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Abstract

We consider a random instance I of k-SAT with n variables and m clauses, where
k = k(n) satis�es k � log

2
n ! 1. Let m0 = 2kn ln 2 and let � = �(n) > 0 be such that

�n!1. We prove that

lim
n!1

Pr(I is satis�able) =

(
1 m � (1� �)m0

0 m � (1 + �)m0

1 Introduction

An instance of k-SAT is de�ned by a set of variables, V = fx1; x2; : : : ; xng and a set of clauses
C1; C2; : : : ; Cm. We will let clause Ci be a sequence (�i;1; �i;2; : : : ; �i;k) where each literal �i;l is
a member of L = V [ �V where �V = f�x1; �x2; : : : ; �xng. In our random model, each �i;l is chosen
independently and uniformly from L. 1
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1We are aware that this allows clauses to have repeated literals or instances of x; �x. The focus of the paper is

on k = O(lnn), although the main result is valid for larger k. Thus most clauses will not have repeated clauses
or contain a pair x; �x. For moderate size k we could repeat the calculations for randomly chosen clauses without
repeats or instances of x; �x. We doubt that this would change the nature of our main result, Theorem 1, but it
would complicate its derivation. Of course, for k > n we would be forced to repeat literals or introduce instances
of x; �x into each clause.
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Random k-SAT has been well studied, to say the least. If k = 2 then it is known that there is
a satis�ability threshold at around m = n. More precisely, if � > 0 is �xed and I is a random
instance of 2-SAT then

lim
n!1

Pr(I is satis�able) =

(
1 m � (1� �)n

0 m � (1 + �)n

This was proved in Chvat�al and Reed [7] and sharpened by Goerdt [13], Fernandez de la Vega [9],
Verhoeven [16] and Frieze and Sorkin [11]. The tightest results presently known are due to Bol-
lob�as, Borgs, Chayes, Kim and Wilson [3]. Thus random 2-SAT is now pretty much understood.

For k � 3 the story is very di�erent. It is now known that a threshold for satis�ability exists
in some (not completely satisfactory) sense, Friedgut [10]. There has been considerable work on
trying to �nd estimates for this threshold in the case k = 3 { Chao and Franco [5, 6], Broder,
Frieze and Upfal [4], Frieze and Suen [12], Achlioptas [1], Achlioptas and Sorkin [2], the last
mentioned paper giving a lower bound of 3.26. Upper bounds have been pursued with the same
vigour { Kirousis, Kramakis, Krizanc and Stamatiou [15], Janson, Stamatiou and Vamvakari
[14], Dubois, Boufkhad and Mandler [8], the last-mentioned paper giving an upper bound of
4.506.

For larger values of k, even less is known. It was shown in [7] that if m < 2k

4kn and k is
constant then a random instance of k-SAT is satis�able with probability tending to 1 and that
if m > 2kn ln 2 then it is unsatis�able with probability tending to 1 as n ! 1. This is where
it stands for such k. While the focus has been on constant k (in particular k = 2; 3) it is also
worth considering k ! 1. Sometimes allowing parameters to grow simpli�es the problem and
this is the case here. We prove the following sharp threshold:

Theorem 1. Suppose ! = k � log2 n!1. Let

m0 = � n ln 2

ln(1� 2�k)
= (2k +O(1))n ln 2: (1)

so that 2n
�
1� 1

2k

�m0 = 1 and let � = �(n) > 0 be such that �n!1. Let I be a random instance

of k-SAT with n variables and m clauses. Then

lim
n!1

Pr(I is satis�able) =

(
1 m � (1� �)m0

0 m � (1 + �)m0:

This sheds considerable light on the likely threshold for k �xed but large and we conjecture that
the threshold here is ckn where ck � 2k ln 2 (where � is interpreted as k !1 arbitrarily slowly).
We also conjecture that the upper bound on the width of the scaling window implied by this
theorem, 2k!0 for any !0 !1, is tight. The theorem says nothing about algorithms for �nding
satisfying assignments below the threshold or for proving unsatis�ability above the threshold.
Are there polynomial time algorithms which work with high probability in this context?

2 Proof of Theorem 1

Our method of proof is quite straightforward. Let X = X(I) denote the number of satisfying
assignments for I. When m � (1 + �)m0 we show that E(X)! 0 and when m � (1� �)m0 we
use the second moment method to show that Pr(X > 0)! 1.
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The upper bound: There are 2n possible assignments of truth values to V . Let AT denote the
\all-true" assignment in which xj = T for j = 1; 2; : : : ; n. Assume that m � (1 + �)m0. Then

E(X) = 2nPr(AT satis�es I) = 2n
�
1� 1

2k

�m

=

�
1� 1

2k

�m�m0

(2)

� exp

�
�m�m0

2k

�
= 2��n(1+o(1)) ! 0:

The lower bound: Now assume that m = (1 � �)m0 where �n ! 1 arbitrarily slowly. In
particular, for concreteness, take

m = m0(1�O(lnn=n)): (3)

It is suÆcient to consider this case, since the result for larger � will follow by monotonicity.

First observe that
E(X) = 2�n(1+o(1)) !1:

We use the inequality

Pr(X > 0) � E(X)2

E(X2)
: (4)

For this we need to estimate E(X2). We �nd (as explained below),

E(X2) = 2n
nX

t=0

�
n

t

� 
1� 2

2k
+

�
t

2n

�k
!m

(5)

and so by (2)

E(X2)

E(X)2
= 2�n

nX
t=0

�
n

t

� 
1� 2

2k
+
�

t
2n

�k�
1� 1

2k

�2
!m

(6)

= 2�n
nX

t=0

�
n

t

� 
1 +

�
t
2n

�k � 1
22k�

1� 1
2k

�2
!m

: (7)

Explanation of (5): We let t denote the number of j for which xj = T in some assignment A
and then consider the probability that both AT and A are satisfying assignments. For a �xed j,
if we choose clause j at random, the probability that at least one of A;AT does not satisfy Cj

is precisely 2
2k
� � t

2n

�k
. Finally, multiply by 2n for the same reason as in (2).

Let ut denote the tth term of the sum in (7). Then using Stirling's formula in the form s! =
(s=e)s

p
2�se�=(12s) where j�j � 1 we obtain

lnut � n lnn� t ln t� (n� t) ln(n� t) +m

�
t

2n

�k

+O
� m

22k

�
:

We put t = �n and focus on the function

f(�) = �� ln � � (1� �) ln(1� �) + ��k (8)

where

� = m=(2kn) = ln 2 +O(lnn=n) (9)
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by (1) and (3). Then

ut � enf(t=n)(1 + o(1)) (10)

uniformly for t in the range [0; n]. For various ranges of t, we will bound ut from above either
directly or using f .

Di�erentiating (8) with respect to � we get

f 0(�) = ln
1� �

�
+ �k�k�1: (11)

We then parameterise � = 1+�
2 and search for zeros of

g(�) = f 0
�
1 + �

2

�
= ln

�
1� �

1 + �

�
+

�k

2k�1
(1 + �)k�1:

Di�erentiating this with respect to �,

g0(�) = � 2

1� �2
+

�k(k � 1)

2k�1
(1 + �)k�2: (12)

Note also that

g0(�) =
�k

2k�1
�
�
2� �k(k � 1)

2k�1

�
� +O

�
�2
�

� ! 0: (13)

It follows from (12) that f is strictly concave in the range [0; �2]; �2 =
1+�2
2 ; �2 = 1� 5 ln k

k , since
then (1 + �)k�2 < 2k=k2 (k suÆciently large). Within this interval there is by (13) a unique
maximum occurring at �0 =

1+�0
2 where

�0 =
�k

2k
+O

�
k3

22k

�
:

Having established the location of this maximum, we proceed by showing that \near" t = 1+�0
2

n,
ut behaves like the corresponding binomial coeÆcient, (14), (15). Other values of ut for t in the
interval [0; �2] will be shown to be negligible by computing the values of f \near" 1+�0

2 n and
using the concavity of f . We then have only to show then that the contributions of ut, t � �2n,
are also negligible.

From the de�nition of ut as the term in (7) we see that for t = 1+�
2 n; j�j � n�1=2 lnn,

ut =

�
n

t

��
1 +O

�
km lnn

n1=222k

��
=

�
n

t

�
(1 + o(1)) (14)

when k = O(lnn), whilst for k >> lnn

ut =

�
n

t

� 
1 +O

 �
1 + �

4

�k
!!m

=

�
n

t

�
exp

 
O

 
m

�
1 + �

4

�k
!!

=

�
n

t

�
(1 + o(1)): (15)

Furthermore, if �1 = �n�1=2 lnn then for some ~� between 0 and �1,

f

�
1 + �1

2

�
= f

�
1

2

�
+

1

2
g0(0)�21 +

1

6
g00( ~�)�31

= f

�
1

2

�
� �21 +O

��
k2

2k

�
�21 + �31

�

� f

�
1

2

�
� (lnn)2

2n
= log 2� (lnn)2

2n
+ o(1=n);
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where we used (12) for the second step and (8) for the last.

Thus, by the concavity of f on the interval [0; �2] and by (10), ut � enf((1+�1)=2) = o(2n=n) for
t � �2n such that jt� n=2j � n1=2 lnn. So, using (14), with t2 = b�2nc,

t2X
t=0

ut � (1 + o(1))

t2X
t=0

�
n

t

�
+ o(2n=n)(t2 + 1) � (1 + o(1))2n: (16)

Now let t3 = b�1� 1
k

�
nc and let t = (1� �)n 2 [t2 + 1; t3]. Then, from (7),

ut �
�
n

t

��
1 +

(1� �)k � 1

(2k � 1)(1� 2�k)

�m

� exp

�
n

�
� ln

�e
�

�
+

�
m(1� �)k

2kn

��
1 +O(2�k)

���

� exp
�
n
�
� ln

�e
�

�
+ (1� �)k ln 2

�
1 +O(2�k)

���
� 2n exp(�n(1� e�1 + o(1)) ln 2)

where the second-last step uses (1) and the last step uses � ln
�
e
�

�
= o(1) and (1 � �)k �

(1� 1=k)k � e�1. Thus

t3X
t=t2+1

ut = o(2n): (17)

Now for t � t3 + 1; t = (1� �)n, we have � < 1=k, and (11) gives

f 0(1� �) = ln � � ln(1� �) + �k(1� �)k�1 � ln � � ln(1� �) + �k=e

since ln(1 � 1=k) > �1=(k � 1). So, clearly f 0(1 � �) � �k=50 for � � e��k=3. Putting
t4 = minfn(1� e��k=3); n� 1g it follows that

f(t=n) � f(t4=n)� �k

50
(t4 � t)=n t3 � t � t4:

Consequently, since k !1 and � � ln 2, (10) implies that

bt4cX
t=t3+1

ut � (1 + o(1))enf(t4=n): (18)

Before proceeding, we note that

nf(1) = n� = m=2k = (1� �)m0=2
k = (1 +O(2�k))n(1� �) ln 2

and so

enf(1) = o(2n): (19)

Similarly for n suÆciently large

f(1� 1=n) � lnn

n
+ � exp(�k=n) � lnn

n
+ �

�
1� log2 n

n
+O

�
ln2 n

n2

��
= �+O

�
ln2 n

n2

�
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by (9). Hence as before

enf(1�1=n) = o(2n): (20)

Case 1: t4 = n� 1.
In this case we use (10), (18) and (19) to obtain

nX
t=t3+1

ut = o(2n): (21)

Case 2: t4 < n� 1.
Then e�k=3 < n. For � � e��k=3 we see that

f 0(1� �) = ln � + �k +O(k2e��k=3):

Consequently,

� � 1

n
implies f 0(1� �) � ln

�
2k

n

�
+O(k2e��k=3)!1:

So (10) and (18) imply

nX
t=t3

ut = (1 + o(1))enf(1�1=n) = o(2n) (22)

by (20). The proof of the lower bound now follows from (4), (7), (16), (17), (21) and (22). 2
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