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Abstract

In this paper� we give the �rst constant�factor approximation algorithm for the rooted Orien�
teering problem� as well as a new problem that we call the Discounted�Reward TSP� motivated
by robot navigation� In both problems� we are given a graph with lengths on edges and prizes
�rewards� on nodes� and a start node s� In the Orienteering Problem� the goal is to �nd a path
that maximizes the reward collected� subject to a hard limit on the total length of the path� In
the Discounted�Reward TSP� instead of a length limit we are given a discount factor �� and the
goal is to maximize total discounted reward collected� where reward for a node reached at time
t is discounted by �t� This is similar to the objective considered in Markov Decision Processes
�MDPs� except we only receive a reward the �rst time a node is visited� We also consider tree
and multiple�path variants of these problems and provide approximations for those as well� Al�
though the unrooted orienteering problem� where there is no �xed start node s� has been known
to be approximable using algorithms for related problems such as k�TSP �in which the amount
of reward to be collected is �xed and the total length is approximately minimized�� ours is the
�rst to approximate the rooted question� solving an open problem of ��� 	
�

� Introduction

Consider a robot with a map of its environment� that needs to visit a number of sites in order to
drop o� packages� collect samples� search for a lost item� etc� One classic model of such a scenario
is the Traveling Salesman Problem� in which we ask for the tour that visits all the sites and whose
length is as short as possible� However� what if this robot cannot visit everything� For example�
it might have a limited supply of battery power� In that case� a natural question to ask is for the
tour that visits the maximum total reward of sites �where reward might correspond to the value
of a package being delivered or the probability that some lost item we are searching for is located
there�� subject to a constraint that the total length is at most some given bound B� This is called
the �rooted� Orienteering Problem ��rooted�� because we are 	xing the starting location of the
robot�� Interestingly� while there have been a number of algorithms that given a desired reward
can approximately minimize the distance traveled �which yield approximations to the unrooted
orienteering problem�� approximating the reward for the case of a �xed starting location and �xed
hard length limit has been an open problem�

Alternatively� suppose that battery power is not the limiting consideration� but we simply want
to give the robot a penalty for taking too long to visit high
value sites� For example� if we are
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searching for a lost item� and at each time step there is some possibility the item will be taken �or�
if we are searching for a trapped individual in a dangerous environment� and at each time step there
is some probability the individual might die�� then we would want to discount the reward for a site
reached at time t by �t� where � is a known discount factor� We call this the Discounted�Reward
TSP� This is similar to the classic setting of Markov Decision Processes ��� ���� except that we are
giving the robot a reward only for the �rst time it visits a site �and� we are assuming a deterministic
environment��

In this paper� we provide the 	rst constant
factor approximations to both the �rooted� Orien

teering and the Discounted
Reward TSP problems� and well as a number of variants that we discuss
below�

��� Motivation and Background

Robot navigation and path planning problems can be modeled in many ways� In the Theoretical
Computer Science and Optimization communities� these are typically modeled as kinds of Prize

Collecting Traveling Salesman Problems ���� �� ��� ��� In the Arti	cial Intelligence community�
problems of this sort are often modeled as Markov Decision Processes �� �� ��� ��� ��� Below we
give some background and motivation for our work from each perspective�

����� Markov Decision Process motivation

A Markov Decision Process �MDP� consists of a state space S� a set of actions A� a probabilistic
transition function T � and a reward function R� At any given time step� an agent acting in an
MDP will be located at some state s � S� where he can choose an action a � A� The agent
is subsequently relocated to a new state s� determined by the transition probability distribution
T �s�js� a�� At each state s� an agent collects reward R�s� �or� sometimes� rewards are put on state

action pairs�� For example� a package
delivery robot might get a reward every time it correctly
delivers a package� Note that each action de	nes a probability distribution of the next state� if
actions were pre
determined� then we would get just a Markov chain�

In order to encourage the robot to perform the tasks that we want� and to do so in a timely
manner� a standard objective considered in MDPs is to maximize discounted reward� Speci	cally�
for a given discount factor � � ��� ��� the value of reward collected at time t is discounted by a
factor �t� Thus the total discounted reward� which we aim to maximize� is Rtot �

P
t��R�st��

t�
This guides the robot to get as much reward as possible as early as possible� and produces what in
practice turns out to be good behavior� One can also motivate exponential discounting by imagining
that at each time step� there is some 	xed probability the game will end �the robot loses power�
a catastrophic failure occurs� the objectives change� etc�� Exponential discounting also has the
nice mathematical property that it is time�independent� meaning that an optimal strategy can be
described just by a policy� a mapping from states to actions� The goal of planning in an MDP is to
determine the optimal policy� the mapping of states to actions that maximizes expected discounted
reward E �Rtot��

There are well
known algorithms for solving MDPs in time polynomial in the state space �� ���
��� However� one drawback of the MDP model is that the robot receives the reward for a state
every time that state is visited �or every time the robot performs that action from that state if
rewards are on state
action pairs�� Thus� in order to model a package
delivery or search
and
rescue
robot� one would need a state not only for each location of the robot� but also for its internal state
of which locations have been visited so far and which are still to go� This could be quite large if
there are many locations� For this reason� we would like to be able to directly model the case of
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rewards that are given only the �rst time a state is visited�
As a 	rst step towards tackling this general problem� we abandon the stochastic element and

restrict to deterministic� reversible actions� This leads us to study the Discounted�Reward Travel�
ing Salesman Problem� in which we assume we have an undirected weighted graph �edge weights
represent the time to traverse a given edge�� with a prize �reward� value �v on each vertex v� and
our goal is to 	nd a path visiting each vertex v at time tv so as to maximize

P
�v�

tv�

����� PC�TSP and Orienteering problems

A di�erent way to model the goal of collecting as much reward as possible as early as possible is as
a Prize
Collecting Traveling Salesman �PC
TSP� or Orienteering Problem ��� ��� ��� �� ��� In the
PC
TSP� a salesman is required to collect at least some given amount of reward� while minimizing
the distance traveled �in a roughly equivalent problem� k
TSP� every node has a prize of one unit
and the salesman is required to visit at least k nodes�� In the Orienteering problem� one instead
	xes a deadline D �a maximum distance that can be traveled� and aims to maximize total reward
collected by that time�

There are several approximations known for the PC
TSP and k
TSP problems ��� �� �� �� ���
the best being a �
approximation due to Garg���� Most of these approximations are based on
a classic Primal
Dual algorithm for the Prize Collecting Steiner Tree problem� due to Goemans
and Williamson ����� These algorithms for PC
TSP extend easily to the unrooted version of the
Orienteering problem in which we do not 	x the starting location ���� ��� In particular� given a path
of value � but whose length is cD for some c � �� we can just break the path into c pieces of length
at mostD� and then take the best one� whose total value will be at least ��c� However� this doesn�t
work for the rooted problem because the �best piece� in the above reduction might be far from the
start� Arkin et� al ��� give a constant
factor approximation to the rooted Orienteering problem for
the special case of points in the plane� However� there is no previously known O��� approximation
algorithm for the rooted Orienteering Problem or Discounted
Reward TSP in general graphs�

In this paper� we give constant factor approximation algorithms for both the above problems�
To do this� we devise a min�excess approximation algorithm for Prize Collecting TSP that approx

imates to within a constant factor the optimum di�erence between the length of a prize
collecting
path and the length of the shortest path between its endpoints� Note that this is a strictly better
guarantee than what can be obtained by using an algorithm for k
TSP which would return a path
that has length at most a constant multiple times the total optimal length from s to t�

Using an approximation of �CC for the min
cost cycle �k
TSP� problem as a subroutine� we get
an �EP � �

��CC �� approximation for minimizing the min
excess �s� t�
path problem� a �� d�EP e
approximation for Orienteering� and a roughly e��EP � �� approximation for Discounted
Reward
TSP� Garg ��� has announced an algorithm with �CC � �� so using this we get constants of �� �
and ����� for these problems respectively� Using a � � � approximation of Arora and Karakostas
���� these factors will increase slightly�

The rest of this paper is organized as follows� We begin with some de	nitions in section ��
Then we give an algorithm for min
excess path in section �� followed by algorithms for Discounted
PC
TSP and Orienteering in sections � and  respectively� In section � we extend some of the
algorithms to tree and multiple
path versions of the problems� We conclude in section ��

� Notation and De�nitions

Let G � �V�E� be a weighted undirected graph� with a distance function on edges� d � E � ���
and a prize or reward function on nodes� � � V � ��� Let �v � ��v� be the reward on node v� Let
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s � V denote a special node called the start or root�
For a path P visiting u before v� let dP �u� v� denote the length along P from u to v� Let d�u� v�

denote the length of the shortest path from node u to node v� For ease of notation� let dv � d�s� v�
and dP �v� � dP �s� v�� For a set of nodes V � � V � let ��V �� �

P
v�V � �v � For a set of edges E� � E�

let d�E�� �
P

e�E� d�e��
Our problems aim to construct a certain subgraph�a path� tree� or cycle� possibly with addi


tional constraints� Most of the problems attempt a trade
o� between two objective functions� the
cost of the path �or tree� or cycle�� and total prize spanned by it� From the point of view of exact
algorithms� we need simply specify the cost we are willing to tolerate and the prize we wish to span�
Most variants of this problem� however� are NP
hard� so we focus on approximation algorithms�
We must then specify our willingness to approximate the two distinct objectives� We refer to a
min�cost problem when our goal is to approximately minimize the cost of our objective subject to a
	xed lower bound on prize �thus� prize is a feasibility constraint while our approximated objective
is cost�� Conversely� we refer to a max�prize problem when our goal is to approximately maximize
the prize collected subject to a 	xed upper bound on cost �thus� cost is a feasibility constraint
while our approximated objective is prize�� For example� the min
cost tree problem is the tradi

tional k
MST� it requires spanning k prize and aims to minimize the cost of doing so� Both the
rooted and unrooted min
cost tree problems have constant
factor approximations� The max
prize
path problem� which aims to 	nd a path of length at most D from the start node s that visits a
maximum amount of prize� has been referred to as the orienteering problem�

The main subroutine in our algorithms requires also introducing a variation on approximate cost�
De	ne the excess of a path P from s to t to be dP �s� t��d�s� t�� that is� the di�erence between that
path�s length and the distance between s and t in the graph� Obviously� the minimum
excess path
of total prize � is also the minimum
cost path of total prize �� however� a path of a constant factor
times minimum cost need not have only a constant
factor times the minimum excess� We therefore
consider separately the minimum excess path problem� Note that an �s� t� path approximating
the optimum excess � by a factor � will have length d�s� t� � �� � ��d�s� t� � �� and therefore
approximates the minimum cost path by a factor � as well� Achieving a good approximation to
this min
excess path problem will turn out to be a key ingredient in our approximation algorithms�

Finally� as discussed earlier� we consider a di�erent means of combining length and cost moti

vated by applications of Markov decision processes� We introduce a discount factor � � �� Given
a path P rooted at s� let the discounted reward collected at node v by path P be de	ned as
	Pv � �v�

dP �s�v�� That is� the prize gets discounted exponentially by the amount of time it takes
for the path to reach node v� The max�discounted�reward problem is to 	nd a path P rooted at s�
that maximizes 	P �

P
v�P 	

P
v � We call this the discounted�reward TSP� Note that the length of

the path is not speci	cally bounded in this problem� though of course shorter paths produce less
discounting�

��� Results

We present a constant
factor approximation algorithm for the max
prize path �rooted Orienteering�
problem� solving an open problem of ��� ��� as well as the discounted
reward TSP� Central to our
results is a constant
factor approximation for themin�excess path problem de	ned above� which uses
an algorithm for the min
cost cycle �k
TSP� problem as a subroutine� We also give constant
factor
approximations to several related problems� including the max
prize tree problem�the �dual� to
the k
MST �min
cost tree� problem�and max
prize cycle� Speci	c constants are given in Figure ��

Our approximation algorithms re�ect a series of reductions from one approximation problem
to another� Improvements in the approximations for various problems will propagate through� We
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state approximation factors in the form �XY where XY denotes the problem being approximated�
the 	rst letter denotes the objective �cost� prize� excess� or discounted prize denoted by C� P � E�
and D respectively�� and the second the structure �path� cycle� or tree denoted by P � C� or T
respectively��

Problem Current approx� Source�Reduction

min
cost tree ��CT � � � � ���
min
cost cycle ��CC� � ���
min
cost s
t path ��CP � � � � �CC
min
excess path ��EP � � �

���CP ��
�
�

max discounted path ��DP � ������� ��
�� �� � �EP ��� � ���EP �
�EP

max
prize path ��PP �  � � d�EP e
max
prize tree ��PT � �� ��PP
max
prize cycle ��PC� �� ��PP
max
prize multiple
path ��kPP � � �PP � �
max discounted multiple
path ��kDP � ����� �DP � �

Figure �� Approximation factors and reductions for our problems�

��� Preliminaries

To support dynamic programming in the max
prize variants� we begin by scaling all prizes to
polynomially bounded integers �in the number of vertices n�� We can do this by guessing the value
� of the optimum solution via binary search� and multiplying all prizes by n���� yielding a graph
with optimal prize value n�� If we now round every prize down to the nearest integer� we lose at
most n units of prize� which is a negligible multiplicative factor� This negligible factor does mean
that an approximation algorithm with guarantee c on polynomially bounded inputs has �weaker�
guarantee �arbitrarily close to c� on arbitrary inputs� Likewise� for the min
cost or min
excess
variants� we can assume that the given prize value � is polynomially bounded�

Let nodes in V be ordered from v� � s through vn in order of their distance from s� �Note that
t is not necessarily the last vertex in this order�� Let di � d�s� vi�� so d� � d� � � � � � dn� For
convenience in the analysis� we assume all di are distinct �in the algorithm we can handle equal
distances by breaking ties lexicographically��

� Min�Excess Path

Let P � be the shortest path from s to t with ��P �� 	 k� Let ��P �� � d�P ���d�s� t�� Our algorithm
returns a path P of length d�P � � d�s� t� � �EP ��P �� with ��P � 	 k� where �EP � �

��CC � ��
Thus we obtain a �
approximation to min
excess path using an algorithm of Garg for k
TSP with
�CC � ��

We will use as a subroutine an algorithm for the easier min
cost path problem� in which the
goal is just to approximate the total path length� that is� we want a path from s to t that collects
prize at least k and has total length at most �CP d�P

��� We can achieve this with �CP � �CC � �
by the following algorithm that we will call MCP� MCP begins by merging s and t to a vertex

�Technically we will be nding the highest value � such that our algorithm comes within its claimed approximation

ratio�





r� and solving k
TSP with root r� The original path solution has become a �feasible� cycle� so
the optimum cycle length is at most d�P ��� meaning we 	nd an approximate solution of length
�CCd�P

��� On the original graph� this solution may be a path from s to t� in which case we are
done� Alternately� it is either a cycle ending at s� or two disjoint cycles� one at s and one at t�
In these latter cases� we simply add a shortest s
t path �which is clearly no longer than d�P ����
increasing the approximation ratio by at most ��

Now we return to the harder Min
Excess Path �MEP� problem� The idea for our algorithm is
as follows� Suppose that the optimum solution path encounters all its vertices in increasing order
of distance from s� We call such a path monotonic� We can 	nd this optimum monotonic path via
a simple dynamic program� for each possible prize value p and for each vertex i in increasing order
of distance from s� we compute the minimum excess path that starts at vertex s� ends at i� and
collects prize at least p�

We will solve the general case by breaking the optimum path into continuous segments that
are either monotonic �so can be found optimally as just described� or �wiggly� �generating a large
amount of excess�� We will show that the total length of the wiggly portions is comparable to the
excess of the optimum path� our solution uses the optimum monotonic paths and approximates the
length of the wiggly portions by a constant factor� yielding an overall increase proportional to the
excess�

Consider the optimal path P � from s to t� We divide it into segments in the following manner�
For any real d� de	ne f�d� as the number of edges on P � with one endpoint at distance � d from s
and the other endpoint at distance 	 d from s� Note that f�d� 	 � for all � � t � dt �it may also be
nonzero for some d 	 dt�� Note also that f is piecewise constant� changing only at distances equal
to vertex distances� We break the real line into intervals according to f � the type one intervals
are the maximal intervals on which f�d� � �� the type � intervals are the maximal intervals on
which f�d� 	 �� These intervals partition the real line �out to the maximum distance reached by
the optimum solution� and alternate between types � and �� Let the interval boundaries be labeled
� � b� � b� � � �bm� where bm is the maximum distance of any vertex on the path� so that the ith

interval is �bi� bi���� Note that each bi is the distance label for some vertex� Let Vi be the set of
vertices whose distance from s falls in the ith interval� Note that the optimum path traverses each
set Vi exactly once�once it leaves some Vi it does not return� One of any two adjacent intervals
is of type �� if the path left this interval and returned to it then f�d� would exceed � within the
interval� Thus� the vertices of P � in set Vi forms a contiguous segment of the optimum path which
we label as Si � P � 
 Vi�

A segment partition is shown in Figure ��
Note that for each i� there may be �at most� � edge crossing from Vi to Vi��� To simplify the

next two lemmas� let us split that edge into two with a vertex at distance bi from s� so that every
edge is completely contained in one of the segments �this can be done since one endpoint of the
edge has distance exceeding bi and the other endpoint has distance less than bi�� Placing a vertex
at each interval boundary ensures that the length of a segment is equal to the integral of f�d� over
its interval�

Lemma ���� A segment Si of type � has length at least bi�� � bi� A segment Si of type � has
length at least ��bi��� bi�� unless it is the segment containing t in which case it has length at least
��dt � bi��

Proof� The length of segment Si is lower bounded by the integral of f�d� over the ith interval� In
a type � interval the result is immediate� For a type � interval� note that f�d� 	 � actually implies
that f�d� 	 � by a parity argument�if the path crosses distance d twice only� it must end up at
distance less than d�
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Figure �� Segment partition of a path in graph G

Corollary ���� The total length of type�� segments is at most �����

Proof� Let �i denote the length of segment i� We know that the length of P � is dt � � �
P

�i� At
the same time� we can write

dt � bm

�
m��X
i��

�bi�� � bi�

�
X

i type �

�i �
X

i type �

�i��

It follows that

� �
X

�i � dt

	
X

i type �

��i��

Multiplying both sides by ��� completes the proof�

Having completed this analysis� we note that the corollary remains true even if we do not
introduce extra vertices on edges crossing interval boundaries� The crossing edges are no longer
counted as parts of segments� but this only decreases the total length of type � segments�

��� A Dynamic Program

Our algorithm computes� for each interval that might be an interval of the optimum solution� a
segment corresponding to the optimum solution in that interval� It then uses a dynamic program
to paste these fragments together using �and paying for� edges that cross between segments� The
segments we compute are de	ned by � vertices� the closest
to
s and farthest
from
s vertices� c and
f � in the interval �which de	ne the start
 and end
points of the interval� our computation is limited
to vertices within that interval�� and the 	rst and last vertices� x and y� on the segment within
that interval� They are also de	ned by the amount p of prize we are required to collect within the
segment� There are therefore O��n	� distinct segment to compute� where � is the total prize in
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the graph� For each segment we 	nd an optimum solution for a type � and a type � interval� For
a type
� interval the optimum path is monotonic� we can therefore compute �in linear time� an
optimum �shortest� monotonic path from x to y that collects prize p� If the interval is of type ��
the optimum path need not be monotonic� Instead� we approximate to within a constant factor
the minimum length of a path that starts at x� 	nishes at y� stays within the boundaries of the
interval de	ned by c and f � and collects prize at least p�

Given the optimum type � and near
optimum type
� segment determined for each set of �
vertices and prize value� we can 	nd the optimal way to paste some subset of them together
monotonically using a dynamic program� Note that the segments corresponding to the optimum
path are considered in this dynamic program� so our solution will be at least as good as the one we
get by using the segments corresponding to the ones on the optimum path �i�e�� using the optimum
type
� segments and using the approximately optimum type
� segments�� We need only show that
this solution is good�

We focus on the segments corresponding to the optimum path P �� Consider the segments Si of
length �i on the optimum path� If Si is of type �� our algorithm will 	nd a �monotonic� segment
with the same endpoints collecting the same amount of prize of no greater length� If Si is of type
�� our algorithm �through its use of subroutine MCP� will 	nd a path with the same endpoints
collecting the same prize over length at most �CP �i� Let L� denote the total length of the optimum
type � segments� together with the lengths of the edges used to connect between segments� Let L�
denote the total length of the optimum type � segments� Recall that L��L� � dt� � and that �by
Corollary ���� L� � ����� By concatenating the optimum type
� segments and the approximately
optimum type
� segments� the dynamic program can �and therefore will� 	nd a path collecting the
same total prize as P � of total length

L� � �CPL� � L� � L� � ��CP � ��L�

� dt � �� ��CP � ��������

� dt �

�
�

�
�CP �

�

�

�
�


In other words� we approximate the minimum excess to within a factor of �
��CP �

�
� �

� Maximum Discounted�Prize Path

Recall that we aim to optimize 	�P � �
P

�d
P
v �v � Assume without loss of generality that the

discount factor is � � ����we simply rescale each length � to �� such that �� � ����
�� � i�e� �� �

� log�������
We 	rst establish a property of an optimal solution that we make use of in our algorithm� De	ne

the scaled prize �� of a node v to be the �discounted� reward that a path gets at node v if it follows
a shortest path from the root to v� That is� ��v � �v�

dv � Let ���P � �
P

v�P �
�
v� Note that for any

path P � the discounted reward obtained by P is at most ���P ��
Now consider an optimal solution P �� Fix a parameter � that we will set later� Let t be the last

node on the path P � for which dP
�

t � dt � ��i�e�� the excess of path P � at t is at most �� Consider
the portion of P � from root s to t� Call this path P �

t �

Lemma ���� Let P �
t be the part of P � from s to t� Then� 	�P �

t � 	 	�P ����� �
�� ��

Proof� Assume otherwise� Suppose we shortcut P � by taking a shortest path from s to the next
node visited by P � after t� This new path collects �discounted� rewards from the vertices of P ��P �

t �

�



which form at least �
�� of the total by assumption� The shortcutting procedure decreases the distance

on each of these vertices by at least �� meaning these rewards are �undiscounted� by a factor of
at least �� over what they would be in path P �� Thus� the total reward on this path exceeds the
optimum� a contradiction�

It follows that we can approximate 	�P �� by approximating 	�P �
t �� Based on the above obser


vation� we give the algorithm of Figure � for 	nding an approximately optimal solution� Note that
�guess t� and �guess k� are implemented by exhausting all polynomially many possibilities�

Algorithm for Discounted PC�TSP

�� Re
scale all edge lengths so that � � ����

�� Replace the prize value of each node with the prize discounted by the shortest path to that
node� ��v � �dv�v� Call this modi	ed graph G��

�� Guess t�the last node on optimal path P � with excess less than ��

�� Guess k�the value of ���P �
t ��

� Apply our min
excess path approximation algorithm to 	nd a path P collecting scaled prize
k with small excess�

�� Return this path as the solution�

Figure �� Approximation for Maximum Discounted
Prize Path

Our analysis below proceeds in terms of � � �EP � the approximation factor for our min
excess
path algorithm�

Lemma ���� Our approximation algorithm �nds a path P that collects discounted reward 	�P � 	
���P ������

Proof� The pre	x P �
t of the optimum path shows that it is possible to collect scaled prize k � ���P �

t �
on a path with excess �� Thus� our approximation algorithm 	nds a path collecting the same scaled
prize with excess at most ��� In particular� the excess of any vertex v in P is at most ��� Thus�
the discounted reward collected at v is at least

	�v� 	 �v

�
�

�

�dv���

� �v

�
�

�

�dv ��
�

���

� ��v

�
�

�

���

Summing over all v � P completes the proof�

Combining Lemma ��� and Lemma ���� we get the following�

Theorem ���� The solution returned by the above algorithm has 	�P � 	 ��� �
�� �	�P

�������

�



Proof�

	�P � 	 ���P ����� by Lemma ���

	 ���P �
t ���

�� by choice of P

	 	�P �
t ���

�� by de	nition of ��

	

�
��

�

��

�
	�P ������ by Lemma ���

We can now set � as we like� Writing x � ��� we optimize our approximation factor by
maximizing ���x�x�EP to deduce x � �������� Plugging in this x yields an approximation ratio
of �� � �EP ��� � ���EP �

�EP �

� Orienteering

We would like to compute the maximum
prize path of length at most D� starting at s� We will use
the algorithm for min
excess path given in section � as a subroutine� Our algorithm is in Figure ��

Algorithm for Max�Prize Path �Orienteering	

�� Perform a binary search over values k�

�� For each vertex v� compute min
excess path from s to v collecting prize k�

�� Find the maximum k such that there exists a v where the min
excess path returned has length
at most D� return this value of k and the corresponding path �

Figure �� Algorithm for Max
Prize Path �Orienteering�

As can be seen from our algorithm� we solve Max
Prize Path by directly invoking our Min

Excess Path algorithm� Our analysis consists of showing that any optimum orienteering solution
contains a low
excess path which� in turn� is an approximately optimum orienteering solution�

More precisely� we prove that for some vertex v� there exists a path from s to v with excess at
most D�dv

�EP
which collects prize at least ��

�PP
�here �EP is the approximation ratio for min
excess

path� �PP is the desired approximation ratio for Max
Prize Path� and �� is the prize of the optimum
Max
Prize Path�� Assuming this path exists� our min
excess path computation on this vertex v
will 	nd a path with total length at most dv � �EP

D�dv
�EP

� D and prize at least ��

�PP
� providing an

�PP 
approximation for orienteering�
We 	rst consider the case where the optimum orienteering path travels from s to t� and where

t is further from s than any other point on the optimum path�

Lemma ���� If there is a path from s to t of length at most D which collects prize �� such that t
is the furthest point from s along this path� then there is a path from s to some node v with excess
at most D�dv

r
and prize at least �

r
�for any integer r 	 �	�

Proof� For each point a along the original path P � let ��a� � dPa � da� in other words� ��a� is the
excess in the length of the path to a over the shortest
path distance� We have ��t� � D�dt� Consider
mapping the points on the path to a line from � to ��t� according to their excess �we observe that

��



excess only increases as we traverse path P �� Divide this line into r intervals with length
��t�
r
� Some

such interval must contain at least �
r
prize� since otherwise the entire interval from � to ��t� would

not be able to collect prize �� Suppose such an interval starts with node a and ends with node v� We
consider a path from s to v that takes the shortest s
a path� then follows path P from a to v� This
path collects the prize of the interval from a to v in the original path� which is a prize of at least �

r

as desired� The total length of this path is da�dP �a� v� � da�dPv �d
P
a � dv���v����a� � dv�

��t�
r
�

The excess of this path is ��t�
r

� D�dt
r

� D�dv
r

�

Of course� in general the optimum orienteering path might have some intermediate node which
is further from s than the terminal node t� We will generalize the above lemma to account for this
case�

Lemma ���� If there is a path from s to t of length at most D which collects prize �� then there
is a path from s to some node v with excess at most D�dv

r
and prize at least �

r�� �for any integer
r 	 �	�

Proof� Let f be the furthest point from s along the given path P � We are interested in the case
where f �� t� We can break path P into two pieces� 	rst a path from s to f and then a path from
f to t� Using the symmetry of our metric� we can produce a second path from s to f by using the
shortest path from s to t and then following the portion of our original path from f to t in reverse�
We now have two paths from s to f � each of which has length at most D� The total length of these
paths is bounded by D� dt� We will call our paths A and B� and let their lengths be df � �A and
df � �B respectively� We now map path A to the interval from � to �A according to the excess at

each point� much as in lemma ��� We consider dividing this interval into pieces of length �A��B
r

�the last sub
interval may have shorter length if �A does not divide evenly�� We perform the same
process on path B� We have created a total of r� � intervals �this relies on the assumption that r
is integral� allowing us to bound the sum of the ceilings of the number of intervals for each path��
We conclude that some such interval has prize at least �

r�� � We suppose without loss of generality
that this interval spans a portion of path A from a to v� We now consider a path which travels
from s to a via the shortest path and then from a to v following path A� The length of this path

is bounded by dv �
�A��B

r
for an excess of at most

D�df
r

� D�dv
r

as desired�

Making use of lemma ��� we can prove that our algorithm for orienteering obtains a constant
approximation� Making use of Garg�s approximation for k
MST��� along with our result on min

excess path from section �� we have a 
approximation for Orienteering�

Theorem ���� There is an �d�EP e����approximation for the max�prize path �orienteering	 prob�
lem� where �EP is the approximation factor for min�excess path�

Proof� Lemma �� implies that there exists a path from s to some v with excess D�dv
�EP

obtaining

prize ��

d�EP e��
� Such a path has length dv �

D�dv
�EP

� implying that the approximation algorithm for

min
excess will 	nd a path from s to v with length at most dv � �D � dv� � D and at least the
same prize� The algorithm described will eventually try the proper values of k and v and 	nds
such a path in polynomial time �actually the approximation factor will be d�EP e � � � � and the
running time will depend logarithmically on �

�
and the ratio of maximum to minimum feasible k

values because of the binary search step� note that this running time is still polynomial in the size
of the input��

��



� Extensions

��� Budget Prize Collecting Steiner Tree

In this section� we consider the tree variant of the Orienteering problem� called Max
Prize Tree in
our notation� Namely� given a graph G with root r� prize function � and lengths d� we are required
to output a tree T rooted at r with d�T � � D and maximum possible reward ��T �� This problem
is also called the Budget Prize
Collecting Steiner Tree problem �����

Let the optimal solution for this problem be a tree T �� Double the edges of this tree to obtain
an Euler tour of length at most �D� Now� divide this tour into two paths� each starting from the
root r and having length at most D� Among them� let P � be the path that has greater reward� Now
consider the Max
Prize Path problem on the same graph with distance limit D� Clearly the optimal
solution P � to this problem has ��P �� 	 ��P �� 	 
�T ��

� � Thus� we can use the �PP 
approximation
for Orienteering to get a ��PP 
approximation to T ��

��� Multiple�Path Orienteering and Discounted�Reward TSP

In this section we consider a variant of the Orienteering and Discounted
Reward TSP in which
we are allowed to construct up to k paths� For the Orienteering problem� each path must have
length at most D� For the Discounted
Reward problem� the k robots move simultaneously� so the
discounting is done based on the individual lengths of the paths�

For both the problems� we apply the algorithms described in sections � and  respectively�
to successively construct the k paths� At the i
th step� we set the prizes of all points visited in
the 	rst i � � paths to �� and constructed the i
th path on the new graph� using the previously
described algorithms� Using a set
cover like argument �proof in the appendix�� we get the following
approximation guarantees�

Theorem ���� If all the paths have a common start node� the above algorithm gives a �����e��PP �
������ e��DP �	 approximation for the Multiple�Path Orienteering �Discounted�Reward TSP	�

If the paths have di�erent start nodes� the above algorithm gives a �PP � � ��DP � �	 approxi�
mation for the Multiple�Path Orienteering �Discounted�Reward TSP	�

	 Conclusions

In this paper we give constant factor algorithms for the Orienteering problem� Discounted
Reward
TSP� and some of their variants� An interesting open problem is to consider other discount functions�
or di�erent deadlines for each vertex� For example� the reward collected at vertex v at time t could
be given by 	v � �v if t � Tv and � otherwise� Another interesting open problem is to consider the
directed versions of the problems� although we believe that it may be hard to approximate these
to within constant� or even log factors�
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Appendix

Proof of Theorem ���	 We consider the Multiple
Path Orienteering problem� The corresponding
result for Discounted
Reward TSP can be derived analogously�

First consider the case when all the paths have a common source� Let the reward collected by
the optimal solution� but not collected by our solution by stage i� be �i� At least one of the paths
in the optimal solution collects at least a k fraction of this reward� Then� using the approximation
guarantee of the algorithm for orienteering� our solution collects at least a �

k�PP
fraction of this

reward� By the end of k rounds� the total reward collected by optimal solution� but not collected
by us� is at most ��� �

k�PP
�k � e��PP � and the result follows�

Next consider the case when the paths have di�erent sources� Let Oi be the set of points visited
by the i
th path in the optimal solution� and Ai be the corresponding set of points visited by our
algorithm� Let !i be the set of points that are visited by the i
th path in the optimal solution
and some other path in our solution� Let O � �iOi� A � �iAi and ! � �i!i� Now� in the i
th
stage� there is a valid path starting at the i
th source� that visits all points in Oi n!i� Thus we
have ��Ai� 	

�
�PP

���Oi����!i��� Summing over i� we get �PP��A� 	 ���O�� ��!��� But

��!� � ��A�� Thus ��A� 	 �
�PP��

��O�� �

��



 

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice




