG(S)j � djSj=300.

Now let G0 = Gn;m. Let G1 = fG : G is connected, has minimum degree at least 2
and satis�es the conditions of Lemma 2.6g. Then, by (2.7),

jG1j � e�e
�cn

�
N

m

�
: (2.12)

Note that the running time of HAM on a member of G1 is O(n2(5d)T log n) =
O(n3+o(1)) assuming [8] that we can do a rotation in O(log n) time. We can make
HAM always run in polynomial time by not trying on graphs with maximum degree
� 5d. Note also that HAM is a deterministic algorithm.

Suppose that HAM terminates unsuccessfully in stage k on input G. Let X � E
be deletable if the following three properties hold:

1. No edge of X is incident with a small vertex,

2. No large vertex meets more than d=1000 edges of X, and

3. X \W = ;.

The following lemma is proved in [17].

Lemma 2.7 Suppose that HAM terminates unsuccessfully in stage k on input G 2
G1. Suppose X � E is deletable. Then for large n,

jEND(GX)j � n=1000 (2.13)

jEND(x;GX)j � n=1000 for x 2 END(GX): (2.14)
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(Idea of proof: Let St denote the set of large endpoints of paths at depth t in a tree.
The conditions in Lemma 2.6 imply that jStj � n=d implies jSt+1j � djStj=1000. This
is basically because jSt+1j � (1

2
� o(1))jN(St)j. The o(1) accounts for small neighbors

and the 1
2

comes from two neighbors giving the same new endpoint.)
Now let G2 = fG : G 2 G1 and HAM terminates unsuccessfully on Gg. We use a

\coloring" argument of Fenner and Frieze [34] to prove

jG2j
jG0j ! 0 as n!1: (2.15)

Combining (2.12), our assumption on cn, and (2.15) we obtain:

Theorem 2.8

lim
n!1

P[HAM �nds a Hamiltonian cycle] = lim
n!1

P[Gn;m is Hamiltonian]:

Proof of (2.15): Let ! = d�de for some (arbitrary) positive constant �. For G 2 G1
let (G; j); j = 1; 2; : : : ; � =

�
m
!

�
enumerate all the possible ways of choosing ! edges

of G and coloring them green and the remaining m�! edges blue. Let X = X(G; j)
denote the set of green edges. Let

a(G; j) =

8>>>>>><
>>>>>>:

1

(i) HAM terminates unsuccessfully on G and GX :
(ii) There does not exist e = (x; y) 2 Xsuch that

x 2 END(GX) and y 2 END(x;GX)
(iii) jEND(GX)j � n=1000 and jEND(x;GX)j � n=1000

for all x 2 END(GX):
0 otherwise

We show next that for G 2 G2
�X

j=1

a(G; j) � (1� o(1))

�
m� nT

!

�
: (2.16)

To see this let G 2 G2 and let HAM terminate unsuccessfully in stage k on G. It
follows from (2.10) and Lemmas 2.5 and 2.7 that if X = X(G; j) is deletable then
a(G; j) = 1. Let G0 = (V 0; E 0) be the subgraph of G induced by the large vertices
and the edges not in W (G). Then jV 0j � n� n1=2 and jE 0j � m� nT . The number
of deletable sets is the number of ways of choosing ! edges from E 0 subject to the
condition that no vertex in V 0 is incident with more than d=1000 edges. Almost all
choices of ! edges satisfy this and (2.16) follows.

On the other hand let H be a �xed graph with vertex set [n] and m � ! edges.
Let b(H) = jf(G; j) : H = GX ; G 2 G1 and a(G; j) = 1gj. Then

b(H) �
�
N 0 �m + !

!

�
where N 0 = N �

�dn=1000e
2

�
: (2.17)
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Then, by (2.16),

(1� o(1))

�
m� nT

!

�
jG2j �

X
G2G2

�X
j=1

a(G; j)

�
X
G2G0

�X
j=1

a(G; j) =
X
H

b(H)

�
�
N 0 �m + !

!

��
N

m� !

�

on using (2.17).
It follows that

jG2j
jG0j � (1 + o(1))

�
N 0�m+!

!

��
N

m�!
�

�
m1

!

��
N
!

� � e��d=1000001;

which proves (2.15).

2.3.2 Dense case

Algorithm HAM was designed to work at the threshold for the existence of Hamilto-
nian cycles. At the other end of the scale we have the dense case Gn;p, p constant,
where our graph has 
(n2) edges whp. For the case p = 1=2 (i.e. each graph
equally likely), one can show that HAM fails with probability o(2�n) and if in the
rare occasions where it fails to �nd a Hamiltonian cycle we use the O(n22n) dynamic
programming algorithm of Held and Karp [50] then we have a deterministic algorithm
which (i) runs in polynomial expected time and (ii) always determines whether or not
a graph has a Hamiltonian cycle.

Gurevich and Shelah [49] and Thomason [91] constructed randomized algorithms
which run in (i.e. O(n2)) expected time which is linear in the number of edges whp.

It is in fact quite easy to construct an algorithm which �nds a Hamiltonian cycle
in Gn;1=2 whp. It is more diÆcult to make the failure probability small enough to
make it run in polynomial expected time. Here is a very simple algorithm for the
former case. It is based on the idea of patching cycles. Given two cycles C1; C2 we
look for edges ei = (xi; yi); i = 1; 2 such that G contains the edges f1 = (x1; x2) and
f2 = (y1; y2). We then create a new cycle C = C1 +C2 +f1 +f2�e1�e2 which covers
the vertices of C1 and C2 { see Figure 2.3.2.
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1 2

Patching Algorithm

(a) Divide [n] into s = bn=!c sets X1; X2; : : : ; Xs of size ! or ! + 1 where ! =
d2 log2 ne.

(b) Use the algorithm of [50] to �nd a Hamiltonian cycle Ci through the vertices of
each Xi, i = 1; 2; : : : ; s.
Step (b) takes O(n!2!) = O(n3 log n) time and it fails with probability O(2�!n)
= o(1).

(c) For i = 1; 2; : : : ; s divide each cycle into 2 paths Pi;1; Pi;2 of lengths � !=2 and
then for i = 1; 2; : : : ; s� 1 try to patch Ci into Ci+1 using edges from Pi;2 and
Pi+1;1 which do not contain endpoints of the paths (to avoid dependencies).
The probability that Step (c) fails is O(s2�
(!

2)) = o(1).

The method is easily parallelizable and a more complicated parallel version runs in
O(log log n)2 time [40]. Mackenzie and Stout [63] and Van Wieren and Stout [92]
found O(log� n) parallel expected time algorithms. Parallel algorithms for random
graphs with Kn log n edges were considered in Coppersmith, Raghavan, and Tompa
[26].

2.3.3 Regular graphs

In this section we consider the problem of �nding a Hamiltonian cycle in a random
regular graph. The paper [39] provides an O(n3+o(1)) time extension-rotation algo-
rithm for �nding a Hamiltonian cycle in Gn;r whp provided r � 85, r constant. Frieze,
Jerrum, Molloy, Robinson and Wormald [42] used a completely di�erent approach for
r � 3, r constant.

The idea is very simple: Use the algorithm of Jerrum and Sinclair [51] to generate
a (near) random 2-factor of Gn;r. The paper [39] then argues that whp the number

14



of Hamiltonian cycles in Gn;r is at least a proportion 1=(2n5=2) of the number of 2-
factors. Thus after O(n5=2 log n) applications of the Jerrum-Sinclair algorithm we will
whp produce a Hamiltonian cycle.

A similar idea was used in Frieze and Suen [47] for �nding Hamiltonian cycles in
a random digraph with m edges, m=n3=2 !1.

2.3.4 Digraphs

Analogously to Gn;m the random digraph Dn;m has vertex set [n] and m random
edges. The model Dn;p is de�ned similarly. A natural conjecture would be that Dn;m

is Hamiltonian whp when it has enough edges to ensure that both the minimum in-
degree and out-degree are both at least one whp. This was proved in Frieze [37]. Let
m = n(log n + cn). Then

Theorem 2.9

lim
n!1

P[Dn;m is Hamiltonian] =

8<
:

0 cn ! �1
e�2e

�c
cn ! c

1 cn ! +1

This was proved algorithmically. The cycle is found whp by an O(n3=2) time algo-
rithm. In Section 3.2 we will discuss a result, in some detail, which implies Theorem
2.9.

Earlier, Angluin and Valiant [8] had given an O(n(log n)2) time algorithm which
works whp for m � Kn log n, K suÆciently large. McDiarmid [64] proved the inter-
esting inequality

P[Dn;p is Hamiltonian] � P[Gn;p is Hamiltonian]: (2.18)

So putting p = (log n+ log log n+!)=n; ! !1 (2.18) and Theorem 2.3 implies that
Dn;p is Hamiltonian whp. This is not quite as strong as Theorem 2.9.

2.4 Other models

We briey consider some results pertaining to the existence of Hamiltonians in other
models of a random graph.

Random regular digraphs. Let Dn;r be chosen uniformly from the set of di-
graphs with vertex set [n] in which each vertex has in-degree and out-degree r.

Theorem 2.10 [25] Assume r is constant independent of n.

lim
n!1

P[Dn;r is Hamiltonian] =

�
0 r � 2
1 r � 3

k-out model. In this model Gk�out the vertex set is [n] and then each vertex
v 2 [n] independently chooses k neighbors. This is a graph, not a digraph, the
average degree is 2k and multiple edges are possible. What is known is summarized
in the following. The case k = 3 is an important open question.
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Theorem 2.11 [24]

lim
n!1

P[Gk�out is Hamiltonian] =

�
0 k � 2
1 k � 4

k-in, k-out model. In this model Dk�in;k�out the vertex set is [n] and then each
vertex v 2 [n] independently chooses k in-neighbors and k out-neighbors.

Theorem 2.12 [24]

lim
n!1

P[Dk�in;k�out is Hamiltonian] =

�
0 k = 1
1 k � 2

Hidden Hamiltonian cycles. In this model we start with a cycle of size n and
add either (i) cn random edges to it, c constant or (ii) a random perfect matching.
This has some cryptographic signi�cance in relation to authentication schemes [19].
[19] shows that in case (i), if c is suÆciently large then one can �nd a Hamiltonian cycle
whp in polynomial time. This may not be the original cycle, but it nevertheless kills
the authentication scheme. Similarly, [42] shows that whp we can �nd a Hamiltonian
cycle in case (ii). See Wormald [94] for a recent survey which explains the relation
between graphs generated as in (ii) and random regular graphs.

This ends our discussion of the Hamiltonian cycle problem in random graphs,
except for open problems, see Section 3.5. We turn to the Traveling Salesman Problem
(TSP).

3 Traveling Salesman Problem: independent model

We consider problems where the coeÆcients of the cost matrix C = [ci;j] are either
completely independent (asymmetric model) or constrained by ci;j = cj;i (symmetric
model). Sections 3.1, 3.2 consider exact solutions and then Section 3.3 considers
approximate solutions.

3.1 Symmetric case: exact solution

Let us �rst consider a symmetric model in which the coeÆcients ci;j are random
integers in the range [0::B]. Frieze [36] described an algorithm which �nds an exact
solution whp provided B = o(n= log log n).

The strategy of the algorithm is to �rst �nd a set X0 of troublesome vertices and
then to �nd a set of vertex disjoint paths P = fP1; P2; : : : ; Ptg which cover X0 as
cheaply as possible. By cover we mean that each vertex of X0 is an interior vertex of
one of the paths of P. We choose P to minimize c(P) =

Pt
i=1 c(Pi) where c(Pi) is

the weight of the edges of Pi.
Having found P we then �nd a Hamiltonian cycle H which contains the paths of

P as sub-paths and which otherwise only contains zero length edges. It is easy to see
that H solves the associated traveling salesman problem.
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For B = o(n=(log n)1=2) it suÆces to take X0 = fv 2 [n] : d0(v) � d=2g where
d0(v) is the number of zero length edges incident with v and d = n=B is (close to) the
expected number of zero length edges incident with a vertex. So in the construction of
H we essentially have to �nd a Hamiltonian cycle in a random graph with minimum
degree � d=2. A modi�cation of the algorithm HAM of Section 2.3.1 will suÆce. For
larger B we have to augment X0 by other vertices. There are many details best left
to the interested reader of [36].

3.2 Asymmetric case: exact solution

In this section we consider randomly generated asymmetric problems. In particular we
discuss a result of Frieze, Karp and Reed [43]. The main result of [43] is the following:
For an n� n matrix C let AP (C) be the minimum value for the assignment problem
with matrix C and let ATSP (C) be the minimum cost of a traveling salesman tour
with costs C. We always have AP (C) � ATSP (C). The following provides suÆcient
conditions for equality whp.

Theorem 3.1 Let fXng be a sequence of random variables over the nonnegative reals.
Let p = pn = P[Xn = 0] and let ! = !(n) = np. Let C = C(n) be an n � n matrix
whose entries are drawn independently from the same distribution as Xn. If ! !1
as n!1 then AP (C) = ATSP (C) whp.

We see easily that this implies Theorem 2.9 for the case cn ! +1. Let Xn = 0 or 1.
Now np = log n+cn !1 and it is known from Erd}os and R�enyi [32] that AP (C) = 0
whp. Thus ATSP (C) = 0 whp i.e. whp there is a Hamiltonian cycle in the graph
induced by zero length edges.

Let H be the weighted bipartite graph with vertex set X [ Y , where X =
fx1; x2; : : : ; xng and Y = fy1; y2; : : : ; yng, and with an edge of weight ci;j between xi
and yj. Let D be the complete digraph on vertex set [n], in which each edge (i; j)
has weight ci;j. A cycle cover is a subgraph of D in which each of the n vertices has
in-degree 1 and out-degree 1. The Assignment Problem can be stated in any of the
following equivalent forms:

� Find a perfect matching of minimum weight in H.

� Find a cycle cover of minimum weight in D.

� Find a permutation � (of [n]) to minimize
Pn

i=1 ci;�(i).

Let the indicator variable zi;j be 1 if ci;j = 0 and 0 otherwise. Then the zi;j are
independent, and each zi;j is equal to 1 with probability p. Emulating a useful trick
due to Walkup [93] we view the zi;j as being generated in the following way. Let
h = h(n) be de�ned by the equation 1� p = (1� h)5 and let zki;j, for i = 1; 2; : : : ; n,
j = 1; 2; : : : ; n and k = 1; 2; 3; 4; 5, be independent indicator variables, each of which
is equal to 1 with probability h. Let zi;j = max5

k=1 z
k
i;j. Then the zi;j are independent,

and each is equal to 1 with probability p. For k = 1; 2, let Hk be the bipartite graph
with vertex set X [ Y , and with an edge between xi and yj if and only if zki;j = 1.
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For k = 3; 4; 5, let Dk be the digraph with vertex set [n] and an edge from i to j
if and only if zki;j = 1. The edges of D3, D4 and D5, respectively, will be called
out-edges, in-edges and patch edges. Each type of edge will play a special role in the
construction of a Hamiltonian circuit of weight AP (C). It will be important that the
random graphs H1 and H2, and the random digraphs D3; D4 and D5, are completely
independent. Also, let s = s(n) = nh; s is the expected degree of a vertex in H1 or
H2, and the expected out-degree of a vertex in D3, D4 or D5. Clearly, s � !=5, and
thus s tends to in�nity if ! does.

The construction of the desired Hamiltonian circuit proceeds in the following
stages:

(a) (Identi�cation of troublesome vertices). By considering the edges of H1 [ H2

identify a set A � X and a set B � Y , jAj = jBj. The cardinality of A [ B is
small whp.

The set A [ B contains the vertices of exceptionally small degree plus certain
other vertices that are likely to be incident with edges of nonzero weight in an
optimal assignment. At the same time construct a matching in H which is of
minimum weight, subject to the condition that it covers the vertices in A [ B
and no other vertices. (Compare with the algorithm of the previous section.)

(b) Consider the subgraph of H1 [H2 induced by (X nA) [ (Y nB). This bipartite
graph has a perfect matching whp. Combining that perfect matching with the
matching constructed in the previous step, obtain an optimal assignment for H
in which every non-zero-weight edge is incident with a vertex in A [B.

(c) The optimal assignment just constructed has the properties of a random permu-
tation. In particular it has O(log n) cycles.

(d) Using the out-edges and in-edges, attempt to convert the original optimal as-
signment into a permutation with no short cycles. This process succeeds whp.

(e) Using the patch edges, patch the long cycles together into a single cycle, thus
solving the ATSP , much as in the patching algorithm of Section 2.3.2. The
patching process succeeds whp.

The overall strategy of the proof is to construct an optimal assignment while
keeping the in-edges, out-edges and patch edges (except those incident with A [ B)
in reserve for use in converting the optimal assignment to a tour without increasing
cost.

In this summary we focus on Step (d). The reason we want to get large cycles is
that if we have two cycles C1 and C2, then we get 
(jC1jjC2j) opportunities to create
patches and we need to be sure that this is signi�cantly greater than the inverse of
the probability s2=n2 of making a single patch in D5. So if C1 and C2 are large then
jC1jjC2j � n2=! and this is large compared with n2=s2.
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3.2.1 Elimination of Small Cycles

Call a cycle in a permutation small if it contains fewer than n=
p
! vertices. We

now discuss how the out-edges and in-edges are used to convert the original optimal
assignment into an optimal assignment in which no cycle is small. Our procedure
is to take each small cycle of the original optimal assignment � in turn and try to
remove it without creating any new small cycles.

We now describe the rotation-closure algorithm that is used to eliminate one small
cycle. Let C be a small cycle. We make a number of separate attempts to remove
C. The ith attempt consists of an Out Phase and an In Phase. We will ignore some
technical points which are necessary to maintain some independence.

The Out Phase
De�ne a near-cycle-cover as a digraph � consisting of a directed path P� plus a set
of vertex-disjoint directed cycles covering the vertices not in P�. We obtain an initial
near-cycle-cover by deleting an edge of C from the current (optimal) assignment,
thus converting the small cycle C into a path. We then attempt to obtain many
near-cycle-covers by a rotation process. The state of this process is described by a
rooted tree whose nodes are near-cycle-covers, with the original near-cycle-cover at
the root. (Compare with HAM of Section 2.3.1.) Consider a typical node � consisting
of a path P� directed from a� to b� plus a cycle cover of the remaining vertices. We
obtain descendants of � by looking at out-edges directed from b�. Consider an edge
that is directed from b� to a vertex y with predecessor x. Such an edge is successful
if either y lies on a large cycle or y lies on P� and the sub-paths of P� from a� to x
and from y to b� are both of length at least n=

p
!. In such cases a descendant of � is

created by deleting (x; y) and inserting (b�; y). The tree of near-cycle-covers is grown
in a breadth-�rst manner until the number of leaves reaches m =

p
n ln n.

Assuming that the number of vertices on short cycles is less than n=!1=3 (this is
true whp) and ignoring some technicalities, the number of descendants of node � is a
is a binomial random variable B(n� o(n); s=n), and the random variables associated
with distinct nodes are independent. Suppose that level t of the rooted tree describing
the Out Phase has a vertices. Then, applying the Cherno� bound (1.4) on the tails
of the binomial, the number of nodes at level t + 1 lies between as=2 and 2as, with
probability greater than or equal to 1 � e�as=10. Hence the probability that the Out
Phase fails to produce m leaves is (quite conservatively) at most

P1
k=1 e

�ks=10 �
e�s=20:

The In Phase
The tree produced by an Out Phase has m terminal nodes. Each of these is a near-
cycle-cover in which the directed path begins at the same vertex v. Let the jth
terminal node be denoted Gj, and let the directed path in Gj run from v to xj. During
the In Phase we grow rooted trees independently from all the Gj, j = 1; 2; : : : ;m.
The process is like the Out Phase, except that, in computing the descendants of a
node �, we fan backwards along in-edges, rather than forwards along out-edges.

If all goes according to plan, we end the In Phase with at least m2=2 near-cycle-
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covers. The conditional probability that we cannot close any of the paths of these
covers into large cycles is at most (1 � s=n)m

2=2 � n�s=2. Closing a path creates a
new optimal assignment with at least one less small cycle.

3.3 Asymmetric case: approximation algorithm

We now consider approximation algorithms for the case where the entries ci;j of our
n � n matrix C are independent uniform [0,1] random variables. Karp [54] was the
�rst to prove the rather surprising fact that

ATSP (C) = AP (C) + o(1) � 1� o(1) whp: (3.1)

He constructed an O(n3) patching algorithm to do this. We see then that Karp's
algorithm is asymptotically optimal. (Note that the lower bound in (3.1) has been
increased to more than 1.5 and it is conjectured that AP (C) � �2

6
whp.) Later Karp

and Steele [55] improved this to

ATSP (C) = AP (C) + O(n�1=2) whp

and Dyer and Frieze [27] made further improvements showing ATSP (C) = AP (C) +
O((log n)4=(n log log n)). More recently, Frieze and Sorkin [46] have made a small
improvement, showing

ATSP (C)� AP (C) � c1
(log n)2

n
whp (3.2)

for some constant c1 > 0.
We now outline the proof of (3.2). It was shown in [46] that whp the optimum

assignment solution (cycle cover) only has edges of length � c2
logn
n

whp for some
constant c2 > 0. We let an edge be coloured
Red: c(i; j) 2 [0; c2

logn
n

]; Blue : c(i; j) 2 [c2
logn
n
; 2c2

logn
n

];

Green: c(i; j) 2 [2c2
logn
n
; 3c2

logn
n

]; Black otherwise.
Then whp the optimum assignment solution (cycle cover) C will consist entirely

of Red edges. By symmetry it will have the cycle structure of a random cycle cover,
i.e. have � 2 log n cycles whp.

Let a cycle of C be small if its length is � n=(log n)1=3. We use the rotation-closure
algorithm of the previous section to remove small cycles. To grow the trees we are
only allowed to use edges (i; j) which either one of the 10 shortest out of i or one of
the 10 shortest into j. One can show that whp the trees grow at a rate of at least
3 per level and so they only need to be grown to a depth of O(log n). The expected
length of these edges is O(1=n). When we have grown enough paths, we can whp
close one using a Blue edge. Thus whp it costs O( logn

n
) to remove a small cycle, the

cost of the added Red/Blue edges. There are � 2 log n cycles altogether and so it
costs O((log n)=n) to make all cycles of length at least n=(log n)1=3.

We can then whp patch all these cycles into one at the extra cost of O((log n)2=3�
(log n=n)) proving (3.2).
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3.4 Asymmetric case: enumeration algorithm

The AP can be expressed as a linear program:

LP : Maximise
X
i;j

c(i; j)xi;j subject to
X
i

xi;k =
X
j

xk;j = 1;8k; 0 � xi;j � 1;8i; j:

This has the dual

DLP : Maximise
X
i

ui +
X
j

vj subject to ui + vj � c(i; j);8i; j:

Suppose now that we condition on an optimal basis for LP and insist that u1 = 0. It
follows that the remaining dual variables are uniquely determined, with probability 1
{ they satisfy 2n�1 linear equations. Furthermore the reduced costs �c(i; j) = c(i; j)�
ui � vj of the non-basic variables N are independently and uniformly distributed in
the interval [maxf0; ui + vjg; 1 � ui � vj ]. (Within this interval c(i; j) 2 [0; 1] and
�c(i; j) � 0.) It is shown in [46] that whp

max
i;j

fjuij; jvj jg = O

�
log n

n

�
: (3.3)

Let Ik denote the interval [2�kc1
(logn)2

n
; 2�(k�1)c1

(logn)2

n
] for k � 1. It follows from

(3.3) and the distribution of the reduced costs �c(i; j) of the non-basic variables, that
whp (i) there are � c12

�(k�1)n log n non-basic variables xi;j whose reduced cost is in
Ik; 1 � k � k0 = 1

2
log2 n and (ii) there are � 2c1

p
n log n non-basic variables xi;j

whose reduced cost is � c1
(logn)2

n3=2
.

We can search for the optimal solution to ATSP by choosing a set of non-basic
variables, setting them to 1 and then resolving the assignment problem. If we try all
sets and choose the best tour we �nd, then we will clearly solve the problem exactly.
However, it follows from (3.2) that we need only consider sets which contain � 2k

variables with reduced costs in Ik and none with reduced cost � c1
(logn)2

n
. Thus whp

we need only check at most

22c1
p
n logn

k0Y
k=1

2kX
t=1

�
c12

�(k�1)n log n

t

�
= e

~O(
p
n)

sets.
We have thus shown

Theorem 3.2 ATSP can be solved exactly whp in e
~O(
p
n) time.

3.5 Open problems

Problem 1 Is G3�out Hamiltonian whp?

It is unthinkable that the answer is no!
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Problem 2 Is there an extension-rotation algorithmic proof of the fact that random
cubic graphs are Hamiltonian?

Some empirical work suggests that there is such a proof.

Problem 3 Show that Gn;r is Hamiltonian whp in the case where r = r(n) !1.

In unpublished work, [41], it was shown to be true for r = o(n1=5).

Problem 4 For what range of values of m is it true that G = Gn;m contains bÆ(G)=2c
edge disjoint Hamiltonian cycles whp?

The paper [18] deals with the case where m � 1
2
n log n.

Problem 5 Let Qn denote the n-cube { vertex set f0; 1gn and an edge joining two
vectors of Hamming distance 1. Let Qn;p be the random subgraph of Qn obtained by
independently deleting edges with probability 1�p. Find the threshold for the existence
of a Hamiltonian cycle in Qn;p.

The approximate threshold for connectivity is p = 1
2

(Erd}os and Spencer [33]);
p = 1

2
is also the approximate threshold for the existence of a perfect matching

(Bollob�as [15]).

Problem 6 Is there a polynomial expected time algorithm for checking Hamiltonicity
(??) of Gn;m for all m?

Problem 7 Suppose c � 3=2 is constant and p = c=n and G = Gn;p. Is it true that

lim
n!1

P[Gn;p is Hamiltonian j Æ(G) � 3] = 1?

Bollob�as, Cooper, Fenner and Frieze [16] prove this result for c suÆciently large.

Problem 8 Can you improve the result of Section 3.1 to B = o(n)?

Problem 9 Is there an analogous algorithm to that of Section 3.3 for the symmetric
case where ci;j = cj;i are i.i.d. uniform [0,1]?

A natural approach is to �nd a minimum weight 2-factor �rst and then try to patch
the cycles together. The problem with this is proving that such a 2-factor does not
have many cycles.

Problem 10 Suppose that np = c in Theorem 3.1. Determine the limiting probability
that AP (C) = ATSP (C).

It is shown in [43] that this probability is not 1.

Problem 11 Determine the precise order of magnitude of jAP (C)�ATSP (C)j un-
der the assumptions of Section 3.3. If this is small, can you �nd a polynomial time
algorithm that solves ATSP (C) exactly whp?

Problem 12 Suppose the edges of Gn;m are randomly colored using n colors. What
is the threshold for the existence of a Hamiltonian cycle in which each edge has a
di�erent color?

The same question for spanning trees was solved in Frieze and McKay [45].
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4 Euclidean Traveling Salesman Problem

Most of what follows has appeared elsewhere in the literature and our aim is to bring
together the various methods and results. The focus is on describing those proba-
bilistic methods used to analyze the TSP which have the potential to describe the
behavior of heuristics as well. The methods described here also treat the probabilistic
behavior of prototypical problems of Euclidean combinatorial optimization, including
the minimal spanning tree problem, the minimal matching problem, and the Steiner
minimal spanning tree problem. See the monographs of Steele [85] and Yukich [97]
for details. Here we describe two key tools used in the probabilistic analysis of the
total edge length of the Euclidean TSP on random samples of large size. The �rst
tool is the boundary functional method and the second tool involves the isoperimetric
inequalities of Rhee and Talagrand.

4.1 Basic properties of the Euclidean TSP

If F � R
d is a point set and R � R

d a d-dimensional rectangle, then we let T (F;R)
denote the total edge length of the shortest tour through F \ R. We view T as
a function on pairs of the form (F;R), where F is a �nite set and R is a rectangle.
When R = [0; 1]d we write T (F ) for T (F; [0; 1]d). This notation emphasizes that T is a
function of two arguments and helps draw out the sub-additivity and super-additivity
intrinsic to T . Elementary but essential properties of T include:

(a) Monotonicity. If F � G, then T (F;R) � T (G;R) for all rectangles R.
(b) Scaling (homogeneity). For all � > 0, for all rectangles R, and for all F � R

T (�F; �R) = �T (F;R):

(c) Translation invariance. For all y 2 R
d , for all rectangles R, and for all F � R

we have
T (F;R) = T (F + y;R + y):

(d) Geometric sub-additivity. Subdivide [0; 1]d into md sub-cubes Q1; Q2; :::; Qmd

of edge length m�1. Given F � [0; 1]d, let T (F \Qi) denote the length of the shortest
tour through F \Qi. By adding and deleting edges it is easy to see that the length
of the shortest tour through F is bounded above by the sum of the tour lengths
T (F \ Qi); 1 � i � md; plus at most 2md edges each of length at most twice the
diagonal of any sub-cube Qi. This last set of edges is used to connect the minimal
tours on each set F \Qi; 1 � i � md, into a feasible grand tour through F . Thus we
have shown that T satis�es geometric sub-additivity with an error term:

T (F; [0; 1]d) �
mdX
i=1

T (F \Qi; Qi) + C1m
d�1; (4.1)

where C1 is a �nite constant.
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(e) Growth bounds. For all d = 2; 3; ::: there is a constant C2 := C2(d) such that
for all F � [0; 1]d we have

T (F; [0; 1]d) � C2jF j(d�1)=d: (4.2)

These growth bounds follow from an easy application of the pigeonhole principle and,
as noted by Rhee [72], also follow from geometric sub-additivity [97].

(f) Smoothness (H�older continuity). For all d = 2; 3; ::: there is a constant C3 :=
C3(d) such that for all sets F; G � [0; 1]d, T satis�es the smoothness condition:

jT (F [G)� T (F )j � C3jGj(d�1)=d:

Since T is monotonic, the proof of smoothness follows once we show

T (F [G) � T (F ) + C3jGj(d�1)=d:

This last estimate is immediate since the length of the shortest tour through F [ G
is bounded above by the sum of the length T (F ) of the shortest tour through F , the
length T (G) of the shortest tour through G, and the length of two edges connecting
the sets F and G. Since T (G) � C2jGj(d�1)=d, smoothness follows.

If a functional such as the TSP satis�es conditions (b),(c),(d), and (f), then we
say that it is a smooth sub-additive Euclidean functional [81], [97].

The probabilistic analysis of the Euclidean TSP is simpli�ed conceptually and
technically by two key ideas, which are developed in the next sections. The �rst
idea involves the concentration of the shortest tour length around its average value.
By showing that the Euclidean TSP is tightly concentrated around its mean value,
the probabilistic analysis of the TSP often reduces to an analysis of the behavior of
its average value. This idea lies at the heart of asymptotic analysis. The second key
idea involves a modi�ed TSP functional, called the boundary functional, which closely
approximates the standard TSP, and which also has a natural super-additive struc-
ture. By combining super-additivity together with sub-additivity, the TSP functional
becomes \nearly additive" in the sense that

T (F \R) � T (F \R1) + T (F \R2);

where R1 and R2 form a partition of the rectangle R. Relations of this sort are crucial
in showing that the global TSP tour length can be approximately expressed as a sum
of the lengths of local components.

4.2 The concentration of the TSP around its mean

The following basic result provides the a.s. asymptotics for T (U1; :::; Un), where
U1; :::; Un are i.i.d. uniform random variables in [0; 1]d; d � 2. These asymptotics
were �rst proved by Beardwood, Halton, and Hammersley [9].
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Theorem 4.1 For all d = 2; 3; ::: there is a �nite positive constant �(d) such that

lim
n!1

T (U1; :::; Un)

n(d�1)=d
= �(d) a:s:

Thus, the length of the average edge is roughly �(d)n�1=d. In dimension 2 Rhee
and Talagrand [76] show that the length of the longest edge in the TSP tour on
U1; :::; Un is bounded above by C(log n=n)1=2 with high probability. Theorem 4.1
shows that there are not many \long" edges.

There are many ways to prove Theorem 4.1 and we refer to the classic papers of
Steele [81], [84] for simple proofs as well as non-trivial generalizations. Perhaps the
easiest way to prove Theorem 4.1 involves showing that

lim
n!1

ET (U1; :::; Un)

n(d�1)=d
= �(d); (4.3)

and then showing that the total tour length T (U1; :::; Un) is closely approximated by
the mean tour length ET (U1; :::; Un).

The isoperimetric method lies at the heart of this approach. Loosely speaking,
isoperimetric methods show that suitably regular functions are \close" to their av-
erage values [88]. For a full appreciation of the power of these methods, the reader
should consult Section 4.8 below. For the moment we will consider only the fol-
lowing isoperimetric inequality. It is stated in a generality which lends itself to the
study of both heuristics and a panoply of related problems in Euclidean combinatorial
optimization.

Theorem 4.2 (Rhee's isoperimetric inequality [72]) Let Xi; i � 1; be independent
random variables with values in [0; 1]d; d � 2. Let L be a smooth, sub-additive
Euclidean functional. Then there is a constant C4 := C4(d) such that for all t > 0

P[jL(X1 ; :::; Xn)� EL(X1 ; :::; Xn)j > t] � C4 exp

�
�(t=C3)

2d=(d�1)

C4n

�
(4.4)

The estimate (4.4) is an example of a deviation inequality: it tells us how L
deviates from its average value. We call (4.4) an isoperimetric inequality since its proof
[72],[97] rests upon an isoperimetric inequality for the Hamming distance on ([0; 1]d)n.
The upshot of (4.4) is that, excepting a set with polynomially small probability, the
functional L(X1; :::; Xn) and its mean EL(X1; :::; Xn) do not di�er by more than
C(n log n)(d�1)=2d. The most useful consequence of Rhee's concentration estimate
(4.4) is that it reduces the problem of showing complete convergence of L to one of
showing the convergence of the mean of L. The mean of L is a scalar and showing
convergence of scalars is usually easier than showing convergence of random variables.

Corollary 4.3 (convergence of means implies complete convergence) Let Xi; i � 1;
be i.i.d. random variables with values in [0; 1]d; d � 2. Let L be a functional which is
homogeneous, translation invariant, and smooth. If the mean of L converges in the
sense that

lim
n!1

EL(X1; :::; Xn)=n(d�1)=d = �(L; d)
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then
lim
n!1

L(X1; :::; Xn)=n(d�1)=d = �(L; d) c:c:

Proof The deviation estimate (4.4) implies for all � > 0

1X
n=1

P

�����L(X1; :::; Xn)� EL(X1; :::; Xn)

n(d�1)=d

���� > �

�
� C

1X
n=1

exp

 
�
�

�

C3

�2d=(d�1)
n

C4

!
:

Thus, by de�nition,
���L(X1;:::;Xn)�EL(X1 ;:::;Xn)

n(d�1)=d

��� converges completely to zero and the

proof is complete. 2

Thus to prove Theorem 4.1 it will be enough to show the limit (4.3). The next
section describes a method of proof involving the boundary TSP. This approach helps
prove probabilistic statements that go considerably beyond Theorem 4.1. For esti-
mates of �(d) we refer to [70] and pages 50-51 of [97].

4.3 The boundary TSP

Given F � [0; 1]d, the boundary TSP functional TB(F ) is, loosely speaking, the cost
of the least expensive tour through F , where the cost of travel within [0; 1]d is the
usual Euclidean distance, but where travel along any path on the boundary @[0; 1]d

of the unit cube is free.
We provide a more precise and slightly more general de�nition as follows. For all

rectangles R, �nite sets F � R, and pairs fa; bg � @R, let T (F;R; fa; bg) denote the
length of the shortest path through F [fa; bg with endpoints a and b. The boundary
TSP functional is given by

TB(F;R) := min

 
T (F;R); inf

X
i

T (Fi; R; fai; big
!
;

where the in�mum ranges over all partitions (Fi)i�1 of F and all sequences of pairs
of points (ai; bi)i�1 belonging to @R.

Boundary functionals were �rst used by Redmond [66] and Redmond and Yukich
[67], [68] in the analysis of general Euclidean functionals. They are reminiscent of
the \wired boundary condition" and the \wired spanning forest" used in the study
of percolation and random trees, respectively. TB may be interpreted as the length
of the shortest tour through F which may repeatedly exit to the boundary of R at
one point and re-enter at another, incurring no cost for travel along the boundary.

The boundary TSP functional TB satis�es geometric super-additivity: if the rect-
angle R is partitioned into rectangles R1 and R2 then

TB(F;R) � TB(F;R1) + TB(F;R2): (4.5)

To see this, note simply that the restriction of the global tour realizing TB(F;R) to
rectangle Ri; 1 � i � 2, produces a feasible boundary tour of F\Ri; 1 � i � 2, which
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by minimality has a length which is at least as large as TB(F;Ri). The absence of an
error term in super-additivity contrasts sharply with the geometric sub-additivity of
T . This distinction, which has telling consequences, often makes the analysis of TB
far easier than the analysis of T .

By de�nition TB � T . It is easily checked that TB satis�es all of the basic
properties of the usual Euclidean TSP, excepting geometric sub-additivity.

To prove convergence of the mean of T (which by Corollary 4.3 implies c.c. conver-
gence) over independent random variables U1; U2; :::; Un with the uniform distribution
on [0; 1]d, namely to prove the limit

lim
n!1

ET (U1 ; :::; Un)

n(d�1)=d
= �(d);

it is enough to prove the following two basic lemmas:

Lemma 4.4 (Asymptotics for the boundary functional) For all d = 2; 3; ::: there is a
constant �(d) such that

lim
n!1

ETB (U1; :::; Un)

n(d�1)=d
= �(d):

Lemma 4.5 (TB approximates T ) The following approximation holds:

jETB (U1; :::; Un)� ET (U1 ; :::; Un)j = o(n(d�1)=d):

The proof of Lemma 4.5 is deferred to the next section. There are at least two ways
to prove Lemma 4.4. The �rst way, which bears a likeness to the original bare hands
approach of Beardwood et al. [9], relies on straightforward analysis of super-additive
sequences of real numbers. The second way draws heavily on a multi-parameter
super-additive ergodic theorem.

First proof of Lemma 4.4. Set �(n) = ETB (U1; :::; Un). Partition [0; 1]d into md

sub-cubes Q1; Q2; :::; Qmd of edge length m�1. The number of points from the sample
(U1; :::; Un) which fall in a given sub-cube of [0; 1]d of volume m�d is a binomial
random variable B(n;m�d) with parameters n and m�d. It follows from scaling and
the super-additivity (4.5) of TB that

�(n) � m�1
mdX
i=1

�(B(n;m�d)):

By smoothness and Jensen's inequality (1.1) in this order we have

�(n) � m�1
mdX
i=1

�
�(nm�d)� C3E (jB(n;m�d)� nm�dj(d�1)=d)�

� m�1
mdX
i=1

�
�(nm�d)� C3(nm

�d)(d�1)=2d
�
:
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Simplifying, we get

�(n) � md�1�(nm�d)� C3m
(d�1)=2n(d�1)=2d:

Dividing by n(d�1)=d and replacing n by nmd yields the homogenized relation

�(nmd)

(nmd)(d�1)=d
� �(n)

n(d�1)=d
� C3

n(d�1)=2d
:

Set � := �(d) := lim supn!1
�(n)

n(d�1)=d and note that � � C2 by growth bounds (4.2).
(Here and elsewhere the symbol \:=" means \equal to by de�nition".) For all � > 0;

choose no such that for all n � no, we have C3=n
(d�1)=2d � � and �(no)=n

(d�1)=d
o � ���:

Thus, for all m = 1; 2; ::: it follows that

�(nom
d)

(nomd)(d�1)=d
� � � 2�:

To now obtain Lemma 4.4 we use the smoothness of TB and a simple interpolation
argument. For an arbitrary integer k � 1 �nd the unique integer m such that

nom
d < k � no(m + 1)d:

Then jnomd � kj � Cnom
d�1, where here and elsewhere C denotes a �nite positive

constant whose value may change from line to line. By smoothness we therefore
obtain

�(k)

k(d�1)=d
� �(nom

d)

(no(m + 1)d)(d�1)=d
� C3(Cnom

d�1)(d�1)=d

(m + 1)d�1n(d�1)=do

� (� � 2�)(
m

m + 1
)d�1 � C3(Cnom

d�1)(d�1)=d

(m + 1)d�1n(d�1)=do

:

Since the last term in the above goes to zero as m goes to in�nity, it follows that

lim inf
k!1

�(k)=k(d�1)=d � � � 2�:

Now let � tend to zero to see that the lim inf and the lim sup of the sequence
�(k)

k(d�1)=d ; k � 1, coincide, that is

lim
k!1

�(k)

k(d�1)=d
= �:

We have thus shown

lim
n!1

ETB (U1; :::; Un)

n(d�1)=d
= �

as desired. In the next few paragraphs we will see that � is positive. This concludes
the �rst proof of Lemma 4.4. 2

Before providing the second proof of Lemma 4.4 we recall a general super-additive
ergodic theorem. Let R(d) denote the d-dimensional rectangles of R

d . Let L =
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fL(R); R 2 R(d)g be a multi-parameter functional de�ned on a probability space
(
;A; P). L is stationary if for all m � 1; R1; :::; Rm 2 R(d), and u 2 (R+)d, the
joint distributions of L(R1); :::; L(Rm) and L(R1 + u); :::; L(Rm + u) are the same.
L is bounded if supn EL([0; n]d)=nd < 1 and L is strongly super-additive if L(R) �Pm

i=1 L(Ri), where the rectangles R1; R2; :::; Rm form a partition of R. Notice that
strong super-additivity is stronger than the usual super- additivity.

The following strong law of large numbers of Akcoglu and Krengel [2] generalizes
Kingman's sub-additive ergodic theorem.

Theorem 4.6 (Super-additive ergodic theorem) Let L := fL(R) : R 2 R(d)g be a
stationary, bounded, super-additive functional de�ned on (
;A; P). Then

lim
n!1

L([0; n]d)

nd
= f(L; d)

a.s. and in L1, where f(L; d) 2 L1(
;A; P): Moreover,

E f(L; d) = �(L; d) = sup
R

EL(R)

volumeR
:

�(L; d) is the spatial constant for the process L. It is a generalization of the time
constant in the theory of one-dimensional sub-additive processes. It is now an easy
matter to provide an alternate proof of Lemma 3.4.

Second proof of Lemma 4.4 [96] . Set

TB(R) = TB(� \R;R); R 2 R(d);

where � is a Poisson point process on (R+)d with intensity 1. TB is stationary and
strongly super-additive. Since �\ [0; n]d = n(U1; :::; UN ); where N is an independent
Poisson random variable with parameter nd, we see that TB is bounded:

ETB ([0; n]d) = ETB (n(U1; :::; UN ); [0; n]d)

= nETB (fU1; :::; UNg; [0; 1]d)

� C2nEN
(d�1)=d

� C2n
d;

by Jensen's inequality (1.1). The L1 convergence given by the super-additive ergodic
theorem implies

lim
n!1

ETB ([0; n]d)

nd
= �(d) = sup

R2R(d)

ET (R)

volumeR
;

where we note that the spatial constant �(d) is clearly positive. Since ETB ([0; n]d) =
nETB (U1; ::; UN ) we o btain

lim
n!1

ETB (U1; :::; UN )

nd�1
= �(d):
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By straightforward smoothness arguments, the above convergence is una�ected if N
is replaced by its mean nd. Moreover, interpolation arguments show that nd may be
replaced by n, which thus yields Lemma 4.4 with �(d) = �(d). Notice that this proof
shows that �(d) is strictly positive. This concludes the second proof of Lemma 4.4.

2

4.4 The boundary TSP approximates the standard TSP

To obtain laws of large numbers, rates of convergence of means, and large deviation
principles, it is extremely useful to know that the boundary TSP functional closely
approximates the standard TSP functional. The following estimate, which establishes
Lemma 4.5, is a start in this direction:

jET (U1; :::; Un)� ETB (U1; :::; Un)j � Cn(d�2)=d: (4.6)

We will show (4.6) by following the approach of Redmond and Yukich [67], [68].
Since TB � T , in order to prove (4.6) it suÆces to show

ET (U1; :::; Un) � ETB (U1; :::; Un) + Cn(d�2)=d:

To show this, we �rst estimate the cardinality of points which are joined directly
to the boundary. As in [97], let F denote one of the faces of [0; 1]d. Letting UF �
fU1; :::; Ung be the set of points that are joined directly to F by the graph realizing
TB, we �rst show that E jUF j � Cn(d�1)=d: For all � > 0 and x 2 F , let C(�; x) denote
the cylinder in [0; 1]d determined by the � disk in F centered at x. We make the
critical observation that in the part of C(�; x) which is at a distance greater than �
from F , there are at most two points which are joined to F . Were there three or more
points, then two of these points could be joined with an edge, which would result in a
cost savings, contradicting optimality. Since F can be covered with O(��(d�1)) disks
of radius �, we have the bound

E jUF j � E jfx 2 (Ui)i�n : d(x; F ) � �gj + C��(d�1);

where d(x; F ) denotes the distance between the point x and the set F . The above
is bounded by n� + C��(d�1) and so putting � = n�1=d gives the desired estimate
E jUF j � Cn(d�1)=d: If U � fU1; :::; Ung denotes the set of points which are joined
directly to any face of the boundary, then

E jUj � Cn(d�1)=d:

We are now positioned to show (4.6). Let U 0 � @[0; 1]d be the set of points on the
boundary of [0; 1]d which are joined to points in U . Let T (U 0) (respectively, MM(U 0)
denote the total edge length of the graph of the minimal tour (respectively, minimal
matching) through U 0 whose edges lie on @[0; 1]d. Note that the union of the minimal
tour graph through U 0, the minimal tour graph through U 0, and the boundary TSP
graph through U1; :::; Un de�nes an Eulerian path through fU1; :::; Ung[U 0, where all
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vertices have even degree. Deleting some of the edges in this path yields a feasible
tour through fU1; :::; Ung [ U 0: It follows that

ET (U1 ; :::; Un) � ET ((U1; :::; Un) [ U 0)
� ETB (U1; :::; Un) + ET (U 0) + EMM(U 0):

Now ET (U 0) � CE jU 0 j(d�2)=(d�1) since U 0 lies in the union of sets of dimension d� 1.
By Jensen's inequality (1.1), we �nd ET (U 0) � Cn(d�2)=d: Since EMM(U 0) � ET (U 0)
we have shown (4.6) as desired. 2

The approximation (4.6) is probabilistic. With a little extra e�ort one can show
the following deterministic estimate. Let F � [0; 1]d and jF j = n. If md = n=�(n),
where �(n) is an unbounded increasing function of n, then as explained in detail in
[97], T satis�es the following near additivity condition

jT (F )�
mdX
i=1

T (F \Qi; Qi)j � C��1=d(d�1)n(d�1)=d: (4.7)

The �rst term on the right hand side of (4.7) arises from approximating T (F\Qi); 1 �
i � md; by the length of the restriction of the global tour to sub-cube Qi and the last
term in (4.7) is just the sub-additive error md�1 from (4.1).

In other words,

jT (F )�
mdX
i=1

T (F \Qi; Qi)j = o(n(d�1)=d): (4.8)

The approximation (4:6) readily shows that asymptotics for ET (U1; :::; Un) follow
from the asymptotics for ETB (U1; :::; Un). However, these approximations, together
with approximations (4:7) and (4:8) carry many additional bene�ts and provide:

� a straightforward probabilistic analysis of partitioning heuristics,

� estimates for the rate of convergence of ET (U1 ; :::; Un),

� asymptotics for T (X1; :::; Xn), where Xi; i � 1; are i.i.d. with an arbitrary
distribution, and

� large deviation principles for T (U1; :::; Un).

The following sections explore these bene�ts.

4.5 Analysis of heuristics

The a.s. asymptotics of Theorem 4.1 led Karp [52], [53] to �nd eÆcient methods
for approximating the length T (U1; :::; Un) of the shortest path through i.i.d. uni-
formly distributed random variables U1; :::; Un on the unit square. In his seminal
work [52], [53], Karp developed the \�xed dissection algorithm" which provides a
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simple heuristic TH(U1; :::; Un) having the property that TH(U1; :::; Un)=T (U1; :::; Un)
converges completely to 1 and which moreover has polynomial mean execution time.

Karp's �xed dissection algorithm consists of dividing the unit cube [0; 1]d into md

congruent sub-cubes Q1; :::; Qmd , �nding the shortest tour Ti of length T (fU1; :::; Ung\
Qi) on each of the sub-cubes, constructing a tour T which links representatives from
each Ti, and then deleting excess edges to generate a grand (heuristic) tour through
U1; :::; Un having length TH(U1; :::; Un).

Karp and Steele [55] show via elementary methods that the partitioning heuristic
TH is �-optimal with probability one:

Theorem 4.7 (Karp and Steele, [55]) If md := n=�, where � is an unbounded in-
creasing function of n, then for all � > 0

1X
n=1

P

�
TH(U1; :::; Un)

T (U1; :::; Un)
� 1 + �

�
<1:

Theorem 4:7 shows that the ratio of the lengths of the heuristic tour and the
optimal tour converges completely to 1. Given the computational complexity of the
TSP, it is remarkable that the optimal tour length is so well approximated by a sum
of individual tour lengths, where the sum has polynomial mean execution time.

Since Karp's work [52], [53], considerable attention has been given to developing
the probability theory of heuristics. Goemans and Bertsimas [48] develop the a.s.
asymptotics for the Held-Karp heuristic [50]. They do this by essentially showing that
the Held-Karp heuristic is a smooth sub-additive Euclidean functional and therefore
is amenable to the methods discussed here. To develop the probability theory of other
heuristics, such at Christo�des' heuristic, one could hope to apply modi�cations of
the methods discussed here. This could involve approximating the heuristic by a
super-additive \boundary heuristic". Here we limit ourselves to a discussion of the
proof of Theorem 4:7 using the approximations (4:7) and (4:8).

Given F � [0; 1]d consider the feasible tour through F obtained by solving the
optimization problem on the sub-cubes Qi; 1 � i � md, and then adding and deleting
edges in the resulting graph to obtain a global solution on the set F . This feasible
solution, which we call the canonical heuristic H, has a total edge length denoted
by TH(F;md). TH(F;md) is the sum of the lengths T (F \ Qi); 1 � i � md, plus a
correction term which is bounded by C1m

d�1. Thus TH satis�es

T (F ) � TH(F;md) �
mdX
i=1

T (F \Qi) + C1m
d�1:

As in the previous section, we let the number of sub-cubes depend on the cardi-
nality of F , denoted by jF j for brevity. To make this precise, let � := �(n) denote
a function of n such that �(n) and n=�(n) increase up to in�nity. Such functions �
de�ne heuristics H := H(�) having length

TH(�)

�
F;

jF j
�(jF j)

�
:
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Thus the heuristic H(�) subdivides the unit cube into jF j
�(jF j) sub-cubes. If we let

md := jF j
�(jF j) we obtain from the near additivity condition (4.7)

jT (F )� TH(�)(F )j = o(n(d�1)=d): (4.9)

Thus the length TH(�)(F ) is larger than T (F ) by a quantity which is deterministically
small compared to n(d�1)=d: Therefore the asymptotic behavior of the scaled heuristic

TH(�)(X1; :::; Xn)=n(d�1)=d (4.10)

coincides with the asymptotic behavior of

T (X1; :::; Xn)=n(d�1)=d; (4.11)

where Xi; i � 1; are i.i.d. random variables with values in the unit cube [0; 1]d. We
will see shortly (see Theorem 4.10 below) that the ratio (4:11) converges completely
to a positive constant whenever the law of X1 has a continuous part. By (4.9) it thus
follows that (4:10) also converges completely to a constant. It therefore follows by
standard arguments that the ratio of (4:10) to (4:11) converges completely to 1. We
have thus extended Karp and Steele's result to general sequences of random variables:

Theorem 4.8 (the heuristic TH is �-optimal over general sequences) For all � > 0
and all i.i.d. sequences Xi; i � 1; of random variables with a continuous part, the
heuristic TH(�) is �-optimal:

1X
n=1

P

�
TH(X1; :::; Xn)

T (X1; :::; Xn)
� 1 + �

�
<1: (4.12)

We conclude the discussion of heuristics by verifying that the expected execution
time for TH(U1; :::; Un) is polynomially bounded. The required computing time is
bounded by

Tn :=

n=�(n)X
i=1

f(Ni);

where Ni := jfQi \ fU1; :::; Unggj; 1 � i � n=�(n), and where f(N) denotes a
bound on the time needed to compute T (F ); jF j = N: It is well-known that we may
take f to have the form f(x) = AxB2x, for some constants A and B. Since the
Ni; 1 � i � n=�(n), are binomial random variables, straightforward calculations [55]
show that

ETn � 4An(�(n))B�1 exp(�(n)):

Now choose �(n) = log n to conclude that the expected execution time for the heuris-
tic TH is O(n2 logB�1 n), as desired.

33



4.6 Rates of convergence of mean values

The sub-additivity of the TSP functional is not enough to give rates of convergence.
Sub-additivity only yields one sided estimates whereas rate results require two sided
estimates. However, since the TSP functional can be made super-additive through
use of the boundary TSP functional this will be enough to yield rates of convergence.
Similar methods apply for other problems in Euclidean combinatorial optimization
[97]. Alexander [5] obtains rate results without the use of boundary functionals.
Rhee [73] shows that the following rates are optimal on the unit square provided that
ET (U1; :::; Un) is replaced by the Poissonized version ET (U1; :::; UN(n)).

Theorem 4.9 (rates of convergence of means) For all d = 2; 3; :::, there is a constant
C such that

jET (U1; :::; Un)� �(d)n(d�1)=dj � Cn(d�2)=d:

Proof We will �rst prove

jET (U1; :::; UN(n))� �(d)n(d�1)=dj � Cn(d�2)=d; (4.13)

where we adhere to the convention that N(n) denotes an independent Poisson random
variable with parameter n. The proof of (4.13) involves simple but useful sub-additive
techniques. We set �(n) = ET (U1; :::; UN(n)): It follows from translation invariance,
homogeneity, and sub-additivity, that

�(nmd) � m�1
mdX
i=1

�(n) + Cmd�1 = md�1�(n) + cmd�1:

Dividing by (nmd)(d�1)=d yields the homogenized relation

�(nmd)

(nmd)(d�1)=d
� �(n)

n(d�1)=d
+

C

n(d�1)=d
:

The limit of the left side as m tends to in�nity exists and equals �(d). Thus

�(n)

n(d�1)=d
� �(d) � �C

n(d�1)=d

or simply

�(n)� �(d)n(d�1)=d � �C: (4.14)

Setting �B(n) := ETB (U1; :::; UN(n)) and exploiting the super-additivity of TB in
the same way that we exploited the sub-additivity of T , we obtain the companion
estimate to (4.14) where we may now let C = 0:

�B(n)� �(d)n(d�1)=d � 0: (4.15)
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By closeness (4.6) of T and TB , Fubini's theorem, and independence, we have

j�B(n)� �(n)j � EN jE UTB(U1; :::; UN )� E UT (U1; :::; UN )j
� EN (CN (d�2)=d)

� C(n(d�2)=d)

where EN and E U denote the expectation with respect to the random variables N and
U , respectively. Now (4.13) follows from (4.14) and (4.15). It remains to de-Poissonize
(4.13) to obtain Theorem 4.9. Notice by smoothness that

jET (U1; :::; UN )� ET (U1; :::; Un)j � CE jN � nj(d�1)=d � Cn(d�1)=2d;

and thus when d � 3 we easily obtain Theorem 4.9. For d = 2 this simple method
does not work and to obtain Theorem 4.9 we need slightly more work (see [97]).

This completes the proof of Theorem (4.9). 2

4.7 Asymptotics over non-uniform samples

Let Xi; i � 1; be i.i.d. random variables with values in [0; 1]d; d � 2, and let f denote
the density of the absolutely continuous part of the law � of X1. In their seminal
paper, Beardwood, Halton, and Hammersley [9] established the following asymptotics
for the length of the shortest tour T (X1; :::; Xn).

Theorem 4.10 (asymptotics for the TSP non-uniform samples) For all d = 2; 3; :::
we have

lim
n!1

T (X1; :::; Xn)

n(d�1)=d
= �(d)

Z
[0;1]d

f(x)(d�1)=ddx c:c: (4.16)

The limit (4.16) is proved in two stages. One �rst proves (4.16) when the density

of � is a step function of the form
Pmd

i=1 �i1Qi; �i 2 R
+ ; where Qi; 1 � i � md; is

a partition of [0; 1]d into sub-cubes of edge length m�1. Then (4.16) is deduced by
approximating general densities by step densities. There are several ways to carry out
this program. The easiest arguments [81], [85] make clever use of the monotonicity of
T , but such arguments are not easily generalized to treat other Euclidean functionals.
We now outline a simple approach to (4.16) which is general enough to deliver asymp-
totics for a wide variety of problems in combinatorial optimization and computational
geometry and which has the potential to describe asymptotics for heuristics as well.
The approach yields c.c. asymptotics and it can be extended to treat the case when
the random variables Xi; i � 1; have unbounded support (Rhee [71]). The methods
here are part of the \umbrella approach" described in detail in [97].

The proof of (4.16) depends upon two observations which greatly simplify the
analysis. The �rst is that by Corollary 4.3, it is enough to show that (4.16) holds in
expectation, i.e. to show

lim
n!1

ET (X1 ; :::; Xn)

n(d�1)=d
= �(d)

Z
[0;1]d

f(x)(d�1)=ddx: (4.17)
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The limit (4.17) is a statement about a sequence of scalars and, in principle, is easier
to prove than the limit (4.16).

The second observation is that in the presence of smoothness of T , it is enough to
establish (4.17) for a special class of distributions which we call blocked distributions.
These are distributions � on [0; 1]d with the form �(x)dx+�s, where �(x) is a simple

non-negative function of the form
Pmd

i=1 �i1Qi , where the measure �s is purely singular
and Qi; i � 1, are the usual sub-cubes. More precisely, we have the following lemma
which is due to Steele [83].

Lemma 4.11 Suppose that for every sequence of i.i.d. random variables Xi; i � 1;
distributed with a blocked distribution � := �(x)dx + �s we have that

lim
n!1

ET (X1; :::; Xn)

n(d�1)=d
= �(d)

Z
[0;1]d

f(x)(d�1)=ddx: (4.18)

We then have that

lim
n!1

ET (Y1; :::; Yn)

n(d�1)=d
= �(d)

Z
[0;1]d

f(x)(d�1)=ddx (4.19)

where Yi; i � 1, are i.i.d. random variables whose law has an absolutely continuous
part given by f(x)dx.

Proof Assume that the distribution of Y has the form �Y := f(x)dx + �s,
where �s is singular. For all � > 0 we may �nd a blocked approximation to �Y of the
form �X := �(x) + �s, where � := �� approximates f in the L1 sense:Z

[0;1]d
j�(x)� f(x)jdx < �:

By standard coupling arguments there is a joint distribution for the pair of random
variables (X;Y ) such that P[X 6= Y ] � 2�. Thus it follows that

jET (X1 ; :::; Xn)� ET (Y1 ; :::; Yn)j � CE jfi � n : Xi 6= Yigj(d�1)=d
� C(�n)(d�1)=d:

Thus, by (4.18) we obtain

lim
n!1

����ET (Y1 ; :::; Yn)

n(d�1)=d
� �(d)

Z
[0;1]d

�(x)(d�1)=ddx

���� � C(�(d�1)=d): (4.20)

For all a; b � 0 we have

ja(d�1)=d � b(d�1)=dj � ja� bj(d�1)=d

and therefore by the L1 approximation����
Z

f(x)(d�1)=ddx�
Z

�(x)(d�1)=ddx

���� �
Z
jf(x)� �(x)j(d�1)=ddx (4.21)

� �(d�1)=d: (4.22)
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Combining (4.20) and (4.21) and letting � tend to zero gives (4.19) as desired. 2

We are now ready to prove Theorem 4.10. By the above lemma, the proof of
Theorem 4.10 is reduced to showing (4.18). By simple smoothness arguments it it
enough to show

lim
n!1

ET (X1; :::; XN(n))

n(d�1)=d
= �(d)

Z
[0;1]d

�(x)(d�1)=ddx; (4.23)

where N(n) is a Poisson random variable with parameter n. For simplicity we will
assume �s = 0.

Notice that jfi � N(n) : Yi 2 Qjgj; 1 � j � md, is a Poisson random variable
N(n�jm

�d). Let Ui; i � 1, be i.i.d. uniform random variables with values in [0; 1]d.
By geometric sub-additivity and scaling we have

ET (X1; :::; XN(n)) � m�1
mdX
j=1

ET (fUigN(n�jm
�d)

i=1 ) + Cmd�1:

By Theorem 4.1 it follows that

lim sup
n!1

ET (X1 ; :::; XN(n))

n(d�1)=d
�

mdX
j=1

lim sup
n!1

 
ET (U1; :::; UN(n�jm�d))

n(d�1)=d�(d�1)=d
j m�(d�1)

� �(d�1)=d
j m�d

!

= �(d)

Z
[0;1]d

�(x)(d�1)=ddx:

Similarly, by geometric super-additivity and by Lemma 4.4 we see that

lim inf
n!1

ETB (X1; :::; XN(n))

n(d�1)=d
� �(d)

Z
[0;1]d

�(x)(d�1)=ddx

and the desired limit (4.23) follows since T � TB.

4.8 Talagrand's isoperimetric theory

Section 4.2 described how the TSP deviates from its average value. The concentration
estimates of Theorem 4.2 are general and apply to functionals which are homogeneous,
translation invariant, and smooth. In the case of the TSP, however, the deviation
estimates of Theorem 4.2 are far from optimal. In this section we will see that
Talagrand's [88], [89] deep isoperimetric methods for product spaces yields improved
tail estimates for the TSP. These estimates resemble the tail estimates of a standard
normal random variable and suggest that perhaps the TSP is asymptotically normally
distributed. Isoperimetric methods have the potential to describe the deviations of
heuristics as well.

Talagrand's isoperimetric theory is substantial and has had a profound impact in
the probability theory of random graphs. This section illustrates how one piece of Ta-
lagrand's theory may be used to study the tail behavior of the TSP. Our presentation
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is motivated by the �ne exposition of Steele [85]. Naturally, we will not present all
the technical aspects of the theory and refer the reader to [85] and [88] for complete
details.

To study the tail behavior of T (U1; :::; Un), where Ui; i � 1; are i.i.d. with the
uniform distribution on the unit cube [0; 1]d, it is useful to view T as a functional
de�ned on the n-fold product space 
n := ([0; 1]d)n. We adopt this point of view and
will thus consider isoperimetric methods on the product space 
n, where the triple
(
;A;P) is a probability space. The following discussion makes no use of the fact
that 
 is the unit cube and indeed, the value of isoperimetric theory lies precisely in
the fact that (
;A; P) can be any abstract probability space.

Given A � 
n, Talagrand's isoperimetric theory provides estimates of the measure
of the set of points in 
n which are within a speci�ed distance of A. There are many
ways to de�ne a distance on 
n and perhaps the simplest is the Hamming distance
dH(x; y) := jf1 � i � n; xi 6= yigj. The Hamming distance from a point x 2 
n to a
set A � 
n is given by

dH(x;A) := inf
y2A

nX
i=1

Ifxi 6=yig:

Rhee's isoperimetric inequality (4.4) is actually based on a simple isoperimetric in-
equality involving the Hamming distance dH .

Talagrand [88] shows for every � > 0 and every probability measure P on 
 that
the Hamming distance satis�es the following exponential integrability condition:Z


n

exp(�dH(x;A))dPn � 1

Pn [A]
exp(�n�2=4): (4.24)

We will see shortly how to use this sort of condition to derive concentration esti-
mates for the TSP. Talagrand's method of proof actually applies to all of the Hamming
metrics

da(x; y) :=

nX
i=1

aiIfxi 6=yig; a = (a1; :::; an) 2 (R+)n;

provided that the factor of n in the exponent of (4.24) is replaced by kak2 =
Pn

i=1 a
2
i .

We let da(x;A) = infy2A da(x; y):
By considering a still di�erent and slightly more complicated method for measur-

ing distance we will be able to improve upon the isoperimetric inequality (4.4) when
the functional L is the TSP. Talagrand's convex hull control distance or simply convex
distance is given by

dc(x;A) := sup
jaj=1

da(x;A):

The convex distance uniformly controls the Hamming metrics da; jaj = 1. The present
de�nition of dc, while the simplest for our purposes, somewhat obscures its convexity
properties.

There is a second way to formulate the de�nition of dc:

dc(x;A) := min

(
t : 8 faig 9y 2 A such that

nX
i=1

aiIfxi 6=yig � t(

nX
i=1

a2i )
1=2

)
:
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It is straightforward to see that these two de�nitions of dc are equivalent. Notice that
by letting ai = n�1=2 for all 1 � i � n we see that dc(x;A) is always at least as large
as n�1=2dH(x;A).

The convex distance satis�es an exponential square integrability condition, as
described by the next theorem, also due to Talagrand [88]. The proof [88] of this
theorem uses induction on n and while it is surprisingly short, we will not reproduce
it here. Notice that this integrability condition is in general stronger than (4.24).

Theorem 4.12 For every set A � 
n we haveZ

n

exp

�
1

4
d2c(x;A)

�
dPn(x) � 1

Pn [A]
:

It follows by the generalized Chebyshev inequality (1.2) with f(x) = exp(1
4
x2)

that

P
n [dc(x;A) > t] � e�t

2=4

Pn [A]
: (4.25)

This is an abstract and general deviation bound for the convex distance. It is far
from obvious that this general bound has relevance to the tail behavior of the TSP. We
will now see shortly how to put this to good use. We �rst need one technical lemma
which helps us compare the behavior of T on x := fx1; :::; xng and y := fy1; :::; yng.
For details concerning the proof see Steele [85].

Lemma 4.13 There is a non-negative weight function a(x) = (a1(x); :::; an(x)) such
that for all x := fx1; :::; xng and y = fy1; :::; yng the TSP functional satis�es

T (x1; :::; xn) � T (y1; :::; yn) +

nX
i=1

ai(x)Ifxi 6=yig; (4.26)

where ka(x)k2 � C2 uniformly in x.

Combining the above lemma and Theorem 4.12 we can now show that T does
not deviate much from its median. We recall that Ui; i � 1; are i.i.d. random
variables with the uniform distribution on [0; 1]d. We let Mn denote a median of
T (U1; :::; Un) and we follow Steele [85] closely. The next statement, which improves
upon the martingale estimates of [74] and [75], shows that T (U1; :::; Un)�Mn exhibits
sub-Gaussian tail behavior. For d = 2 and t in the range 0 � t � Cn1=2, this tail
behavior is sharp [69].

Corollary 4.14 (concentration for the TSP) We have

P[jT (U1; :::; Un)�Mnj � t] � 4 exp(�t2=4C2):
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Proof Following Steele [85], we use Theorem 4.12 for the parameterized fam-
ily of sets

A(b) := ffy1; y2; :::; yng : T (y1; :::; yn) � bg:
We know by inequality (4.26) for all fx1; x2; :::; xng and fy1; y2; :::; yng that

T (fx1; :::; xng) � T (fy1; :::; yng) +

nX
i=1

aiIfxi 6=yig:

Minimizing over y 2 A(b) gives

T (x1; x2; :::; xn) � b + min
y2A(b)

nX
i=1

ai(x)Ifxi 6=yig

= b + min
y2A(b)

kak2
nX
i=1

(ai(x)=kak2)Ifxi 6=yig

� b + Cdc(x;A(b))

by the de�nition of dc(x;A(b)) and by hypothesis (4.13). We obtain for x = fU1; U2; :::; Ung
that dc(x;A(b)) � C�1(T (U1; U2; :::; Un)� b):

By Theorem 4.12 we have

P
n [dc(x;A(b)) > t] � 1

Pn [A(b)]
exp(�t2=4);

and therefore if we write Tn := T (U1; :::; Un) then

P
n [Tn � b + Ct] � 1

Pn [A(b)]
exp(�t2=4):

Thus, letting u = Ct, we have

P
n[Tn � b]Pn[Tn � b + u] � exp(�u2=4C2)

and by letting b = Mn and then b = M � n � u we complete the proof of Corollary
4.14.

2

4.9 Further applications of boundary functionals

(a) Large Deviation Principles. Letting F = fU1; :::; Ung, the near additivity con-
dition (4.7) expresses the fact that the global tour length through F is roughly the
sum of i.i.d. local tour lengths. Together with smoothness, this condition shows that
if X(n) = n1=dT (U1; :::; UN(n)); where N(n) is the usual independent Poisson random
variable with parameter n, then X(n) satis�es the following Donsker-Varadhan large
deviation principle. This principle quanti�es the precise deviations of X(n)=n and
re�nes the strong law of large numbers expressed in Theorem 4.1. For t 2 R we let

�(t) := limn�1 log E [exp tX(n)]
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be the logarithmic moment generating function for X(n). The convex dual is

��(x) := sup
t2R

ftx� �(t)g:

Theorem 4.15 (Large deviation principle for the TSP [79]) For all closed sets F �
R we have

lim sup
n!1

log P[n�1X(n) 2 F ] � � inf
x2F

��(x)

and for all open sets O � R we have

lim inf
n!1

log P[n�1X(n) 2 O] � � inf
x2O

��(x):

Moreover, �� has its unique zero at �(d).

The proof of Theorem 4.15 is long and involved. Complete details may be found
in Sepp�al�ainen and Yukich [79], which also gives an entropic characterization of ��.

(b) Directed TSP Consider the random directed graph Gn whose vertices are in-
dependent and uniformly distributed random variables U1; :::; Un on the unit square.
For 1 � i � j � n, the orientation of the edge XiXj is selected at random, inde-
pendently for each edge and independently of the Ui; i � 1. The edges in Gn are
given a direction by ipping fair coins. The directed TSP involves �nding the shortest
directed path through the random vertex set. If D(n) = D(U1; :::; Un) denotes the
length of the shortest directed path through the sample U1; :::; Un; then Steele [82]
shows that

lim
n!1

ED(n)=n = �

for some constant �. Talagrand [87] shows that this convergence can be improved
to complete convergence. It is not clear whether boundary fuctionals can be used to
obtain asymptotics over more general point sets as in (4.16).

(c) Power Weighted Edges. For all p > 0, consider the length T p(F ) of the shortest
tour through F with pth power weighted edges. Thus

T p(F ) := min
T

X
e2T

jejp;

where the minimum is over all tours T and where jej denotes the Euclidean edge
length of the edge e. The method of boundary functionals [58], [97] shows that for
all 0 < p < d we have the following generalization of (4.16):

lim
n!1

T p(X1; :::; Xn)

n(d�p)=d
= �(d; p)

Z
[0;1]d

f(x)(d�p)=ddx c:c: (4.27)

where �(d; p) is a constant depending only on d and p. For the case p = d, a more
delicate use of boundary functionals [95] shows that if Ui; i � 1; are i.i.d. with the
uniform distribution on [0; 1]d then

lim
n!1

T d(U1; :::; Un) = C(d) a:s:;
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where C(d) is some �nite constant.

(d) Worst Case Tour Length. Let the largest possible length of a minimal tour
with pth power weighted edges through n points in [0; 1]d be denoted by

� p(n) := max
F�[0;1]d;jF j=n

T p(F ):

By considering boundary TSP functionals (with power weighted edges) it is particu-
larly easy to show the asymptotics

lim
n!1

� p(n)

n(d�p)=d
= (d; p)

where (d; p) is some positive constant. Steele and Snyder [86] were the �rst to
prove these asymptotics, although they restricted attention to the case p = 1. Using
boundary functionals, Yukich [97] treats the case 1 � p < d and Lee [59] treats the
cases 0 < p < 1 and p � d.

4.10 Open problems

Problem 13 Theorem 4.15 and Talagrand's concentration inequality for the TSP
provide circumstantial evidence that the TSP functional satis�es asymptotic normality
in the following sense:

T (U1; :::; Un)� ET (U1 ; :::; Un)

(VarT (U1; :::; Un))1=2
! N(0; 1):

Proving or disproving the above central limit theorem remains a diÆcult open problem
and would add to the central limit theorem for the length of the Euclidean minimal
spanning tree over a random sample [6], [56], [57].

Problem 14 Develop the a.s. limit theory for Christo�des' heuristic. In particular,
does the Christo�des' heuristic satisfy the limit given by Theorem 4.10?

The methods described here can possibly be modi�ed to treat the Christo�des'
heuristic. This may involve de�ning a superadditive boundary heuristic.

Problem 15 Develop the a.s. limit theory for the directed TSP: investigate whether
the directed TSP satis�es the limit in Theorem 4.10.

Problem 16 Establish that the variance of the TSP converges, i.e., show that in
dimension 2 we have VarT (U1; :::; Un) ! C, where C is some positive constant.

Problem 17 Find theoretical values for the limiting constants �(d) and (d; p). Per-
haps the problem is simpli�ed by using a metric on R

d other than the Euclidean metric.
Rhee [70] shows that in high dimensions �(d) is close to (d=2�e)1=2.
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Problem 18 Use the Aldous - Steele objective method [4] to show the a.s. and the
L1 convergence of T p(U1; :::; Un) when p equals the dimension d.

This would provide a second way to identify the limiting constant �(d; d) and it would
complement the Aldous-Steele results [4] on the random Euclidean minimal spanning
tree.

Problem 19 The large deviation principle (Theorem 4.15) holds for a Poisson num-
ber of uniform random variables. Does this LDP hold for a �xed deterministic number
of uniform random variables?

Problem 20 Generalize Theorem 4.15 by establishing a general large deviation prin-
ciple for the random variables T (X1; :::; Xn), where Xi; i � 1, are i.i.d. with an arbi-
trary distribution on [0; 1]d. Show that the rate function exhibits quadratic behavior.

Problem 21 Bi-partite matching. Given Xi; 1 � i < 1, and Yi; 1 � i < 1, two
independent sequences of random variables with the uniform distribution on [0; 1]d,
the bi-partite matching problem studies the behavior of

Tn = min
�

nX
i=1

kXi � Y�(i)k;

where � runs over all permutations of the integers 1; 2; :::; n. When d � 3 subadditive
methods ([28]) imply that ETn=n

(d�1)=d ! C for some constant C. When d = 2, sub-
additive methods fail and it is known ([3], [90]) only that there are positive constants
C1 and C2 such that

C1 � ETn=(n log n)1=2 � C2:

The logarithmic term in the denominator prevents us from applying the usual subad-
ditive arguments to conclude that

ETn=(n log n)1=2 ! C; (4.28)

where C is some positive constant. Proving or disproving (4.28) remains an intriguing
unsolved problem.

Problem 22 Bi-partite TSP. Given Xi; 1 � i < 1, and Yi; 1 � i < 1, two
independent sequences of random variables with the uniform distribution on [0; 1]2, the
bi-partite TSP involves �nding the length of the shortest tour through Xi; 1 � i � n,
and Yi; 1 � i � n, such that each X point is joined to two Y points and vice versa. If
Tn denotes the length of the shortest such tour then clearly Tn is bounded below by the
length of the bi-partite matching on the union of Xi; 1 � i � n and Yi; 1 � i � n.
However, �nding the asymptotics of Tn remains open.

Problem 23 Non-standard scaling. Theorem 4.10 tells us that whenever random
variables X1; X2; ::: have an absolutely continuous part, then T (X1; :::; Xn) scales like
n(d�1)=d. This raises the following question: given an arbitrary increasing function
f(n) = o(n(d�1)=d); when do there exist i.i.d. random variables X1; :::; Xn such that

lim
n!1

T (X1; :::; Xn)=f(n) = C;

where C is a positive �nite constant?
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