Online Algorithms for Market Clearing

Avrim Blum*

Abstract

In this paper we study the problem of online market clearing
where there is one commodity in the market, being bought
and sold by multiple buyers and sellers who submit buy
and sell bids that arrive and expire at different times.
The auctioneer is faced with an online clearing problem
of deciding which buy and sell bids to match without
knowing what bids will arrive in the future. For maximizing
surplus, we present a (randomized) online algorithm with
competitive ratio In(pmar — pmin) + 1, when bids are in
a range [pmin,Pmaz], which we show is the best possible.
A simpler algorithm has ratio twice this, and can be used
even if expiration times are not known. For maximizing
the number of trades, we present a simple greedy algorithm
that achieves a factor of 2 competitive ratio if no money-
losing trades are allowed. Interestingly, we show that if the
online algorithm is allowed to subsidize matches — match
money-losing pairs if it has already collected enough money
from previous pairs to pay for them — then it can be 1-
competitive with respect to the optimal offline algorithm
that is not allowed subsidy. That is, the ability to subsidize is
at least as valuable as knowing the future. For the problems
of maximizing buy or sell volume, we present algorithms that
achieve a competitive ratio of 2(In(pmax/pmin) + 1) without
subsidization. We also present algorithms that achieve a
competitive ratio of In(pmaz/pmin) + 1 with subsidization
with respect to the optimal offline algorithm that cannot
use subsidies. This is the best possible competitive ratio
for the setting. We present all of our results as corollaries
of theorems on online matching in an incomplete interval
graph.

1 Introduction

Electronic commerce is becoming a mainstream mode
of conducting business. In electronic commerce there
has been a significant shift to dynamic pricing via ez-
changes (that is, auctions with potentially multiple buy-
ers and multiple sellers). The range of applications
includes trading in stock markets, business-to-business
commerce, bandwidth allocation in communication net-
works, as well as resource allocation in operating sys-
tems and computational grids. These trends have led

Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213-3891. {avrim,sandholm,maz}@cs.cmu.edu

Tuomas Sandholm*

Martin Zinkevich*

to an increasing need for fast market clearing algo-
rithms [20, 21]. Also, recent electronic commerce server
prototypes such as eMediator [18] and AuctionBot [22]
have demonstrated a wide variety of new market de-
signs, leading to the need for new clearing algorithms.

In this paper we study the ubiquitous setting where
there is a market for one commodity, for example, DELL
stocks, bonds, pork bellies, electricity, bandwidth, oil,
memory chips, or CPU time. For simplicity, we assume
that each buy bid and each sell bid is for a single unit of
the commodity (to buy or sell multiple units, a bidder
could submit multiple bids').

In these settings, the auctioneer has to clear the
market (match buy and sell bids) without knowing what
the future buy/sell bids will be. The auctioneer faces
the tradeoff of clearing all possibles matches as they
arise versus waiting for additional buy/sell bids before
matching. Waiting can lead to a better matching, but
can also hurt because some of the existing buy/sell bids
might expire or get retracted as the bidders get tired of
waiting.

While the Securities Exchange Commission (SEC)
imposes relatively strict rules on the matching process
in securities markets like NYSE and NASDAQ [6], most
new electronic markets (for example for business-to-
business trading) are not securities markets, and are
thus not regulated by the SEC. In those markets the
auctioneer has significant flexibility in deciding which
buy bids and sell bids to accept. In this paper we will
study how well the auctioneer can do in those settings,
and with what algorithms.

We formalize the problem faced by the auctioneer as
an online problem in which buy and sell bids arrive over
time. When a bid is introduced, the auctioneer learns
the bid price and expiration time (though some of the

TThis works correctly if the buyers have diminishing marginal
valuations for the units (the first unit is at least as valuable as the
second, etc.) and the sellers have increasing marginal valuations
for the units. Otherwise, the auctioneer could allocate the bidder’s
k+1’st unit to the bidder without allocating the bidder’s k’th unit
to the bidder, thus violating the intention of the bid by allocating
a certain number of units to the bidder at a different price than
the bidder intended. These restrictions seem natural—at least in
the limit—as buyers get saturated and sellers run out of inventory
and capacity to produce.

simpler algorithms will not need to know the expiration
times). At any point in time, the auctioneer can match
a live buy bid with a live sell bid, removing the pair
from the system. It will be convenient to assume that
all bids have integer-valued prices?(for example, money
that cannot be split more finely than pennies) that lie
in some range [Pmin, Pmac]-

DEFINITION 1. A temporal clearing model consists
of a set B of buy bids and a set S of sell bids. Fach
bid v € BU S has a positive price p(v), is introduced at
a time t;(v), and removed at a time ty(v). A bid v is
said to be alive in the interval [t;(v),t;(v)]. Two bids
v,v" € BUS are said to be concurrent if there is some
time when both are alive simultaneously.

DEFINITION 2. A legal matching is a collection of
pairs {(b1, s1), (b2, 52),...} of buy and sell bids such that

b; and s; are concurrent.

An offline algorithm receives knowledge of all buy
and sell bids up front. An online algorithm only learns
of bids when they are introduced. Both types of
algorithms have to produce a legal matching, i.e., a
buy bid and sell bid can only be matched if they are
concurrent. As usual in competitive analysis [5], we
will measure the performance of our online algorithms
against the optimal offline solution for the observed bid
sequence.® Competitive analysis of auctions (multiple
buyers submitting bids to one seller) has already been
conducted by others [15, 10, 9, 2], while we study
exchanges where there can be multiple buyers and
multiple sellers submitting bids. Our goal, for each
objective function we consider, will be to produce
online algorithms with optimal competitive ratios. We
consider the following objectives:

e Maximize surplus. Each pair of buy and sell
bids that are matched produces a surplus, which
is the difference between the buy price and the
sell price. The total surplus is the sum of these
differences, over all matched pairs. Maximizing
surplus corresponds to maximizing economic value
(social welfare).® The surplus could be divided

2Technically, we will assume that the optimal algorithm is

incapable of matching two bids which are closer than one dollar
in value when it is attempting to maximize surplus.

3This performance measure implicitly skirts the issue that
actions performed by the auctioneer can potentially influence the
sequence of bids submitted in the future.

4This is the case when buyers and sellers truthfully reveal their
valuations as the buy bids and sell bids. In reality they might
under-bid and over-ask strategically (the extent to which they
would act strategically depends on the mechanism design and is
beyond the scope of this paper). Therefore, to be accurate, we
should call this measure revealed surplus.

in any way among the buyers, sellers; and the
auctioneer. If surplus is maximized, there is no
way to make all of the parties better off. Offline,
the matching that optimizes surplus can be found
via weighted bipartite matching. We present a
(randomized) online algorithm with competitive
ratio In(pmay — Pmin) + 1, which we show is the best
possible. A simpler algorithm has ratio twice this,
and can be used even if expiration times are not
known. These algorithms build on analysis of [7]
for the one-way-trading problem.® We also show
how online learning results [17, 8, 4] can be used to
produce algorithms with even stronger guarantees
in certain stationary settings.

e Maximize liquidity. Liquidity maximization is
important for a marketplace for several reasons.
The success and reputation of an electronic mar-
ketplace is often measured in terms of liquidity, and
this affects the (acquisition) value of the party that
runs the marketplace. Also, liquidity attracts buy-
ers and sellers to the marketplace; after all, they
want to be able to buy and sell.

We analyze three common measures of liquidity:
1) number of trades, 2) sum of the prices of the
cleared buy bids (buy volume), and 3) sum of the
prices of the cleared sell bids (sell volume). Under
criterion 1, the goal is to maximize the number
of trades made, rather than the profit, subject to
not losing money. We show that a simple greedy
algorithm achieves a factor of 2 competitive ratio,
if no money-losing trades are allowed. This can
be viewed as a variant on the on-line bipartite
matching problem [13]. Interestingly, we show
that if the online algorithm 1s allowed to subsidize
matches — match money-losing pairs if it has
already collected enough money from previous pairs
to pay for them — then it can be 1-competitive with
respect to the optimal offline algorithm that is not
allowed subsidy. That is, the ability to subsidize is
at least as valuable as knowing the future.

For the problems of maximizing buy or sell volume,
we present algorithms that achieve a competitive
ratio of 2(In(pmaz /Pmin) +1) without subsidization.
We also present algorithms that achieve a compet-
itive ratio of In(pmay /Pmin) + 1 with subsidization
" BA similar problem to our surplus maximization problem is
online difference mazimization [12]. However, in that problem,
the focus is on the average case, not the worst case. Furthermore,
the goal is to maximize the number of “bids” whose prices fall
between the matched “buy bid” and “sell bid”, rather than

maximizing the monetary difference between the two.
our problem concerns multiple matches.

Finally,

with respect to the optimal offline algorithm that
cannot use subsidies. This is the best possible com-
petitive ratio for this setting.

We develop all of our best algorithms in a more
general setting we call the incomplete interval-graph
matching problem. In this problem, we have a number
of intervals (bids), some of which overlap in time, but
only some of those may actually be matched (because
we can only match a buy to a sell, because the prices
must be in the correct order, etc.). By addressing this
more general setting, we are able to then produce our
algorithmic results as corollaries.

2 An Abstraction: Online Incomplete Interval
Graphs

In this section we introduce an abstraction of the tem-
poral bidding problem that will be useful for producing
and analyzing optimal algorithms, and may be useful
for analyzing other online problems in the future.

DEFINITION 3. An incomplete interval graph is a graph
G = (V, E), together with two functions t; and ty from
V to [0,00) such that:

1. ForallveV, t;(v) <ty(v).
2. If (v,v") € E, then t;(v) < t;(v) and t;(v') <

ty(v).

We callt;(v) the start time of v, and t;(v) the expiration
time of v. For simplicity, we assume that for all v #

v eV, t(v) (V) and tp(v) £ty (V).

An incomplete interval graph can be thought of as
an abstraction of the temporal bidding problem where
we ignore the fact that bids come in two types (buy
and sell) and have prices attached to them, and instead
we just imagine a black box “E” that given two bids
v, v’, outputs whether or not they can be matched. By
developing algorithms for this generalization first, we
will be able to more easily solve the true problems of
interest.

We now consider two problems: the online edge-
selection problem and the online vertex-selection prob-
lem. In the online edge-selection problem, the online
algorithm maintains a matching. The algorithm sees a
vertex v at the time i1t is introduced. At this time, the
" B0ur results can be extended to settings where t; (v) may equal
t¢(v), ti(v) may equal ¢;(v'), and ¢4(v) may equal ¢;(v'). This is
accomplished by imposing an artificial total order on simultaneous

events. Among the events that occur at any given time, bid
The

introduction events can be ordered, for example, in the order they
were received, and so can the expiration events.

introduction events should precede bid expiration events.

algorithm is also told of all edges from v to other vertices
which have already been introduced. The algorithm can
select an edge only when both endpoints of the edge are
alive. Once an edge has been selected, it can never be
removed. The objective is to maximize the size of the
final matching.

In the online vertex-selection problem, the online
algorithm maintains a set of vertices W, with the re-
quirement that there must exist some perfect matching
on W. At any point in time, the algorithm can choose
two live vertices v and v" and add them into W so long
as there exists a perfect matching on WU {v,v'}. (Note
that there need not exist an edge between v and v'.) The
objective is to maximize the size of W. So, the vertex-
selection problem can be thought of as a less stringent
version of the edge-selection problem in that the algo-
rithm only needs to commit to the endpoints of the edges
in its matching, but not the edges themselves.

It is easy to see that no deterministic online algo-
rithm can achieve a competitive ratio less than 2 for
the edge-selection problem.” A simple greedy algorithm
achieves this ratio:

ALGORITHM 2.1. (GREEDY) When a vertex is intro-
duced, if it can be matched, match it (to any one of
the vertices to which it can be matched).

THEOREM 2.1. The Greedy algorithm achieves a com-
petitive ratio of 2 for the edge-selection problem.

Proof: Consider an edge (v,v') in the optimal match-
ing M*. Define v to be the vertex which is introduced
first, and v’ to be the vertex which is introduced sec-
ond. Then the algorithm will match either v or v/. In
particular, if v is not matched before v’ is introduced,
then we are guaranteed v will be matched (either
to v or some other vertex). Therefore, the number
of vertices in the online matching M is at least the
number of edges in M*, which means |M| > [M*|/2. B

For the vertex-selection problem, we show the following
algorithm achieves a competitive ratio of 1. That is,
it is guaranteed to find (the endpoints of) a maximum
matching in G.

ALGORITHM 2.2. Let W be the vertices selected so far
by the algorithm. When a vertex v is about to expire,
consider all the live unmatched vertices v, sorted by
expiration time from earliest to latest. Add the first pair
{v,v'} to W such that there exists a perfect matching

Consider the following scenario: vertex w expires first and

has edges to v1 and vo. Then, right after w expires, a new vertex
w arrives with an edge to whichever of v; or vy the algorithm
matched to w.

on WU {v,v'}. Otherwise, if no unmatched vertex v’
works, allow v to expire unmatched.

THEOREM 2.2. (MaIN THEOREM) Algorithm 2.2 pro-
duces a set of nodes having a perfect matching M which
15 a mazimum matching in G.

The proof of Theorem 2.2 appears in the appendix.
The core of the proof is to show that if W is the
set of selected vertices, then at all times the following
invariants hold:

Hy: For any expired, unmatched vertex w, there does
not exist any untaken vertex w’ such that there is
a perfect matching on W U {w, w'}.

H5: For any matched vertex w, there does not exist
an untaken vertex w’ such that there is a perfect

matching on W U {w'} — {w} and t;(w) > t;(w’).

Hs: For any two unexpired vertices w,w’ € W, there

exists no perfect matching on W — {w, w'}.

The first invariant says that the algorithm is com-
plete: it lets no matchable vertex expire, and expired
vertices do not later become matchable. The second and
third invariants say that the algorithm is cautious. The
second invariant says that the algorithm favors vertices
which expire earlier over those which expire later. The
third invariant states that the algorithm only matches
vertices that it has to: no subset of the set of vertices
chosen has a perfect matching and contains all of the
expired vertices®.

Since an untaken vertex is a vertex which has been
introduced but not matched, no untaken vertices exist
at the start of the algorithm. Also, W 1s empty.
Therefore, these invariants vacuously hold at the start.

Three events can occur: a vertex 1s introduced,
a vertex expires without being matched, or a vertex
expires and is added with some other vertex to W.
We establish that if all the invariants hold before any
of these events, then they hold afterwards as well.
If the first invariant holds at the termination of the
algorithm, then no pair could be added to the set
selected. The augmenting path theorem [3] establishes
that the selected set is therefore optimal. A full proof
appears in the appendix.

8The paraphrasing of this last point is a bit more extreme than
the others, but it turns out that if there exists a perfect matching
on W and a perfect matching on W/ C W, then there exists two
vertices v,v’ € W — W' such that there is a perfect matching on

W — {v,v'}.

3 Surplus Maximization

We now return to the temporal bidding problem and
show how the above results can be used to achieve an
optimal competitive ratio for maximizing surplus.

We can convert the surplus maximization problem
to an incomplete interval graph problem by choosing
some # to be the minimum surplus which we will accept
to match a pair. So, when translating from the temporal
bidding problem to the incomplete interval matching
problem, we insert an edge between a concurrent buy
bid b and a sell bid s if and only if p(b) > p(s) + 6.

The Greedy algorithm (Algorithm 2.1) then corre-
sponds to the strategy: “whenever there exists a pair
of bids in the system that would produce a surplus at
least 8, match them immediately.” Algorithm 2.2 at-
tempts to be more sophisticated: first of all, it waits
until a bid 1s about to expire, and then considers the
possible bids to match to in order of their expiration
times. (So, unlike Greedy, this algorithm needs to know
what the expiration times are.) Second, it can choose
to match a pair with surplus less than & if the actual
sets of matched buy and sell bids could have been paired
differently in hindsight so as to produce a matching in
which each pair yields a surplus of at least . This is
not too bizarre since, after all, the sum of surpluses is
just the sum of buy prices minus the sum of sell prices,
and so doesn’t depend on which was matched to which.

Define M*(Gy) to be the maximum matching
in the incomplete interval graph produced in the
above manner. Then, from Theorem 2.1, the greedy
edge-selection algorithm achieves a surplus at least
%9|M*(G9)|. Applying Algorithm 2.2 achieves surplus
at least O|M*(Gy)l.

So how should we choose 87 If we set # to 1, then
the number of matched pairs will be large, but each one
may produce little surplus. If we set 6 deterministically
any higher than 1,1t is possible the algorithms will miss
every pair, and have no surplus even when the optimal
matching has surplus.

Instead, as in [7] and similar to the Classify-and-
Randomly-Select approach [16, 1] (see also [11]), we
will choose # randomly according to an exponential
distribution. Specifically, for all @ € [1, pmaz — Pmin],
let

Pr[0 <] In(x) +1
r z]) =
- ln(pmax - pmzn) + 1’
where Pr[0 = 1] = m. Observe that this is

a valid probability distribution. Let OPT be the surplus
achieved by the optimal offline algorithm.

LEMMA 3.1. If 6 s chosen from the above distribution,
then E[0|M*(Gg)[] > ; OP'T

N(Pmax—Pmin)+1°

COROLLARY 3.1. The algorithm that chooses 6 from
the above distribution, and then applies Greedy to the
resulting graph achieves competitive ratio 2(In(pmay —
Pmin) + 1). Replacing Greedy with Algorithm 2.2
achieves competitive ratio In(pmay — Pmin) + 1.

In Section 5 we prove a corresponding lower bound of
In(pmas — Pmin) + 1 for this problem.
Proof (of Lemma 3.1): Let us focus on a specific
pair (b, s) matched by OPT. Let Ry(b,s) = 6 if p(b) —
p(s) > 0 and Ry(b,s) = 0 otherwise. Observe that
0IM™(Ge)l > > b s copt fta(b, s) because the set of
pairs of surplus at least § matched by OPT is a legal
matching in the incomplete interval graph. So, it suffices
to prove that E[Rg(b,s)] > (p(b) — p(s))/(In(pmaz —
We do this as follows. First, for z > 1

1
z] = P T ———y B So,

p(b)—p(s)
P[0 = 1] +/
1

x(ln(pmax - pmzn) + 1)
p(b) - p(S) [
ln(pmax - pmzn) + 1

, 4 P[0 <

xdx

E[RG(I)’ 5)] =

One somewhat strange feature of Algorithm 2.2 is
that it may recommend matching a pair of buy and
sell bids that actually have negative surplus. Since this
cannot possibly improve total surplus, we can always
just ignore those recommendations (even though the
algorithm will think that we did, in fact, match them).

4 Liquidity Maximization
In this section we study the online maximization of
the different notions of liquidity: number of trades,

aggregate price of cleared sell bids, and aggregate price
of cleared buy bids.

4.1 Maximizing the Number of Trades

Suppose that instead of maximizing surplus, our goal
1s to maximize the number of trades made, subject
to the constraint that each matched pair have non-
negative surplus. This can directly be mapped into
the incomplete interval graph edge-matching problem
by including an edge for every pair of buy and sell
bids that are allowed to be matched together. So, the
greedy algorithm achieves competitive ratio of 2, which
is optimal for a deterministic algorithm, as we prove in
Section 5.3.

However, if the online algorithm can subsidize
matches (match a pair of buy and sell bids of nega-
tive surplus if it has already made enough money to
pay for them) then we can use Algorithm 2.2, and do
as well as the optimal solution in hindsight that is not

allowed subsidization. Specifically, when Algorithm 2.2
adds a pair {b,s} to W, we match b and s together,
subsidizing if necessary. We know that we always have
enough money to pay for the subsidized bids because of
the property of Algorithm 2.2 that its set W always has
a perfect matching. We are guaranteed to do as well as
the best offline algorithm which is not allowed to sub-
sidize, because the offline solution is a matching in the
incomplete interval graph.

4.2 Maximizing Buy or Sell Volume

DEFINITION 4. Given a matching M the buy-volume is
Z(b,s)eMp(b)~ The sell-volume is Z(b,s)eMp(5)~
If we wish to maximize buy volume without subsi-

dization, we can use an algorithm based on the greedy
surplus algorithm.

ALGORITHM 4.1. Choose a buy price threshold 8 at
random. Specifically, for all € [pmin, Pmax], let

Pr[6 <z] = In(z) + 1 and let
ln(pmax/pmin) + 1

ln(pmax/pmin) + 1
When a buy bid b is introduced, if p(b) > @, and

there exists an untaken, unexpired sell bid that can be
matched without subsidy, match them. When a sell bid
s 1s introduced, if there exists an untaken, unexpired
buy bid b such that p(b) > @ and the bids can be
matched without subsidy, match them.

This algorithm achieves a competitive ratio of
2(In(pmaz/Pmin) + 1). The proof is similar to that of
Lemma 3.1.

If the online algorithm is allowed to use subsidiza-
tion, then we can use Algorithm 2.2 as follows.

ALGORITHM 4.2. Choose a buy price threshold 8 at
random accoring to the same distribution as in Algo-
rithm 4.1. Convert the online problem into an incom-
plete interval graph. For each bid b, insert a vertex with
an interval [t;(b),%7(b)]. If a buy bid b and a sell bid s
can be matched without subsidy, and p(b) > 6, add an
edge between their respective vertices.

Run Algorithm 2.2 on the constructed graph. If
Algorithm 2.2 chooses a buy bid b and a sell bid s, then
they are concurrent. Match them. (If p(b) < p(s), then
this match involves a subsidy.)

This achieves a competitive ratio of
In(pmaw/Pmin) + 1 with respect to the offline al-

gorithm which does not use subsidy (the proof is

similar to that of Lemma 3.1 and its corollary). This
is the best ratio that can be achieved (the proof is by
threat-based analysis similar to that in Section 5.1).

Maximizing sell volume is analogous to maximizing
buy volume. The best competitive ratio achievable
without using subsidy we know is 2(In(pmaz/Pmin) +1).
The best achievable with subsidy against an offline
algorithm not allowed to use subsidy is In(pmag /Pmin) +
1.

5 Lower Bounds on Competitive Ratios

In this section we establish that our analysis is tight
for these algorithms. Specifically we show that no
algorithm can achieve a competitive ratio lower than
In(pmas — Pmin) + 1 for the surplus maximization prob-
lem, no deterministic algorithm can achieve a compet-
itive ratio better than 2 for the trade volume max-
imization problem without subsidization, no random-
ized algorithm can achieve a competitive ratio better
than 4/3 for the trade volume maximization problem
without subsidization. Also, we prove that the greedy
algorithm described in the paper for maximizing sur-
plus does not achieve a competitive ratio better than
2(1n(pmax - pmzn) + 1)

5.1 A Threat-Based Lower Bound for Surplus
In this analysis, we prove a lower bound for the com-
petitive ratio of any online algorithm by looking at
a set of temporal bidding problems. We prove that
even if the algorithm knows that the problem is in this
set, 1t cannot achieve a competitive ratio better than
In(pmas — Pmin) + 1. This is very similar to the anal-
ysis of the continuous version of the one-way trading
problem in [7].

For this analysis, assume py,;, = 0. Consider the
situation where you have a sell bid at 0 which lasts until
the end. First, there is a buy bid at @, and then a
continuous stream of increasing buy bids with each new
one being introduced after the previous one expired.
The last bid occurs at some value y. Define D(z) to be
the probability that the sell bid has not been matched
before the bid of & dollars expires. Since it is possible
there 1s only one buy bid, if one wanted to achieve a
competitive ratio of r, then D(a) < 1 — % Also, define
Y (y) to be the expected surplus of the algorithm. The
ratio r is achieved if for all © € [a, pmas], Y(2) > /7.
Observe that Y/(z) = —D’(x)x, because —D'(z) is the
probability density at x.

Observe that one wants to use no more probability
mass on a bid than absolutely necessary to achieve the
competitive ratio of r, because that probability mass
is better used on later bids if they exist. Therefore,
for an optimal algorithm, D(a) = 1 — %, and Y(z) =

z/r. Taking the derivative of the latter, Y'(z) = 1/r.
Substituting, 1/r = —D'(x)x. Manipulating, D'(z) =
—%. Integrating:

y
D(y) = D(a)+ D' (z)dz
= 1- 1 — 1ln y
r r la

For the optimal case, we want to just run out of
probability mass as y approaches p;,q.. Therefore:
1

1 max
D(pmax)zl_ ___ln‘p—
r r a

=0

r:hlpmax +1
a

Thus, setting a to 1, and shifting back by pn, one
gets a lower bound of In(pmaey — Pmin) + 1.

5.2 Greedy Surplus Maximization
The following scenario shows that our analysis of the
greedy surplus algorithm 1s tight. Imagine that a buy
bid for $2 is introduced at 1:00 (and is good forever),
and a sell bid for $1 is introduced at 1:01 (that is
also good forever). At 2:00, another buy bid for $2 is
introduced, which expires at 3:00. At 3:01, another sell-
bid for $1 is introduced. In this scenario, the optimal
offline algorithm achieves a surplus of $2 (matching the
first buy bid to the last sell bid, and vice versa).
With a probability of 1 — m, > 1,
and the greedy algorithm ignores all of the bids. Other-
wise (6 = 1), the greedy algorithm matches the first two
bids for a surplus of 1 and then cannot match the second
two. Therefore, the expected reward is m
compared to an optimal of 2. This example shows why
the optimal algorithm must consider the past when con-
sidering current bids.

5.3 Maximizing the Number of Trades

Here we establish that no deterministic algorithm can
achieve a competitive ratio lower than 2 for maximizing
the number of trades without subsidization. Also, no
randomized algorithm can achieve a competitive ratio
lower than 4/3.

Imagine a sell bid s* for $1, is introduced at 1:00 and
will expire at 2:00. At 1:01, a buy bid & is introduced
for $3, and will expire at 3:00. At 1:02, a buy bid ¥’ is
introduced for $2, and will expire at 4:00.

There are two possible sell bids that can be intro-
duced: either a sell bid s for $2.5 at 2:30, or a sell bid s’
for $1.5 at 3:30. Observe that b can match s, and ' can
match s'. So if s is to appear, s* should match ¥, and
if s’ is to appear, s* should match . But when s* ex-
pires, the online algorithm does not know which one of

s and s’ will appear. So while a randomized algorithm
can guess the correct match to make with a probability
of 1/2, the deterministic algorithm must make a deci-
sion of which to take before the adversary chooses the
example, and so it will choose the wrong match.

6 Combining Algorithms Online

The algorithm of Corollary 3.1 begins by picking a
threshold @ from some (exponential) distribution. Tt
turns out that if there is an upper bound on the
“burstiness” of the bids, then we can use standard online
learning results to do nearly as well as the best value
of 8 picked in hindsight. This does not violate the
optimality of the original algorithm: it could be that
all thresholds perform a log factor worse than OPT.
However, in some natural distributional settings, the
best strategy s to pick some fixed threshold, and in
these cases, the modified strategy would be within a
(1 + €) factor of optimal.

At any point in time, for each threshold #, we can
encapsulate how well we would have done had we used
this threshold as a pair (surplusy, statey), where surplus,
is the surplus acheived so far, and statey is the set of
its current outstanding bids. What we can now do is
combine all these fixed-threshold algorithms using the
Randomized Weighted Majority (Hedge) algorithm of
[17, 8], as adapted by [4] for the case of experts with
internal state. The important issue here is the following.
When the overall “master” algorithm tells us to switch
from threshold é; to 62, we may not be in as good a state
as statep, (in particular, we may have fewer outstanding
bids). However, suppose we have an apriori upper-
bound B on the maximum size of any state (this is
our bound on “burstiness”). Then, if we conservatively
only match buy/sell pairs in our state that are also in
statep, (and that have surplus at least) then we can
guarantee that our surplus in this time period is at worst
Bpmas less than had we been in stateg,. In other words,
we can view all the states as belonging to a metric space
of diameter at most Bp, 4. At this point, we can apply
a theorem of [4] to say that for any ¢ > 0 (e is given to
the algorithm), we can achieve an expected gain at least

4B max
max (1 — €)surplus, — ZZPmaz log N | ,
€

where N 1s the number of different thresholds. Details
are left to the full version of the paper.®

FOne issue we have glossed over is that the results of [4] are
given in terms of losses instead of gains. But the arguments carry

over for gains, as in the stateless case [8].

7 Conclusions and Future Research

In this paper, we derived a variety of bounds on
competitive ratios for several online market clearing
problems having to do with maximizing surplus or
maximizing different measures of liquidity. Some of our
worst-case competitive ratios are the best that can be
achieved online, and the rest are within a factor of two
of the best that is achievable online.

For some of our metrics, a constant factor is very
important since they are monetary measures, not mea-
sures of computation speed. The difference between
the greedy surplus algorithm and the surplus algorithm
based on Algorithm 2.2 is that the latter guarantees
twice as much surplus in terms of a competitive ratio.

There has been recent interest in offline clearing
algorithms for combinatorial exchanges where a bid
can concern multiple distinguishable items (possibly
multiple units of each) [18, 19]. A bid could state, for
example, “I want to buy 20 IBM, buy 50 DELL, sell
700 HP, and get paid $500”. As we transformed the
online clearing problem to an online matching problem
in an incomplete interval graph, the online problem
of maximizing surplus or liquidity in a combinatorial
exchange can be transformed to the problem of finding
a matching on an incomplete interval hypergraph online.
While we can show with a simple example that a
maximum matching cannot be achieved online in the
hypergraph problem, it might be possible to achieve a
matching with an expected size no less than half of the
maximuin one.

One direction of future research is to extend these
results to settings where there is a market maker who
can carry inventory of the commodity (sell short and
long) rather than simply deciding which bids to match.

Acknowledgements

The authors would like to thank Ke Yang for a num-
ber of helpful suggestions. This material is based upon
work supported under NSF grants CCR-9732705, CCR-
0085982, CAREER Award TRI-9703122, IIS-9800994,
ITR IIS-0081246, ITR, 11S-0121678, and an NSF Gradu-
ate Research Fellowship. Any opinion, findings, conclu-
sions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

[1] Baruch Awerbuch, Yair Bartal, and Amos Fiat. Dis-
tributed paging for general networks. In Proc. 7th
Symp. on Discrete Algorithms, pages 574-583, 1996.

[2] A. Bagchi, A. Chaudhary, R. Garg, M. Goodrich,

and V. Kumar. Seller-focused algorithms for online

[10]

[11]

[12]

[13]

[14]

[15]

auctioning. In Proceedings of WADS 2001, pages 135—
147, 2001.

C. Berge. Two theorems in graph theory. In Proceed-
ings of the National Academy of Sciences, volume 43,
pages 842-844, 1957.

A. Blum and C. Burch. On-line learning and the
metrical task system problem. Machine Learning,
39(1):35-58, April 2000.

Allan Borodin and Ran El-Yaniv. Online Computa-
tion and Competitive Analysis. Cambridge University
Press, 1998.

lan Domowitz. Automating the continuous double auc-
tion in practice: Automated trade execution systems
in financial markets. In Daniel Friedman and John
Rust, editors, The Double Auction Market, volume 14
of Santa Fe Institute Studies in the Sciences of Com-
plexity, pages 27-60. Addison-Wesley, 1993.

Ran El-Yaniv, Amos Fiat, Richard M. Karp, and
G. Turpin. Competitive analysis of financial games. In
Proc. 33rd Symp. Foundations of Computer Science,
pages 327-333, 1992.

Yoav Freund and Robert Schapire. Game theory, on-
line prediction and boosting. In Proc. 9th Conf. on
Computational Learning Theory, pages 325-332, 1996.
Andrew Goldberg, J Hartline, and A Wright.
petitive auctions and multiple digital goods. Technical
report, InterTrust 00-01, 2000.

Andrew Goldberg, J Hartline, and A Wright. Competi-
tive auctions and digital goods. In Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), Washing-
ton, DC, 2001.

S. Goldman, J. Parwatikar, and S. Suri.
scheduling with hard deadlines. Journal of Algorithms,
34:370-389, 2000.

Ming-Yang Kao and Stephen R. Tate. On-line differ-
ence maximization. SIAM Journal of Discrete Mathe-
matics, 12(1):78-90, 1999.

Richard M. Karp, U. V. Vazirani, and V. V. Vazirani.
An optimal algorithm for on-line bipartite matching.
In Proc. 22nd Symp. Theory of Computing, pages 352—
358, Baltimore, Maryland, 1990.

D. Kozen. The Design and Analysis of Algorithms.
Springer-Verlag, New York, 1991.

Ron Lavi and Noam Nisan. Competitive analysis of in-
centive compatible on-line auctions. In Proceedings of
the ACM Conference on Electronic Commerce (ACM-
EC), pages 233-241, Minneapolis, MN, 2000.

R. J. Lipton and A. Tomkins. Online interval schedul-
ing. In Proc. 5th Symp. on Discrete Algorithms, pages
302-311, 1994.

N. Littlestone and M. K. Warmuth. The weighted
majority algorithm. [Information and Computation,
108:212-261, 1994.

Tuomas Sandholm.

Com-

On-line

eMediator:
tion electronic commerce server.

A next genera-
In Proceedings of
the Fourth International Conference on Autonomous
Agents (AGENTS), pages 73-96, Barcelona, Spain,
June 2000. Early version appeared in the AAAI-99

Workshop on Al in Electronic Commerce, Orlando, FL,
pp- 46-55, July 1999, and as a Washington University,
St. Louis, Dept. of Computer Science technical report
WU-CS-99-02, Jan. 1999.
[19] Tuomas Sandholm and Subhash Suri. Improved algo-
rithms for optimal winner determination in combinato-
rial auctions and generalizations. In Proceedings of the
National Conference on Artificial Intelligence (AAAT),
pages 90-97, Austin, TX, 2000.
Tuomas Sandholm and Subhash Suri. Market clear-
ability. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (1J-
CAI), pages 1145-1151, Seattle, WA, 2001.
Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and
David Levine. CABOB: A fast optimal algorithm for
combinatorial auctions. In Proceedings of the Sev-
enteenth International Joint Conference on Artificial
Intelligence (IJCAI), pages 1102-1108, Seattle, WA,
2001.
Peter R Wurman, Michael P Wellman, and William E
Walsh. The Michigan Internet AuctionBot: A config-
urable auction server for human and software agents.

[20]

[21]

[22]

In Proceedings of the Second International Conference
on Autonomous Agents (AGENTS), pages 301-308,
Minneapolis/St. Paul, MN, May 1998.

Appendices
A Lemmas on Matchings

In this section, we prove some lemmas required for the
main theorem proof in Appendix B. We will use some
standard facts and definitions from graph theory; for
a review, see [14]. Paths will be represented as sets of
edges, although sometimes it will be easier to write them
as a sequence of vertices. V(P) is the set of vertices of
a path P. We will also use some well known lemmas:

LEMMA A.1. Given v,v' € V — W, and that there
exists a perfect matching M on W, if there exists some
augmenting path P with respect to M from v to v, then
M @ P is a perfect matching on W U {v,v'}.

LEMMA A.2. The symmetric difference of two match-
ings M and M’ consists of alternating paths and alter-
nating cycles with respect to M .

LEMMA A.3. A vertex v € V is the endpoint of an
alternating path in the symmetric difference of two
matchings M and M’ if and only if it is in V(M) &
V(M.

Proof. Suppose a vertex is in V(M) @ V(M'). Then it
has an adjacent edge in either M or M’, but not both.
Hence, it can only have one adjacent edge in M & M’,
making it an endpoint of an alternating path.

Suppose a vertex is at the endpoint of a path in
M @ M’. Then it has one edge in M @ M’. Observe

that if it has an odd number of edges incident to it
in M @& M’, the number of edges in M to it plus the
number of edges in M’ to it is also odd. But since the
latter is bounded by zero and two, 1t is one. Therefore,
the vertex cannot be in both V(M) and V(M').

Augmenting paths capture some of the local prop-
erties of matchings. But they do not capture how to
remove elements from a matching, or how to replace
an element. Since these are important concepts in the
online setting, we introduce some other types of paths.
These paths have properties very similar to those of aug-
menting paths.

DEFINITION 5. An abridging path with respect to a
matching M is a path whose first and last edges are in
M. A replacement path'® with respect to M has one
endpoint v in V(M) with the edge incident to v in P
also in M, and one endpoint not in V(M).

LEMMA A.4. Given v,v' € W, and that there exists a
perfect matching M on W, if there exists some abridging
path P with respect to M from v to v, then M ® P is a
perfect matching on W — {v,v'}.

The proof is similar to the proof of Lemma A.1.

LEMMA A.b. Givenv € W and v/ € V — W, and that
there exists a perfect matching M on W, if there exists
some replacement path P with respect to M from v to
v, then M & P is a perfect matching on WU{v'} — {v}.

The proof is similar to the proof of Lemma A.1.

LEMMA A.6. Suppose W and W' are subsets of V, and
there exists a perfect matching on W and a perfect
matching on W', then there exists a partition of W W'
winto sets of size two:

{{al, bl}, {Clz, bz}, N ,{ak, bk}}

such that for all 1 < ¢ < k, there exists a perfect
matching on W & {a;, b;}.

Proof. Define M to be a perfect matching on W and M’
to be a perfect matching on W’. Then M @& M’ consists
of a set of alternating paths and cycles. Here, we are
only concerned with the paths. Since these paths only
begin and end at points in W ¢ W’, we can partition
W @ W' where each set is the set of endpoints of a path
in M@ M’. Consider a set in this partition {a, b}, where
P is the path between the two elements of the set. There
are three possibilities:

10 A replacement path can be from a vertex in V(M) to a vertex

not in V(M), or from a vertex not in V(M) to a vertex in V(M).

1. Both vertices are in W/ — W. Then P is an
augmenting path, and M & P is a perfect matching
on WU {a,b} =W @ {a,b}.

2. One vertex is in W —W’ and one vertex in W/ —W.
In this case, the path P is a replacement path.
Without loss of generality, assume a € W — W',
Then M & P is a perfect matching on WU {b} —
{a} =W @ {a,b}.

3. Both vertices are in W — W’. The first and last
edges are not in M’, because @ and b are not in
W’. Also, the first and last edges are in M & M’ C
M U M’'. Therefore, the first and last edges are in
M and P is an abridging path. M & P is a perfect
matching on W — {a,b} = W & {a, b}.

CoROLLARY A.1. If W C V has a perfect matching,
but it s not one of the largest sets that has a perfect
matching, then there exists v,v' € V — W such that
W U {v,v'} has a perfect matching.

B Proof of Theorem 2.2 (Main Theorem)

Assume W is the set of selected vertices, then we define
Hy,Hs, and Hj as follows:

Hy: For any expired, unmatched vertex w, there does
not exist any untaken vertex w’ such that there is
a perfect matching on W U {w, w'}.

H5: For any matched vertex w, there does not exist
an untaken vertex w’ such that there is a perfect
matching on W U {w'} — {w} and t;(w) > t;(w’).
For any two unexpired vertices w,w’ € W, there
exists no perfect matching on W — {w, w'}.

H31

Let H denote the conjunction of the three invariants
Hy, Hy, and Hs. We will prove that if these invariants
of the algorithm hold before an event occurs, they will
hold after the event. The possible events that can occur
are a vertex being introduced, expiring without being
matched, or expiring and being added.

LEMMA B.1. If H holds before a verter w' is intro-
duced, H holds after the event.

Proof. We prove this for all three parts of H.

Hy: Consider w to be an expired, unmatched vertex.
Here we need to prove that there exists no perfect
matching on W U {w,w'}. We will prove this
by contradiction. Suppose that M is a perfect
matching on W U {w,w'}. Define v such that
(w',v) € M. Let us define M/ = M — {(v',v)}.
Then, M’ is a perfect matching on W — {v} 4+ {w}.
Since w has expired and v has not expired, ¢ (w) <
t¢(v). This contradicts the inductive hypothesis
Hs.

Hy: Suppose that w € W and t;(w) > tp(w'). We
need to prove that there does not exist a perfect
matching for W U {w'} — {w} by contradiction,
assuming there exists a perfect matching M.
Define v such that (w',v) € M. Observe that
ti(v) > ti(w'), so v has not expired. Neither
has w, since ty(w) > tr(w’) > t;(w'). However,
M — (w',v) is a perfect matching on W — {w, v}.
This 1s a contradiction of Hs.

Hjs: This cannot have any effect.

LEmMA B.2. If H holds before a verter w expires with-
out being matched, H holds after the event.

Proof. We prove this for all three parts of H.

Hi: Suppose w' is an untaken vertex. We need to prove
that there does not exist a perfect matching on

W uU{w,w'}.

(a) Assume w' expired. By Hj, there there did
not exist a perfect matching on W U {w, w'}.

(b) If there existed an unexpired, unmatched ver-
tex w' such that W U {w,w'} had a perfect
matching, then w would have been matched.

Ho,Hs: This cannot have any effect.

LEMMA B.3. If H holds before a vertex v expires and
is added with v', H holds after the event.

Proof. We prove this for all three parts of H.

Hy: Suppose w is an expired, unmatched vertex, and
w’ is an untaken vertex. We need to prove that
there does not exist a perfect matching on W U
{v,v",w, w'}. We can prove this by contradiction.

Observe that there exists a perfect matching on
W. 1If there existed a perfect matching on W U
{v,v",w,w'}, then by Lemma A.6 one of the fol-
lowing conditions holds:

(a) There exists a perfect matching on W U
{v",w}. This would contradict H;.
(b) There exists a perfect matching on WU{v, w}.
This would contradict H;.
(c) There exists a perfect matching on W U
{w, w’}. This would contradict H.
Hs: Consider an arbitrary vertex w in W U {v,v'},
and an arbitrary untaken vertex w’. Assume that
WU {v,v',w'} — {w} is a perfect matching. We
must prove that ¢;(w') > t(w).

(a) w =v. Then WU {v, v/, 0w} —{w} = WU
{v/,w'}. So by Hy, w’ has not expired. Then
te(w') > ty(w), because w is just expiring.

(by w = ¢'. Then W U {v,v',vw'} — {w} =

WU {v,w'}. So by Hy, w' has not expired.

Thus if t;(w) > t5(w’), then w’ would have

been added instead of w.

w € W. Then by Lemma A.6 applied to W

and WU {v,v',w'} —{w}, one of the following

conditions holds:

i. WU {v} — {w} and W U {v',w'} have
perfect matchings. Then by Hi, w’ has
not expired, and t¢(w) < t¢(v), so w has
expired.

ii. WU {v} —{w} and W U {v,w'} have
perfect matchings. Then by Hi, w’ has
not expired, so ty(w') > tr(v'). Also,
Ly (w) < tp (V).

iii. WU {w'} — {w} has a perfect matching.
Then by Ho, ty(w') >ty (w).

Hs: A vertex v expires and is added with v’. Suppose
that w, w’ € WU{v,v'}. Assume that WU{v,v'}—
{w,w’} has a perfect matching. We must prove
that w or w’ has expired. Consider three cases:

(a) w = v. Then w has expired.

(b) w =v". Then WU {v,v'} = {w,w'} = WU
{v} —{w'}. Thus by Hs, tf(v) > ty(w'), so
w' has already expired(a contradiction).

(c) w € W. Then by Lemma A.6 applied to W
and WU {v,v'} — {w, w'}, one of the following
conditions holds:

i. WU{v}—{w} has a perfect matching. By
Hy, te(v) > ty(w), so w has expired.
ii. WU {v} —{w'} has a perfect matching.
By Ha, ty(v) > ty(w'), so w' has expired.
iii. W — {w,w'} has a perfect matching. By
Hj, either w or w' has expired.

Proof (of Theorem 2.2): We will prove by induc-
tion that H holds at the termination of the algorithm.
First, observe that Hy, Ho, and Hj are all properties
of introduced vertices, so when there are no vertices
introduced, they cannot be violated. This is the base
Inductively, by Lemmas B.1, B.2, B.3, if these
properties hold before an event, they hold afterward
as well. Thus, H holds at the termination of the
algorithm. Specifically, H; implies that there exists no
{v,v'} €V — W such that W U {v, v’} has a perfect
matching. By Corollary A.1, W is one of the largest
sets with a perfect matching. |

case.

This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

