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Abstract whether or not it believed andB are similar to each other.
For example, perhapswas learned from some past train-
We consider the following clustering problem: we have ing data. In this case, a natural approach to clustering is to
a complete graph om vertices (items), where each edge apply f to every pair of documents in your set, and then to
(u,v) is labeled either or — depending on whetherand find the clustering that agrees as much as possible with the
v have been deemed to be similar or different. The goal results.
is to produce a partition of the vertices (a clustering) that Specifically, we consider the following problem. Given
agrees as much as possible with the edge labels. That isa fully-connected grap&' with edges labeled£" (similar)
we want a clustering that maximizes the number@dges  or “—” (different), find a partition of the vertices into clus-
within clusters, plus the number ef edges between clus- ters that agrees as much as possible with the edge labels.
ters (equivalently, minimizes the number of disagreements:in particular, we can look at this in terms of maximizing
the number of- edges inside clusters plus the numbesof  agreementgthe number of- edges inside clusters plus the
edges between clusters). This formulation is motivated fromnumber of— edges between clusters) or in terms of mini-
a document clustering problem in which one has a pairwise mizing disagreementfhe number of- edges inside clus-
similarity functionf learned from past data, and the goalis ters plus the number of edges between clusters). These
to partition the current set of documents in a way that cor- two are equivalent at optimality but, as usual, differ from
relates withf as much as possible; it can also be viewed as the point of view of approximation. In this paper we give
a kind of “agnostic learning” problem. a constant factor approximation to the problem of minimiz-
An interesting feature of this clustering formulation is ing disagreements, and a PTAS for maximizing agreements.
that one does not need to specify the number of clugters We also extend some of our results to the case of real-valued
as a separate parameter, as in measures such-agdian edge weights. This problem formulation is motivated in part
or min-sum or min-max clustering. Instead, in our formu- by some clustering problems at Whizbang Labs in which
lation, the optimal number of clusters could be any value learning algorithms have been trained to help with various
between 1 and,, depending on the edge labels. We look clustering tasks [8, 9, 10].
at approximation algorithms for both minimizing disagree- ~ What is interesting about the clustering problem defined
ments and for maximizing agreements. For minimizing dis- here is that unlike most clustering formulations, we do not
agreements, we give a constant factor approximation. For need to specify the number of clustdras a separate pa-
maximizing agreements we give a PTAS. We also show howameter. For example, irmedian [7, 15] or min-sum clus-
to extend some of these results to graphs with edge labelgering [20] or min-max clustering [14], one can always get
in [-1,+1], and give some results for the case of random a perfect score by putting each node into its own cluster —
noise. the question is how well one can do with origlusters. In
our clustering formulation, there is just a single objective,

d . 1An example of one such problem is clustering entity names. In this
1 Introduction problem, items are entries taken from multiple databases (e.g., think of
names/affiliations of researchers), and the goal is to do a “robust uniq”

. _ — collecting together the entries that correspond to the same entity (per-
Suppose that youare given a senajocuments to clus son). E.g., in the case of researchers, the same person might appear

ter into topics. Unfortunately, you have no idea of what myiple times with different affiliations, or might appear once with a
a “topic” is. However, you have at your disposal a classi- middle name and once without, etc. In practice, the classffigypi-
i i cally would output a probability, in which case the natural edge label is
fier f(A’ B) that given two documentd and B, outputs log(Pr(same)/Pr(different)). This is O if the classifier is unsure, positive if
*Department of Computer Science, Carnegie Mellon University. the classifier believes the items are more likely in the same cluster, and
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and the optimal clustering might have few or many clusters:  Our PTAS for approximating the number of agreements
it all depends on the edge labels. means that if the optimal clustering has error rgtthen we

To get a feel for this problem, notice that if there exists can find one of error rate at mast- e. Our running time is
a perfect clustering, i.e., one that gets all the edges correctexponential inl /e, but this means that we can achieve any
then the optimal clustering is easy to find: just delete-all “ constant error gap in polynomial time. What makes this in-
edges and output the connected components of the graptieresting from the point of view of agnostic learning is that
remaining. (This is called the “naive algorithm” in [10].) there are very few nontrivial problems where agnostic learn-
Thus, the interesting case is when no clustering is perfect.ing can be done in polynomial time. Even for simple classes
Also, notice that for any grap@, it is trivial to produce a  such as conjunctions and disjunctions, no polynomial-time
clustering that agrees with at ledsilf of the edge labels:  algorithms are known that give even an error gap/&—e.
if there are more+ edges than- edges, then simply put all
vertices into one big cluster; otherwise, put each vertexinto 2  Notation and Definitions
its own cluster. This observation means that for maximiz-
ing agreements, getting2zaapproximation is easy (note: we LetG = (V, E) be a complete graph anvertices, and

will show a PTAS). In general, finding the optimal cluster- let e(u, v) denote the labek{ or —) of the edggu, v). Let
ing is NP-hard, which can be seen via a tedious reduction N+ (y) = {u}U{v: e(u,v) = +}andN~(u) = {v :

from X3C (details can be found in [5]). e(u,v) = —} denote the positive and negative neighbors of
Another simple fact to notice is that if the graph contains « respectively.
a triangle in which two edges are labeledand one is la- We letOPT denote the optimal clustering on this graph.

beled—, then no clustering can be perfect. More generally, In general, for a clustering, letC(v) be the set of vertices

the number of edge-disjoint triangles of this form gives a in the same cluster as We will use A to denote the clus-

lower bound on the number of disagreements of the optimal tering produced by our algorithms.

clustering. This fact is used in our constant-factor approxi-  In a clustering’, we call an edgéu, v) a mistake if ei-

mation algorithm. there(u,v) = + and yetu ¢ C(v), ore(u,v) = — and
For maximizing agreements, our PTAS is quite similar u € C(v). Whene(u,v) = +, we call the mistake gos-

to the PTAS developed by [12] for MAX-CUT on dense itive mistake otherwise it is called aegative mistakeWe

graphs, and related to PTASs of [4, 3]. Notice that since denote the total number of mistakes made by a clustering

there must exist a clustering with at leastn — 1)/4 C by m¢, and usenopr to denote the number of mistakes
agreements, this means it suffices to approximate agreemade byOPT.
ments to within an additive factor af22. This problem For positive real numbers y andz, we user € y+zto

is also closely related to work on testing graph properties denoter € [y — z,y + z]. Finally, letX for X C V' denote
of [13, 19, 1]. In fact, we show how we can use the Gen- the complementV \ X).
eral Partition Property Tester of [13] as a subroutine to get a

PTAS with runningtime()(neo((%)%)). Unfortunately, this 3 A Constant Factor Approximation for Min-

is doubly exponential int, so we also present an alterna- imizing Disagreements
tive direct algorithm (based more closely on the approach
« 1 . . . .
of [12]) that takes only) (n2e°(<)) time. We now describe our main algorithm: a constant-factor

approximation for minimizing the number of disagree-
Relation to agnostic learning: One way to view this ments.
clustering problem is that edges are “examples” (labeled as The high-level idea of the algorithm is as follows. First,
positive or negative) and we are trying to represent the targetwe show (Lemma 1) that if we can cluster a portion of
function f using a hypothesis class of vertex clusters. This the graph using clusters that each look sufficiently “clean”
hypothesis class has limited representational power: if we (Definition 1), then we can charge off the mistakes made
want to say(u,v) and (v, w) are positive in this language, within that portion to “erroneous triangles™: triangles with
then we have to saju,w) is positive too. So, we might two + edges and one- edge. Furthermore, we can do
not be able to represelfitperfectly. This sort of problem —  this in such a way that the triangles we charge are nearly
trying to find the (nearly) best representation of some arbi- edge-disjoint, allowing us to bound the number of these
trary targetf in a given limited hypothesis language — is mistakes by a constant factor of OPT. Second, we show
sometimes calledgnostidearning [17, 6]. The observation (Lemma 2) that there must exist a nearly optimal cluster-
that one can trivially agree with at least half the edge labels ing OPT’ in which all non-singleton clusters are “clean”.
is equivalent to the standard machine learning fact that oneFinally, we show (Theorem 3 and Lemma 7) that we can al-
can always achieve error at mast2 using either theall gorithmically produce a clustering of the entire graph con-
positiveor all negativehypothesis. taining only clean clusters and singleton clusters, such that



mistakes that have an endpoint in singleton clusters are(v,w) is negative. There will be at leagt;| — 0(|C;| + |C;])
bounded byOPT’, and mistakes with both endpoints in such vertices as before and at i€ ;|+|C;|) of them will

clean clusters are bounded using Lemma 1. be already taken. Moreover only the positive edgew)
We begin with a definition of a “clean” cluster and a can be chosen twice (once &s, w) and once agw, u)).
“good” vertex. Repeating the above argument, we again see that we ac-
o . ] count for at least half (hence at least a quarter) of the posi-
Definition 1 A \{erte>.<v is calledé-goqd with respect t’, tive mistakes using edge disjoint triangles.
whereC C V, if it satisfies the following: Now depending on whether there are more negative mis-
o INT(v)NC| > (1-6)[C| takes or more positive mistakes, we can choose the triangles
appropriately, and hence account for at least 1/8 of the total
o [INT(v) N (V\C)| <d|C] mistakes in the clustering.l
If a vertexv is notd-good with respect to (wr, then it is
calledd-bad wrt C. Finally, a setC is é-clean if all v € C Lemma2 There exists a clusterin@PT' in which each
are 6-good wrtC. non-singleton cluster ig-clean, andmopt < (5% +
l)mopT.

We now present two key lemmas.
Proof: Consider the following procedure applied to the

Lemmal Given a clustering oV in which all clusters are clustering ofOPT and call the resulting clusterir@PT'.
d-clean for somey < 1/4, then the number of mistakes

made by this clustering is at mastiopr. Procedure §-Clean-Up: Let COPT c9PT . .cOPT be

Proof: Let the clustering o/ be (Cy,---,C). We will the clusters irOPT.
bound the number of mistakes made by this clusterin§ by

times the number of edge-disjoint “erroneous triangles” in 1. Lets =0.

the graph, where an erroneous triangle is a triangle having 2. Fori =1,---, k do:

two + edges and one edge. We then use the fact ti@aP T

must make at least one mistake for each such triangle. (@) If the number of-bad vertices i ’"'" is more
First consider the negative mistakes. Pick a negative thang|CPPT), then,S = SUCPYT, ¢ = 0. We

edge(u,v) € C; x C; that has not been considered so far. call this “dissolving” the cluster.

We will pick aw € C; such that bothu,w) and (v, w) (b) Else, letB; denote thel-bad vertices irCOPT.

are positive and associate, v) with the erroneous triangle ThenS = SU B; andC! = COPT \ B;.

(u,v,w). We now show that for al{u,v), such aw can

always be picked such that no other negative edgés) 3. Output the clusterinQPT': C{,C), ...,C}, {z}zes-

or (u,v") (i.e. the ones sharingor v) also pickw.

Since(; is d-clean, neither: nor v has more thai|C,|
negative neighbors insidé;. Thus (u,v) has at least
(1 — 26)|C;| verticesw such that bothu,w) and (v, w)
are positive. Moreover, at mo86|C;| — 2 of these could
have already been chosen by other negative edges) or + / OPT OPT
(u',v). Thus(u,v) has at leasfl — 40)s + 2 cﬁgice)s of INTEINGl = (1=0/3)IC 0P|T_ O/31C
w that satisfy the required condition. Singe< 1/4, (u, v) = (1=26/3)[c7"
will always be able to pick suchza. > (1-9)|Cl|

Note that any positive edde, w) can be chosen at most _

2 times by the above scheme, once for negative mistakesSimilarly, counting positive neighbors ofin ¢ ?**'NC; and
onv and possibly again for negative mistakeswonThus ~ outsideCP™, we get,
we can account for at least a fourth (because only positive

We will prove thatmopr andmgopt are closely related.
We first show that eact); is  clean. Clearly, this holds

if C/ = 0. Now if C! is non-empty, we know thd€ PFT| >

IC!| > |CPFT|(1 — 6/3). For each point € C|, we have:

edges are double counted) of the negative mistakes using INT)nci] < (0/3)[CP7H] + (0/3)IC7 ]
edge disjoint erroneous triangles. < 2 |c
Now, we consider the positive mistakes. Just as above, - 3 (1-4/3)
we will associate mistakes with erroneous triangles. We < dIcl] (asd < 1)
will start afresh, without taking into account the labelings
from the previous part. Thus eaclt! is §-clean.
Consider a positive edge betweer C; andv € C;. Let We now account for the number of mistakes. If we

C;i| > |C;|. Pick aw € C; such that(u, w) is positive and dissolve som&PFT, then clearly the mistakes associated
J i



with vertices in originaC Ot T is at least(d/3)2|COPT|? /2.

Lemmab5 Given an arbitrary setX, if v; € C} andv, €

The mistakes added due to dissolving clusters is at mostC’, thenv; andwv, cannot both b&d-good wrtX.

(COPT2/2.

If COFT was not dissolved, then, the original mistakes in
COPT were at leass/3|CPTT||B;|/2. The mistakes added
by the procedure is at moB;||C Y T|. Noting that6/§ <
9/6%, the lemma follows. W

For the clusterinPT’ given by the above lemma, we
useC| to denote the non-singleton clusters &htb denote
the set of singleton clusters. We will now describe Algo-
rithm Cautious that tries to find clusters similar@@®T'.
Throughout the rest of this section, we assumecihatﬁ.

Algorithm Cautious:
1. Pick an arbitrary vertex and do the following:

(@) LetA(v) = N*(v).

(b) (Vertex Removal Step): While 3z € A(v) such
thatz is 30-bad wrtA(v), A(v) = A(v) \ {z}.

(c) (Vertex Addition Step): LetY = {y|ly € V,y is
76-good wrtA(v)}. Let A(v) = A(v) UY .2

2. DeleteA(v) from the set of vertices and repeat until no
vertices are left or until all the produced set&) are
empty. In the latter case, output the remaining vertices
as singleton nodes.

Call the clusters output by algorithm Cautious
Ap,Ay,---.  Let Z be the set of singleton vertices
created in the final step. Our main goal will be to show that
the clusters output by our algorithm satisfy the property
stated below.

Theorem 3 Vj, 3i such thalC; C A;. Moreover, eactd;
is 115-clean.

In order to prove this theorem, we need the following
two lemmas.

Lemma4 If v € C}, whereC! is aé-clean cluster irOPT’,
then, any vertex € C/ is 36-good wrt N+ (v).

Proof: Asv,w € C;, [INT(v)NC}| > (1-6)|C]], INT(w)N
Cil > (1 —9)|cj| and| N (w) N C| < 9|C|-

Also, (1 — 9)|Ci| < |[NT(v)] < (1 + 9)|C}|. Thus, we
get the following two conditions.

INT(w) N NT(v)] > (1= 20)[Ci] > (1 - 30)|NT(v)]

IN*@)NNF ()] < 201C) < T N* ()] < 31N+ 0)

Thus,w is 36-good wrtN +(v). W

20bserve that in the vertex addition step, all vertices are added in on
step as opposed to in the vertex removal step

Proof: Firstly if v is 3§-good wrt some arbitrary séf, then
(1-360)|X| < NT(v) < (14 3d)|X].

Suppose that; andv, are both3é-good with respect to
X. Then|N*(v1)NX| > (1-38)|X|and|N T (ve)NX| >
(1-38)|X|, hencd Nt (v )NNT(v2)NX| > (1-60)|X],
which implies that Nt (vy) N Nt (vs)| > (1 — 64)|X]|.

Also, sincewv; lies in ad-clean clusterC! in OPT’,
INT(01) \Ci| < 8IC3], [N (v2) \C]| < 6|C;| andCiNC]
0. It follows that| N * (v1) N N ¥ (v2)| < 8(|Ci| + |C).

Now notice that|C!| < |NT(vi) N Cl + é|Cl] <
INT(v1) N X NCH + |[Nt(v1) N X NCl| + 6|C) <

!
il
N

INT(v1) N X NCLH + 30| X]| +6|C| < (1+38)|X|+6|C}
So,|C!| < X32|X|. The same holds fat}. So,|N*(vy)
N*(vp)] < 264E32|X|.

However, sincé < 1/9,20(1 + 30) < (1 —66)(1 —9)
and we have a contradiction. Thus the result follow#l

This gives us the following important corollary.

Corollary 6 After the remove phase of the algorithm, no
two vertices from distinat; andC’ can be present ini (v).

Now we go on to prove Theorem 3.

Proof of Theorem 3We will first show that eachl; is either
a subset ob or contains exactly one of the clustérs The
first part of the theorem will follow.

For a clusterd;, let A} be the set produced after the ver-
tex removal phase such the clusteris obtained by apply-
ing the vertex addition phase té,. We have two cases.
First, we consider the case wherd C S. Now during the
vertex addition step, no vertexe C; can entetd; for any
j. This follows because, sina&, is d-clean and disjoint
from A}, for u to enter we need tha{C;| > (1 — 76)|A]]
and(1 — §)|C}| < 7] A4;|, and these two conditions cannot
be satisfied simultaneously. Thds C S.

In the second case, somec C’ is present ind;. How-
ever, in this case observe that from Corollary 6, no vertices
from C;, can be present ial} for anyk # j. Also, by the
same reasoning as for the casg C S, no vertex fronC;,
will enter A} in the vertex addition phase. Now it only re-
mains to show thatf;. C A,

Sinceu was not removed fromt!, it follows that many
vertices fromC’ are present ind;. In particular,| N+ (u) N
Al > (1 —30)|4} and |[N*t(u) N A} < 36/Al|. Now
(1 = 9)[Cj] < IN*(u)| implies that|C}| < %Mﬂ <
2|Aj]. Also, |[A; N Cj| > |[A; N NT(u)] — [N (u) mC_}| >
|A;N N (u)| —9|C]|. Sowe haveA;NC| > (1—50)]Aj.

We now show that all remaining vertices fragyj will
eenterAi during the vertex addition phase. Rore C; such

thatw ¢ Al [A; N C < 56A}| and [N+ (w) N Cj| <



4|C;| together imply thatA; N N+ (w)| < 58] Aj| +6|C}| < 116 < 1/4, and that the mistakes of the optimal clustering
76| A}|. The same holds fdi; N N+ (w)|. Sow is 76-good on the graph induced by’ is no more thamn py. Thus,
wrt A7 and will be added in the Vertex Addition step. Thus
we have shown that(v) can contairC; for at most onej
and in fact will contain this set entirely.

Next, we will show that for every, Ji s.t. C;. C A;.
Let v chosen in Step 1 of the algorithm be such that
C;. We show that during the vertex removal step, no vertex
from N+ (v)N C} is removed. The proof follows by an easy
induction on the number of vertices removed so(fgrin
the vertex removal step. The base case- 0) follows from ..
Lemma 4 since every vertexif is 36-good with respect to 4 A PTASfor maximizing agreements
N*(v). For the induction step observe that since no vertex
from N*(v) N C} is removed thus far, every vertex it In this section, we give a PTAS for maximizing agree-
is still 35-good wrt to the intermediaté(v) (by mimicking ments: the total number of positive edges inside clusters
the proof of lemma 4 withV * (v) replaced byA(v)). Thus and negative edges between clusters.

Lemma8 The total number of internal mistakes of Cau-
tious is< 8mopr.

Summing up results from the lemmas 7 and 8, and using
lemma 2, we get the following theorem:

Theorem 9 mCautiousf 9(6% + l)mopT.

Aj contains at leastl — §)|C;| vertices ofC; at the end Let OPT denote the optimal clustering adddenote our
of the vertex removal phase, and hence by the second caselustering. We will abuse notation and also GHeT to de-
aboveﬁg. C A; after the vertex addition phase. note the number of agreements in the optimal solution. As

Finally we show that every non-singleton clustér is noticed in the introductiorDPT > n(n — 1)/4. So it suf-
115-clean. We know that at the end of vertex removal phase, fices to produce a clustering that has at lI€aB{I' — en?
Vo € Al, z is 36-good wrt AL, Thus,|[N*t(z) N Al| < agreements, which will be the goal of our algorithm. Let
30| A%|. So the total number of positive edges leavitg d+(V1, V) denote the number of positive edges between
is at most36| A%|?. Since, in the vertex addition step, we setsVy,V,; C V. Similarly, leté—(V1, V2) denote the num-
add vertices that arej-good wrt A}, these can be at most ber of negative edges between the two. O#tT(¢) denote

30| Aj|12 /(1 — 76)| AL < 48] A}l. Thus|A;| < (1 + 40)|ALl. the optimal clustering that has all non-singleton clusters of
Since all vertices in A; are at leasd-good wrt Aj, size greater thamn.
N*(v) N A; > (1= T70)|A]] > {55141 > (1 - 119)]44].

Similarly, N+ (v) N 4; < 76|41 < 115|4,]. This givesus ~ Lemmal10 OPT(e) > OPT —en?/2.

. i . .
the result Proof: Consider the clusters dPT of size less than or

Now we are ready to bound the mistakes4fn terms of equal toen and break them apart into clusters of size
OPT andOPT'. Call mistakes that have both end points Breaking up a cluster of sizereduces our objective func-
in some clusters!; and A; as internal mistakes and those tion by at most(}), which can be viewed as/2 per node in
that have an end point id as external mistakes. Similarly the cluster. Since there are at mastiodes in these clusters,
in OPT', we call mistakes among the set$ as internal  and these clusters have size at mostthe total loss is at
mistakes and mistakes having one end poiift as external moste”;. |

mistakes. We bound mistakes of Cautious in two steps: the

following lemma bounds external mistakes. The above lemma means that it suffices to produce a

good approximation toOPT(e). Note that the num-
Lemma7 The total number of external mistakes made by ber of non-singleton clusters iOPT(e) is less thanl.
Cautious are less than the external mistakes madelby’.  Let CPPT, ... CPPT denote the non-singleton clusters of

_ _ OPT(e) and letCPF™ denote the set of points which corre-
Proof: From theorem 3, it follows thaZ cannot contain  spond to singleton clusters.

any vertexv in someC;. Thus,Z C S. Now, any exter-
nal mistakes made by Cautious are positive edges adjacenf; 1 A PTAS doubly-exponential in 1/e
to vertices inZ. These edges are also mistakesOIRT’
since they are incident on singleton verticesSin Hence

If we are willing to have a run time that is doubly-
the lemma follows. W 9 y

exponential inl /e, we can do this by reducing our problem
Now consider the internal mistakes df Notice that to the General Partitioning problem of [13]. The idea is as

these could be many more than the internal mistakes offollows.

OPT’. However, we can at this point apply Lemma 1 Let GT denote the graph of only the edges inGG. Then,

on the graph induced by’ = U;A;. In particular, the notice that we can express the quality@PT(e) in terms

bound on internal mistakes follows easily by observing that of just the sizes of the clusters, and the number of edges in



G between and inside each 6P"7,...,CPFT. In par-
ticular, if s; = [CPPT| ande; ; = 67 (CPPT,CPTT), then
the number of agreements@P T (¢) is:

Sk
+ [( 2“) — Ck41,k+1

The General Partitioning property tester of [13] allows us
to specify values for the; ande;;, and if a partition ofG*

+ D (sisj —ei)

i#j

k
§ €i,i
i=1

exists satisfying these constraints, will produce a partition
that satisfies these approximately. We obtain a partition that

Firstly note that ifCFT| < en, then if we only consider
the agreements in the graph, C 2T, it affects the solution
by at mosten?. For now, we will assume tha€ 2| < en
and will present the algorithm and analysis based on this
assumption. Later we will discuss the changes required to
deal with the other case.

In the following algorithme is a performance param-
eter to be specified later. Let = 88:’1—X()4(’(log% + 2),
k= Lande = % Let p; denote the density of
positive edges inside the clustéP*™ and n;; the den-
sity of negative edges between clustéfd"" andCPTT.

has at leasOPT(¢) — en? agreements. The property tester That is, p; = &+(COPT,cOPT)/(1%7"1) and ny; =

runs in time exponential i)' and polynomial im.

Thus if we can guess the values of these sizes and num-

5 (COPT,COPT)/(ICOPT|ICPT).
We begin by defining a measure of goodness of a clus-

ber of edges accurately, we would be done. It suffices, in tering{U;; } of some seU; with respect to{ W }, that will

fact, to only guess the values up to an additiven for the

s;, and up to an additive-en? for thee; ;, because this
introduces an additional error of at maste). So, at most
O((l/e3)1/f2) calls to the property tester need to be made.
Our algorithm proceeds by finding a partition for each pos-
sible value ofs; ande; ; and returns the partition with the
maximum number of agreements. We get the following re-
sult:

Theorem 11 The General Partitioning algorithm returns a
clustering of graphGG which has more that®PT — en?
agreements with probability at least— . It runs in time
exponential in( 1)1/ and polynomial i and }.

4.2 A singly-exponential PTAS

We will now describe an algorithm that is based on the

enable us to pick the right clustering of the &gt
Definition 2 Ujy, . . ., Uj(k41) is €'-good wrt
Wi,...,Wiy1 If it satisfies the following for all
1<j,l<k
(1) 6% Uiy, W) > 55 (") — 18¢'m?
(2) 0= (Usj, Wi) > miu|W;||Wi| — 6€'m?

and, for at least1 — €')n of the vertices: andV j,

3 (5+(U,'j,$) € (5+(Wj,l‘) + 2e'm.

Our algorithm is as follows:

Algorithm Divide& Choose:

1. Pick a random subs& C V of sizem.

same basic idea of random sampling used by the General

Partitioning algorithm. The idea behind our algorithm is
as follows: Notice that if we knew the density of positive
edges between a vertex and all the clusters, we could put

in the cluster that has the most positive edges to it. How-
ever, trying all possible values of the densities requires too

much time. Instead we adopt the following approach: We
select a small random subgg&t of vertices and cluster them
correctly into{W;} with W; C O; Vi, by enumerating all
possible clusterings df/ . Since this subset is picked ran-
domly, with a high probability, for all vertices, the density
of positive edges betweanandW; will be approximately
equal to the density of positive edges betweeand O ;.
So we can decide which cluster to puinto, based on this
information. However this is not sufficient to account for
edges between two vertices andvs, both of which do not
belong tolV. So, we consider subséts of sizem at a time
and try out all possible clustering$/;;} of them, picking
the one that maximizes agreements with respeditq}.
This gives us the PTAS.

2. For all partitiondg/y, ..., Wy, of W do

(a) Let ﬁi = (5+(W1,Wl)/(|‘/‘212|), and ’Il}'j =
o~ (Wi, W;) /Wil [Wj].

(b) Letqg = =~ — 1. Consider a random partition of

V\WintoU,...,U,, suchthavi, |U;| = m.

For alli do:

Consider all (k + 1)-partitions of U; and

let Ui,...,Uyrs1) be the partition that is

e-good wrt Wy,..., Wiy, (by definition 2

above). |If there is no such partition, choose

Ui, - - -, Ui arbitrarily.

Let A; = U;U;; for all i. Leta({WW;}) be the

number of agreements of this clustering.

(©

(d)

3. Let {W;} be the partition ofi¥ that maximizes
a({Wi}). Return the cluster§A;}, {z}.ca,,, COr-
responding to this partition d#'.



We will concentrate on the "right” partition of df given
by W; = W nCPPY, vi. We will show that the number of
agreements of the clusteringy, ..., Ax4+1 corresponding
to this partition{;} is at leastOPT(¢) — 2en?. Since we
pick the best clustering, this gives us a PTAS.

We will begin by showing that with a high probability,
for most values of, the partition ofU;s corresponding to
the optimal partition is good with respect {6V;}. Thus
the algorithm will find at least one such partition. Next we
will show that if the algorithm finds good partitions for most
U;, then it achieves at lea€tPT — O(e)n? agreements.

We will need the following results from probability the-
ory. Please refer to [2] for a proof.

Fact1l: LetH(n,m,l)be the hypergeometric distribution
with parameters:, m and! (choosingl samples fromn
points without replacement with the random variable tak-
ing a value of 1 on exactlyn out of then points). Let
0<e<1. Then

Fact 2. LetX;,Xs,..., X,, be mutually independentr.v.s
such thafX; — E[X;]| < m foralli. LetS = Y | X;,
then

a2
Pr[|S — E[S]| > a] < 2e” znm?
We will also need the following lemma:

Lemma 12 LetY andS be arbitrary disjoint sets and be
a set picked fron% at random. Then we have the following:

Pr(|6* (Y, 2) - 5+ (v,5)| > ¢|Y|Z]] < 2=F

2 .

Proof: §*(Y, Z) is a sum of Z| random variable§* (Y, v)
(v € Z), each bounded above by | and having expected

+
value? ‘(;75)_

Thus applying Fact 2, we get

Pr{jo* (Y, 2) — |Z]6%(Y, $)/IS|| > €|Z]|Y]]
< 2~ CIZPIYELAZIY < ge—e?|Z1/2

Now notice that since we picked” uniformly at ran-
dom fromV/, with a high probability the sizes d¥/;s are
in proportion to|COFT|. The following lemma formalizes
this.

Lemma 13 With probability at leastl — 2ke=¢"m/2, Vi,
(Wil € (1£€)2CPPT|

Proof: For a given i, using Fact 1 and since
COPT| < en, Pr{[[Wi] — 2ICOPT| > €2(cOPT|) <

2e—¢ mICPT /2 < 9e—€"em/2 Taking union bound over
thek values ofi we get the result. B

Using Lemma 13, we show that the computed valueg;of
andnj; are close to the true valugs andn;; respectively.
This gives us the following two lemmas

Lemmal4 If W; c CPPT and W; c CPPY, then
with probability at leastl — 4e—<"em/4, ot (Wi, W;) €
’;L"”—féJF(C?PT,C?PT) + 3¢'m?>.

Proof Sketch:We can apply lemma 12 in two steps -
first to bounds* (W;,CPPT) in terms ofs+ (COPT, COPT)
by considering the process of pickimg; from COFT, and
second to bound™ (W;, W;) interms ofd ™ (W;, CPP'T) by
fixing TW; and considering the process of pickifg; from
CPPT. Then using lemma 13, we combine the two and get
the lemma. B

Lemma 15 With probability at least — 5,e=<" /4, j5; >
pi — 9€

Proof SketchNote that we cannot use an argument simi-
lar to the previous lemma directly here since we are dealing
with edges inside the same set. We use the following trick:
consider the partition of ?F'" into 4 subsets of size'n’
each, where' = |COFT|. The idea is to bound the number
of positive edges between every pair of subsetsdf T us-
ing argument in the previous lemma and adding these up to
get the result. &

Now letU;; = U; N CJQPT. The following lemma shows
that for alli, with a high probability all/; ;s aree’-good wrt
{W;}. So we will be able to find'-good partitions for most
U;s.

Lemma 16 For a giveni, letU;; = U; N CPPT, then with
probability at leastl — 32k E%e—f'g””/‘*, Vi <k, {U;}are
¢'-good wrt{W; }.

Proof SketchThe first and second conditions of Defini-
tion 2 can be obtained by applying an argument similar to
lemmas 15 and 14 respectively.

In order to obtain the third condition, we consider
6t (x,U;;) as a sum ofn {0,1} random variables (corre-
sponding to pickind/; from V'), each of which idl iff the
picked vertex lies i£ ¥¥'T and is adjacent te. Then an ap-
plication of Chernoff bound followed by union bound gives
us the condition. &

Now we can bound the total number of agreements of
Ar,..., Ag, {z}zea,,, interms ofOPT:

SPlease refer to [5] for full proofs of the lemmas.



Theorem 17 If |CPF| < en, thenA > OPT — 3en? with The algorithm can fail in four situations: more thef2
probability at leastl — e. U;s do not have ar’-good partition with probability at
moste/2, lemma 13 does not hold for sorig; with prob-
ability at most2ke—¢"¢"/2 lemma 15 does not hold for
somes with probability at mostf,—’ge*'sﬁm/4 or lemma 14
does not hold for some paitj with probability at most
4k2e—<em/4_The latter three quantities are at meg2 by
our choice ofm. So, the algorithm succeeds with probabil-

ity greatertharl. —e. H

Proof: From lemma 16, the probability that we were not
able to find a’-good partition ofU; wrt Wy, .-, W, is at
most326%e—f'3€m/4. By our choice ofm, this is at most
€?/4. So, with probability at least — €/2, at moste/2 of
theU;s do not have ar'-good partition.

In the following calculation of the number of agree-
ments, we assume that we are able to find good partitions
of all U;s. We will only need to subtract at most?/2 Now we need to argue for the case Whéﬁfﬂ > en.
from this value to obtain the actual number of agreements, Notice that in this case, using an argument similar to lemma
since eaclU; can effect the number of agreements by at 13, we can show thatV, 1| > < with a very high prob-
mostmn. . ~ability. This is good because, now with a high probability,

We start by calculating the number of positive Usiirr) Will also bee’-good wrtiVy; for most values of

edges inside a clusterd;.  These are given by ; \we'can now count the number of negative edges from
20 2wea,; 0 (Uaj, @). Using the fact thal/q; is good it hese vertices and incorporate them in the proof of Theo-
{Wi} (condition (3)), rem 17 just as we did for the othérclusters. So in this
S case, we can modify algorithBivide&Chooseo consider
Yovca; 07 (Usjrw)

, " o
F T N ot N , ¢’-goodness of thék + 1)th partitions as well. This gives us
= ZZEAi((S (Wj,2) 2,6 m) — e n,| Usj| the same guarantee as in Theorem 17. Thus our strategy will
= 2590 I(WI’}KJ; Ubj) — 2€'m|4;| — €'n|Usq;] be to run AlgorithmDivide&Chooseonce assuming that
> 2 — 18¢'m?} — 2¢'m|Aj| — €'n|Uqs| |COPF| > en and then again assuming tHEPE| < en,
and picking the better of the two outputs. One of the two
cases will correspond to reality and will give us the desired
approximation tdOPT.
OPT |2 m . . .
Yoen 6 Uajrz) > 3 {Tap;(1—¢)? G| ‘Now eachU; hasO(k™) different partitions. Each iter-
’ _1ReMm 21 _ 9! N | ation takesO(nm) time. There are:v/m U;s, so for each
18¢'m?} — 2e'm|A;| — €'n|Uq;| " . : ‘ )
. , , partition of W, the algorithm takes timé&(n2k™). Since
> Epj,(l —€) . — 18e'mn  there arg:™ different partitions of¥, the total running time
—2¢'m| 4] = €'n|Us;] of the algorithm isO(n2k2™) = O(n2eC( v 18 (2))) This
Thus we boundy", 6+ (A4;,U.;) as Y, 6+ (4, Us;) > gives us the following theorem:

21277

2
pi(1 —€)?=i5— — 18¢'n? — 3¢'n|A;|.

The last follows from the fact thdl,; is good wrt{WW;}
(condition (1)). From Lemma 13,

9 |CJQPT|2

Now using Lemma 15, the total number of agreements is at | "€0reém 18 For anyd € [0, 1], usinge = 3, Algorithm
least Divide&Choose runs in timé (n2e° (510 18 (5))) and with
, |COPT|? ‘ A probability at leastl — & produces a clustering with number
YiApi(1 =€) =5—} — 18¢'n’k — 3¢'n? of agreements at lea§iPT — on?2.
OPT |2

> {(py — 9¢)(1 - €)2 551} — 18¢n?k — 3¢/n?
Hence,A* > OPT* — 11ekn? — 21emk > opT+ — 0 Minimizing disagreements in |1, 1}-
39%en?k. - weighted graphs
Similarly, consider the negative edgesAdn Using lemma
14 to estimat® (U, Us;), We get, In section 3, we developed an algorithm for minimizing

disagreements in a graph wighl and—1 weighted edges.
S 0 (Ui, Uyy) > 6~ (COPT COPT) Now we consider the situation in which edge weights lie in
ab ai> Ybj) = i b

the interval—1, 1].
To address this setting, we need to define a cost model —
Summing over all < j, we get the total number of negative  the penalty for placing an edge inside or between clusters.

—9¢'n? — 2€'n|A;| — €'n|4;]

agreements is at lea®P T~ — 12¢'k>n>. One natural model is a linear cost function. Specifically,
So we haveA > OPT — 44¢'k*n? = OPT — en?/2. given a clustering, we assign a cost 6§~ if an edge of
However, since we lose:? /2 for not findinge’-good parti-  weighta is within a cluster and a cost a2 if it is placed
tions of everyU; (as argued beforeyn® due toCY\", and  between two clusters. For example, an edge weighing
en? /2 for usingk = % we obtaind > OPT — 3en?. incurs a cost 00.25 if it lies inside a cluster an@.75 oth-



erwise. A0—weight edge, on the other hand, incurs a cost
of 1/2 no matter what.

It turns out that any algorithm that finds a good cluster-
ing in a{-1, 1}—graph also works well in th-1, 1] case
under a linear cost function.

Theorem 19 Let A be an algorithm that produces a clus-
tering on a{—1,1}—graph with approximation ratiop.
Then, we can construct an algorithaY that achieves an
approximation ratio of(2p + 1) on a[—1, 1]—graph, with
the linear cost function.

Proof: Let G be a[—1,1]—graph, and lelG' be the
{—1, 1}—graph obtained when we assign a weightiab
all positive edges itt7 and—1 to all the negative edges (
cost edges are weighted arbitrarily). L@PT be the opti-
mal clustering oy andOPT’ the optimal clustering o6''.
Also, letm' be the measure of cost (@¥) in the {—1,1}
penalty model aneh in the new[—1, 1] penalty model.

Then,mgpr < mopr < 2mopr. The latter is because
OPT incurs a greater penalty afin m' as compared tou

only when a positive edge is between clusters or a negative

edge inside a cluster. In both these situati@dB;T incurs
a cost of at least/2 in m and at most in m/'. This gives
us the above equation.

Our algorithm A’ simply runs A on the graph’ and
outputs the resulting clusterind. So, we havem’, <
pmopr < 2pmopr.

Now we need to boungh 4 in terms ofm/,. Notice that,
if a positive edge lies between two clustersdnor a neg-
ative edge lies inside a cluster, then the cost incurred by
for these edges im' is 1 while it is at mostl in m. So, the
total cost due to such mistakes is at magt. On the other
hand, if we consider cost due to positive edges inside clus-
ters, and negative edges between clusters, @' also

incurs at least this cost on those edges (because cost due to
these edges can only increase if they are clustered differ-

ently). So cost due to these mistakes is at mogb .
So we have,

<

m'y + mopr < 2pmopt + MmopT
(2p + 1)mopr

ma

Another natural cost model is one in which an edge of
weightz incurs a cost ofz| when itis clustered improperly
(inside a cluster if: < 0 or between clusters aof > 0) and
a cost ofd when it is correct. We do not know of any good
approximation in this case (see Section 7).

6 Random noise

Going back to our original motivation, if we imagine
there is some true correct clusteriOd®T of ourn items,

and that the only reason this clustering does not appear per-
fect is that our functiorf (A, B) used to label the edges has
some error, then it is natural to consider the case that the the
errors are random. That is, there is some constant noise rate
v < 1/2 and each edge, independently, is mislabeled with
respect tdOPT with probabilityr. In the machine learning
context, this is called the problem of learning with random
noise. As can be expected, this is much easier to handle
than the worst-case problem. In fact, with very simple al-
gorithms one can (whp) produce a clustering that is quite
close toOPT, much closer than the number of disagree-
ments betwee®PT and f. The analysis is fairly standard
(much like the generic transformation of Kearns [16] in the
machine learning context, and even closer to the analysis
of Condon and Karp for graph partitioning [11]). In fact,
this problem nearly matches a special case of the planted-
partition problem of McSherry [18]. We present our analy-
sis anyway since the algorithms are so simple.

One-sided noise: As an easier special case, let us con-
sider only one-sided noise in which each true’ ‘edge is
flipped to “—" with probability v. In that case, ifs andv are

in different clusters oOPT, then|N *(u) " N*(v)| = 0

for certain. But, ifu andv are in the same cluster, then
every other node in the cluster independently has proba-
bility (1 — v)? of being a neighbor to both. So, if the
cluster is large, the@V *(u) and N*(v) will have a non-
empty intersection with high probability. So, consider clus-
tering greedily: pick an arbitrary node produce a cluster

Cy = {u : [NT(u) " N*(v)] > 0}, and then repeat on
V — C,. With high probability we will correctly clusteall
nodes whose clusters DPT are of sizev(logn). The re-
maining nodes might be placed in clusters that are too small,
but overall the number of edge-mistakes is 06ljn).

Two-sided noise:  For the two-sided case, it is technically
easier to consider the symmetric difference\of (u) and
N*(v). If wandv are in the same cluster 6¥PT, then
every nodev ¢ {u,v} has probability exactlfv(1 — v) of
belonging to this symmetric difference. Butuifandwv are

in different clusters, then all nodesin OPT(u) UOPT(v)
have probability1 —r)? +v? = 1—2v(1—v) of belonging

to the symmetric difference. (Far ¢ OPT(u) U OPT(v),

the probability remaingv(1 — v).) Since2v(1 — v) is a
constant less thah/2, this means we can confidently de-
tect thatu andwv belong to different clusters so long as
|OPT(u) U OPT(v)| = w(v/nlogn). Furthermore, us-
ing just [Nt (v)|, we can approximately sort the vertices
by cluster sizes. Combining these two facts, we can whp
correctly cluster all vertices in large clusters, and then just
place each of the others into a cluster by itself, making a
total of O(n?/?) edge mistakes.
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