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1 Abstract

An important concern in the design of search engines is the construction of an inv erted
index. An inv erted index, also called a concordance, contains a list of documents (or
posting list) for every possible search term. These posting lists are usually compressed
with di�erence coding. Di�erence coding yields the best compression when the lists
to be coded hav e high locality. Coding methods hav e been designed to speci�cally
take advantage of locality in in v ertedindices. Here, we describe an algorithm to
permute the document n umbers so as to create locality in an inv erted index. This
is done b yclustering the documents. Our algorithm, when applied to the TREC ad
hoc database (disks 4 and 5), improv es the performance of the best di�erence coding
algorithm we found by fourteen percent. The improvement increases as the size of the
index increases, so we expect that greater improv ements would be possible on larger
datasets.

2 Introduction

Memory considerations are a serious concern in the design of search engines. Some
web search engines index ov er a billion documents, and even this is only a fraction of
the total number of pages on the Internet. Most of the space used by a search engine
is in the representation of an inverted index , a data structure that maps search terms
to lists of documents containing those terms. Each entry (or posting list) in an
inv erted index is a list of the document numbers of documents containing a speci�c
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term. When a query on multiple terms is en tered, the search engine retrieves the
corresponding posting lists from memory, performs some set operations to combine
them into a result, sorts the resulting hits based on some priority measure, and reports
them to the user.

A naive posting list data structure would simply list all the document numbers
corresponding to each term. This would require dlog(n)e bits per document number,
which would not be eÆcient. T osa v espace, the document n umbers are sorted and
then compressed using di�erence coding. Instead of storing the document numbers
themselves, a di�erence-coding algorithm stores the di�erence between each document
number and its immediate successor. These di�erences are likely to be smaller than
the original numbers, so the algorithm can save space by using a code which represents
small numbers using a smaller number of bits.

In general, a di�erence-coding algorithm will get the best compression ratio if
most of the di�erences are very small (but one or two of them are very large). Several
authors [8, 2, 3] have noted that this is achieved when the document numbers in each
posting list hav e high locality. These authors hav e designed methods to explicitly take
advantage of this locality. These methods achieve signi�cantly improv ed compression
when the documents within each term hav e high locality. Howev er,all compression
methods thus far have been devoted to passive exploitation of locality that is already
present in in v ertedindices.

Here, we will study how to improv e the compression ratio of di�erence coding on
an in v ertedindex b ypermuting the document numbers to actively create locality in
the individual posting lists. One way to accomplish this is to apply a hierarchical clus-
tering technique to the document set as a whole, using the cosinemeasure as a basis
for document similarity. Our algorithm can then trav erse the hierarchical clustering
tree, applying a numbering to the documents as it encounters them. Documents that
share many term lists should be close together in the tree and therefore close together
in the n umbering.

We hav e implemented this idea and tested it on indexing data from the TREC-8
ad hoc track [9] (disks 4 and 5, excluding the Congressional Record). We tested a
variety of codes in combination with di�erence coding. Our algorithm was able to
improv e the performance of the best compression technique we found b y fourteen
percent simply b y reordering the document numbers. The improvement o�ered b y
our algorithm increases with the size of the index, so we believe the improv ement on
larger real-world indices would be greater.

Conceptually, our order-index algorithm is divided into three parts. The �rst
part, build-graph, constructs a document-document similarity graph from an in-
dex. The second part, split-index, makes calls to the Metis [7] graph partitioning
package to recursively partition the graphs produced by build-graph. It uses these
partitions to construct a hierarchical clusteringtree for the index. The third part of
our algorithm, order-clusters, applies rotations to the clustering tree to optimize
the ordering. It then numbers the documents with a simple depth-�rst tra v ersalof
the clustering tree. At all levels we apply optimizations and heuristics to ensure that
the time and memory requirements of our algorithm will scale well.

In practice, constructing the full hierarchical clustering would be infeasible, so
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the three parts of our algorithm are combined into a single recursive procedure that
makes only one pass through the clustering tree.

The remainder of our paper is organized as follows. Section 3 formalizes the
problem. Section 4 describes our algorithm in detail. Section 5 demonstrates the
performance of our algorithm when run on the TREC-8 database. Section 6 presents
directions forfuture work.

3 De�nitions

We describe an in v ertedindex I as a set of terms t1 : : : tm. F orev eryterm ti there
is an associated list of jtij document n umbers di;1 : : : di;jtij. The document numbers
are in the range 1 � di;j � n. We are interested in the cost of representing these
documents using a di�erence code. Thus we de�ne, �rst, si(di) = si;1 : : : si;jtij to be
the sequence of documents di;j, rearranged so that si;j < si;j+1 for all j. That is, si is
the sorted v ersion of the sequence of documents di. (F orconv enience we also de�ne
si;0 = 0 for all i.) Then, if we hav e an encoding scheme c which requires c(d) bits to
store the positive integer d, we can write the cost C of encoding our index as follows:

C(I) =
nX

i=1

jtijX

j=1

c(si;j � si;j�1)

We wish to minimize C(I) b y creating a permutation � which reorders the doc-
ument n umbers. Since c is conv ex for most useful encoding schemes, this means we
need to cluster the documents to improve the locality of the index.

4 Our Algorithm

Document Similarity . Up to this point, we hav e viewed an inv erted index as a
set of terms, each of which contains some subset of the documents. Now it will be
conv enient to consider it as a set of documents, each of which contains some subset
of the terms. Speci�cally, we can consider a document to be an element of f0; 1gm,
where the ith element of a document is 1 if and only if the document contains term ti.
Eventually our algorithmwill need to compute centers of mass of groups of documents,
and then it will be conv enient to allow documents to contain fractional amounts of
terms|that is, to represent a document as an element of <m.

Our algorithm uses the cosine measure to determine the similarity between a pair
of documents:

cos(A;B) =
A � B

((A � A)(B � B))
1

2

Build-Graph. Using this similarity measure our build-graph algorithm can con-
struct a document-document similarity graph. F orlarge databases, creating a full
graph with n2 edges is not feasible. However, most of the documents contain only
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split-index(I):

I 0  subsample(I, jIj�)
G build-graph(I 0)

(G1, G2)  partition(G)

d1  G1:centerofmass

d2  G2:centerofmass

I1, I2  empty indices

foreach d in I

if cos(d, d1) > cos(d, d2) then

add d to I1
else

add d to I2
return (I1, I2)

build-graph(I):

G new Graph

foreach d1 in I

foreach t in d1
if jtj � � then

foreach d2 in docList(t)
e new Edge(d1, d2, cos(d1, d2))

add e to G

return G

Figure 1: Our build-graph and split-index algorithms.

a small fraction of the total set of terms. It seems reasonable that the graph might
besparse: many of the edges in the similarity graph might actually hav e a weight of
zero. This is especially true if we remov e common \stopwords" from consideration,
as described below.

T osa v espace, build-graph uses the following method to generate the graph.
Consider the index to be a bipartite document-term graph from which build-graph
needs to generate a document-document graph. For each term in the document-
term graph, our algorithm eliminates that term and inserts edges (weighted with the
cosine measure) to form a clique among that node's neighbors. After eliminating all
of the terms in the document-term graph, build-graph has produced a document-
document graph which contains an edge between every pair of documents that shares
a common term.

If term ti contains jtij documents, then build-graph will compute O(
P

jtij
2)

cosine measures in computing the edge graph. Our algorithm can improv e this bound
slightly by being careful never to compute the same cosine measure more than once,
but the worst-case number of cosine measures will still be O(

P
jtij

2).
However, build-graph does not actually need all this information in order to

represent the structure of the similarity graph. In particular, a lot of the documents
in the index are likely to be \trivially" similar because they share terms such as \a",
\and", or \the". The most frequently occurring terms in the index are also the least
important to the similarity measure. Removing the edges corresponding to those
terms should not hav emuch of an impact on the quality of the ordering (as demon-
strated in Section 5), while it should decrease the work required for build-graph
considerably. Thus, when generating the graph, our algorithm creates cliques among
the neighbors of only those terms with less than a threshold n umber of neighbors � .
All other terms are simply deleted from the graph. (This technique is similar to that
used b yBroder et al. [5] for identifying near-duplicate web pages.) Pseudocode for
this part of our algorithm is shown in Figure 1.
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Split-Index. Once build-graph has produced a similarity graph, the next step
is to derive a hierarchical clustering of that graph. There are a large n umber of
hierarchical clustering tec hniques that we could choose from (for example, those of
[4, 10], and additional references from those papers), but most of those techniques are
not designed for data sets as large as the ones we are dealing with. Many of them,
in fact, require as input an O(n2) similarity matrix. We do not hav e enough space
or time to even construct a matrix of that size, much less run a clustering algorithm
on it. F urthermore,this problem has certain special features which are not captured
by any general clustering algorithms. Therefore we have created our own hierarchical
clustering algorithm based on graph partitioning.

A naive hierarchical clustering algorithm would work as follo ws.Given an index,
compute a similarity graph from that index. P artitionthe graph into two pieces.
Continue partitioning on the subgraphs until all pieces are of size one. Use the
resulting partition tree as the clustering hierarch y.

Unfortunately, this algorithm uses too much memory. Our build-graph algo-
rithm requires less than the full O(n2) memory, but it is still infeasible to apply it
to the full index. Instead, split-index uses a sampling technique on the index: at
each recursive step, it subsamples some fraction of the documents from the original
index. It runs build-graph on this subindex and partitions the result. Once it has
done this, split-index uses the subgraph partition to partition the original index.
T odo this, it computes the centers of mass of the two subgraph partitions. It then
partitions the documents from the original index based on which of the centers of
mass they are nearest to. Pseudocode for split-index is shown in Figure 1.

An interesting point to note is that split-index recreates the document similarity
graph at each node of the recursion tree. This o�ers our build-graph algorithm
signi�cantly more exibility when creating the similarity graph: build-graph only
needs to create the graph in such a way that the �rst partition made on it will be a
good one. This allows build-graph to use a very small value of � : if a term occurs
more than, say, 10 times at a given partition level, it is likely that any partition split-
index computes will hav e documents containing this term on both sides anyway.
Thus build-graph ignores that term until lateriterations.

Order-Clusters. Once split-index has produced a hierarchical clustering, order-
index uses that clustering to create a numbering of the leav es. T o do this it performs
an inorder trav ersal of the tree. At each step, howev er, it needs to decide which of the
two available partitions to trav erse �rst. In essence, our order-clusters algorithm
looks at every node in the hierarc h y and decides whether or not to swap its children.

Within any given subtree S, there are four variables to consider. We denote the
children of S b y I1 and I2. We also de�ne IL and IR to be the documents that
will appear to the immediate left and right of S in the �nal ordering. (At the �rst
recursion we initialize IL and IR to place equal weight on each term. This causes
infrequently-occurring terms to be pulled away from the middle of the ordering.)
Since order-clusters operates with a depth-�rst tra v ersal,we take IL to be the
left child of S's left ancestor, and IR to be the right child of S's right ancestor.
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order-clusters(IL, I1, I2, IR):

mL  IL:centerofmass

m1  I1:centerofmass

m2  I2:centerofmass

mR  IR:centerofmass

s1  cos(mL, m1) * cos(mR, m2)

s2  cos(mL, m2) * cos(mR, m1)

if s2 > s1 then

return (I2, I1)

else

return (I1, I2)

\\ Assigns the numbers between ` and h

\\ to the documents of an index I,

\\ which must have exactly (h� `+ 1)

\\ documents.

order-index(I, `, h, IL, IR):

if ` = h then

I:vj0j:number  `

else

(I1, I2)  split-index(I)

(I1, I2)  order-clusters(IL, I1, I2, IR)

order-index(I1, `, m� 1, IL, d2)

order-index(I2, m, h, I1, IR)

Figure 2: Our order-clusters and order-index algorithms.

order-clusters tracks the centers of mass of each of these clusters, and it rotates
I1 and I2 so as to place similar clusters closer together.

Pseudocode for order-clusters and for the main body of our algorithm is shown
in Figure 2.

5 Experimentation

Compression Techniques. We tested several common di�erence codes to see how
much improv ement our algorithm could provide. The codes we tested include the
delta code, Golomb code [6], and arithmetic code. These codes are described in more
detail b yWitten, Mo�at, and Bell in [11 ]. We also tested the binary interpolative
compression method of Mo�at and Stuiver [8]. This code was explicitly designed to
exploit locality in inv erted indices, so it gained the most from our algorithm.

We did not count the cost of storing the sizes of each term since that cost would
be invariant across all coding schemes. We did count the cost of storing an arithmetic
table for arithmetic coding, but this cost was negligible compared to the cost of storing
the bulk of the data.

Testing. T o test our algorithmwe used the ad-hoc TREC indexing data, disks 4 and
5 (excludingthe Congressional Record). This data contained 527094 documents and
747990 distinct words, and occupied about one gigabyte of space when uncompressed.
We tested three di�erent orderings of the data in combination with the di�erence
codes described above. First, we tested a random permutation of the document
numbers as a baseline for comparison. Second, we tested the default ordering from
the TREC database. We noted that this was already a signi�cant improv ement ov er a
random ordering, indicating that there is considerable locality inherent in the TREC
database. Third, we tested the ordering produced b y our algorithm. Results are
shown in Figure 3.
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Random Identity Ordered

Binary 20.0 20.0 20.0
Delta 7.52 6.46 5.45
Golomb 5.79 5.77 5.78
Arith 6.82 6.03 5.19
In terp 5.89 5.29 4.53

Figure 3: The improv ement (in bits per edge) our algorithm o�ers for di�erent coding
schemes using disks 4 and 5 of the TREC database.

Index Random Identity Ordered Improvement Improv ement
Size ov erRandom over Identity

32943 5.73 5.44 4.87 14.9% 10.4%
65886 5.75 5.43 4.78 16.9% 12.0%
131773 5.77 5.41 4.71 18.4% 13.0%
263547 5.78 5.36 4.63 19.9% 13.7%
527094 5.79 5.29 4.53 21.8% 14.4%

Figure 4: The improvement o�ered by our algorithm increases as the size of the index
(measured in documents) increases.

Analysis. The Golomb code is near-optimal for the encoding of randomly dis-
tributed data, and in fact it was the best code for the Random ordering. However,
the Golomb code is not conv ex, so it does not bene�t from locality.

The locality inherent in the TREC database made the interpolative code the most
eÆcient code for the identity ordering. Interpolative coding used 5:29 bits per edge,
an improv ement of about 8:6% ov er the best encoding with a random document
ordering.

Using the ordering produced b y our algorithm, however, the interpolative code
needed an av erage of only 4:53 bits per edge to encode the data - a 21:8% improv ement
over the best coding of a random ordering, and a 14:4% improvement over the best
coding of an identity ordering.

Index size. T omeasure the e�ect of index size on our algorithm, we tested our
algorithm on various subsets of the full index. These subsets were formed b yev enly
subsampling documents from the full dataset. For each subset we evaluated the best
compression using a random, identity, or ordered permutation of the documents. The
random permutation was best coded with a Golomb code; the identity and ordered
permutations were coded with in terpolative codes. Figure 4 shows the results of our
tests. Interestingly, the improvement o�ered by our algorithm increases as the size of
the index increases.
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�

Rand 1 2 5 10 15 20 40

Time(s) 51.81 81.62 120.7 163.7 196.4 225.0 304.8
Delta 7.44 6.56 6.04 5.95 5.94 5.90 5.89 5.88
Arith 6.73 6.11 5.69 5.62 5.62 5.58 5.57 5.56
Interp 5.81 5.29 4.97 4.89 4.87 4.86 4.86 4.85

Figure 5: The performance (in bits per edge) of di�erent values of � on one-sixteenth
of the TREC indexing data.

�

Rand .75 .5 .25 .1 0

Time(s) 70.07 60.59 163.7 454.8 518.9
Delta 7.44 6.27 6.05 5.94 5.83 5.83
Arith 6.73 5.88 5.70 5.61 5.52 5.52
In terp 5.81 5.07 4.95 4.87 4.83 4.84

Figure 6: The performance (in bits per edge) of di�erent values of � on one-sixteenth
of the TREC indexing data. Note that our algorithm's running time is greater with
� = :75 than with � = :5. This is because the aggressive subsampling results in
unbalanced partitions, increasing the recursion depth of the algorithm.

Parameter Tuning. Our algorithm uses two parameters. The �rst parameter, � ,
is a threshold which determines how sensitive our build-graph algorithm is to term
size. If a term ti has jtij > � , our algorithm will still consider it when calculating
cosine measures, but will not add any edges to the similarity graph because of it.

T able5 shows the performance of our algorithm (on a subset of the full dataset
containing one-sixteenth as many documents) with di�erent values of � . Choosing
� to be less than 5 causes too few edges to be included in the similarity graph, but
increasing � beyond that was not bene�cial on the index we studied. We chose � = 10
to be safe.

The second parameter, �, determines how aggressively our algorithm subsamples
the data. On an index of size n, the algorithm extracts one out of every bn�c elements
to build a subindex. T able6 shows the performance of our algorithm with di�erent
values of�. Our algorithm does not perform too badly even with a very large �, but
there is still a clear tradeo� between time, space and quality. We chose � = :25 in
our experiments as a suitable balance between these concerns.

Graph Compression. Our algorithm can also be used to enhance the performance
of di�erence coding in graph compression. In graph compression, for each vertex of
the graph, an algorithm stores an adjacency list of the v ertices that share an edge
with that vertex. The vertices are numbered, so it is only natural to apply a di�erence
code to compress each list. If we view the vertices as terms and the adjacency lists as

Proceedings of the DATA COMPRESSION CONFERENCE (DCC�02) 
1068-0314/02 $17.00 © 2002 IEEE 



Code Random Identity Clustered Ordered

Binary 18.0 18.0 18.0 18.0
Delta 17.5 4.92 4.58 4.52
Golomb 13.3 12.7 12.4 12.6
Arith 14.4 4.32 3.82 3.75
Interp 13.4 5.83 5.66 5.58

Figure 7: The performance of our algorithm on the TREC-8 WT2g web track. The
\Clustered" column describes the performance of our algorithm without the �nal
rotation step.

posting lists, we can apply our clustering technique to renumber the v ertices of the
graph.

T otest our clustering tec hniqueon graph data we used another TREC dataset:
the TREC-8 WT2g web data track. That track can be represented as a directed graph
on 247428 web pages, where h yperlinks are edges. F orbest compression, we stored
the in-edges (rather than the out-edges) of each v ertex in our adjacency lists. The
number of in-edges for each v ertexwas more variable than the n umber of out-edges,
meaning that some adjacency lists were v ery dense and thus compressed v ery well.
The performance of our algorithm on the in-link representation is shown in Table 7.

6 Future Work

One in teresting avenue for future work would be to �nd a more advanced rotation
scheme (using simulated annealing) for the cluster tree. This would improv e the
quality of the orderings produced b your algorithm.

Another av enue would be to inv estigate an alternative similarity measure to the
cosine measure. When dealing with a pure document-term index, the cosine similarity
measure is quite good. Howev er,when we apply our clustering algorithm to graph
reordering as described above, the cosine measure does not capture all of the details
from the original graph. In particular, the cosine measure does not necessarily assign
any similarity to two vertices that share an edge: in order to be similar, two v ertices
must each hav e an edge to a third vertex. One might imagine other similaritymeasures
that took in to account factors such as the edge distance between two v ertices. F or
example, Adler and Mitzenmacher [1] take the distance between two documents to
be the cost (in bits) of coding the di�erence between the two.

On graphs (such as meshes and planar graphs) with high locality, it might also be
interesting to inv estigate alternative forms of clustering. An algorithm could apply a
form of bottom-up clustering to the original graph in which it sequentially collapsed
edges and merged the nodes of the graph into multinodes. If a way could be found
to do this eÆciently , this could be a more powerful technique than our top-down
clustering.
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