
A New Rounding Procedure for the Assignment Problem with

Applications to Dense Graph Arrangement Problems

Sanjeev Arora� Alan Friezey Haim Kaplanz

May 31, 1996

Abstract

We present approximation schemes for \dense" instances of many well-known NP-hard
problems, including 0-1 quadratic-assignment, (an optimization formulation of) graph-
isomorphism, min-cut-linear-arrangement, max-acyclic-subgraph, betweenness, and
min-linear-arrangment. (A \dense" graph is one in which the number of edges is
(n2);
denseness for the other problems is de�ned in an analogous way.) Some of our approximation

schemes run in nO(log n=�2) time; others run in nO(1=�2) time.
Of independent interest is our randomized procedure for rounding fractional solutions of

linear programs that represent the assignment problem subject to linear constraints. This
extends the well-known LP rounding procedure of Raghavan and Thompson, and also solves
an open problem of Luby and Nisan (\Design an NC procedure for converting near-optimum
fractional matchings to near-optimum matchings.")

�Computer Science, Princeton University. E-mail: arora@cs.princeton.edu
yDepartment of Mathematics, Carnegie Mellon University, Pittsburgh PA15213. Supported in part by NSF grant

CCR9225008. E-mail: af1p@andrew.cmu.edu
zComputer Science, Princeton University. E-mail: hkl@cs.princeton.edu

1

1 Introduction

Computing approximate solutions to NP-hard optimization problems is an important task. Ap-
proximation algorithms have been designed for many important problems in the last couple of
decades. Designing polynomial time approximation schemes or PTAS's has proved much harder.
A PTAS is an algorithm that, given an instance of the problem and any �xed � > 0, achieves
an approximation ratio 1 + � in time that is polynomial in the input size (the time could depend
arbitrarily on �). A PTAS is desirable since it allows us to trade o� approximation accuracy for
running time.

PTAS's are known for only very few problems; knapsack [IK75] and bin-packing [FL81,
KK82] are the only two well-known examples . (Recently, a PTAS has also been discovered for
Euclidean TSP[A96].) In fact, a result by Arora, Lund, Motwani, Sudan and Szegedy [ALM+92]
shows that if P 6= NP, then PTAS's do not exist for a large body of problems { the so-called MAX-
SNP-hard problems. Similar (or stronger) \inapproximability" results have since been proved for
many other problems.

Such inapproximability results raise a very natural question: What subcases of these prob-
lems are \easy" with respect to approximation? A paper by Baker [B94] (which actually predated
the inapproximability results) showed that many NP-hard graph problems have PTAS's on pla-
nar graphs; more recently Khanna and Motwani [KM96] extended her work. Arora, Karger and
Karpinski [AKK95] showed that many MAX-SNP-hard problems have a PTAS when the instance
is \dense" (in case of graphs, this means that each vertex has degree
(n), although some of the
algorithms in [AKK95] work also when the average degree is
(n)).They also gave a PTAS for
bisection on dense graphs. Fernandez de la Vega [dlV94] independently gave a PTAS for dense
instances of MAX-CUT and some other problems.

In this paper we describe approximation schemes for dense instances of a number of classical
optimization problems. These include 0-1 quadratic-assignment, (an optimization formulation
of) graph-isomorphism, min-cut-linear-arrangement, max-acyclic-subgraph, linear-
arrangment, and betweenness. Some of these approximation schemes run in polynomial time;
others run in O(nO(log n=�

2)) time, where n is the input size.
The approach draws some inspiration from [AKK95] but di�ers in one signi�cant way. In all

the problems considered in [AKK95], the set of feasible solutions is the set of 0 � 1 vectors with
n coordinates, and the objective function is a constant-degree polynomial. In all the problems
we consider, the objective function is still a constant-degree polynomial, but the set of feasible
solutions are permutations of n elements. (Note: Such permutation-based NP-hard problems are
often especially nasty with respect to approximation. Papadimitriou and Yannakakis[PY91] have
identi�ed a set of such problems called MAX-�-SNP; betweenness and max-acyclic-subragph
are complete for this class.) Recall that permutations are represented in mathematical programming
via the assignment constraints in n2 variables fxij : i; j = 1; 2; : : : ; ng:

P
j xij = 1 8i = 1; : : : ; nP
i xij = 1 8j = 1; : : : ; n

xij � 0 8(i; j)
(1)

An integeral solution to these constraints is called a perfect (bipartite) matching. A fractional
solution is called a fractional perfect matching.

2

A casual examination of the assignment constraints immediately seems to rule out a central tech-
nique of [AKK95], namely, the use of Raghavan-Thompson [RT87] rounding to convert fractional
solutions to integral \approximate" solutions. Randomized rounding would change a fractional
perfect matching (xij) into a 0-1 vector y by setting yij = 1 with probability xij. As is well-known,
such a y could be far from a matching and leave a constant fraction of the vertices unmatched.
(For example, if all xij = 1=n, then the expected number of unmatched vertices in y is n=e.)

The major technique introduced in this paper is a new randomized rounding procedure for frac-
tional matchings. Instead of rounding all variables independently as in the Raghavan-Thompson
technique, the procedure rounds them in a fashion that is \not independent yet independent
enough." The procedure produces a matching that contains n � o(n) edges, and moreover, this
matching \approximately" satis�es, with high probability, any linear inequality that was satis�ed
by the fractional matching.

We use this rounding procedure to design an algorithm that, given a constant degree polynomial
p in the variables (xij), �nds an almost-perfect matching that approximately maximizes p. This
algorithm immediately allows us to design the approximation schemes mentioned above. However,
our approximation is only additive, and works only if the coe�cients of p satisfy certain smoothness
constraints. That is why the approximation schemes require the problem instance to be dense.

Our rounding procedure for fractional matchings is probably of interest beyond its use in such
approximation schemes. Assigning n tasks to n people | the canonical use of the assignment
constraints| is a basic primitive in many applications. Assigning such tasks so as to minimize
a linear cost function is the minimum weight perfect matching problem, which is in P. Assigning
tasks in presence of more than one linear constraint (while still insisting on integral solutions)
is problematic, and leads to NP-hard problems in general. Our rounding procedure suggests a
practical approach to dealing with such NP-hard problems: obtain a fractional solution to the
integer program, and then round it using our procedure to an integral solution. The integral
solution is a matching that matches \almost all" vertices (i.e., assigns all but o(n) jobs to di�erent
people), and \approximately" satis�es the original linear constraints. In a practical situation, such
an integral solution may well su�ce.

Our rounding procedure can be implemented in parallel in depth O(log n log logn), and this also
solves the main open problem left open by Luby and Nisan's NC1 approximation algorithm for
fractional packing/covering problems[LN92] They showed how to solve a minimum weight matching
problem approximately in NC1. However, their procedure yields a fractional matching, and they
had left it as an open problem whether this fractional matching could be \rounded" to an integral
almost-matching in NC.

Comparison with Related Work: Shmoys and Tardos [ST93] consider approximation algo-
rithms for the generalized assignment problem, which involves generalized assignment constraints
mixed with other linear constraints. However, they don't allow negative coe�cients in the con-
straints. We don't impose this restriction, but then settle for additive approximation instead of
multiplicative approximation. On the other hand, we return an almost-perfect matching as a
solution, which [ST93] could not.

1.1 The Problems

Now we describe the NP-hard problems that are considered in this paper. Depending upon the
problem, we denote a permutation in one of two ways: as a function �: f1; : : : ; ng ! f1; : : : ; ng or

3

as a vector (xij) that satis�es the assignment constraints.
Recall that we are only interested in dense subcases of these problems. A graph is a-dense if

the number of edges is at least a �n2. We will mention what denseness means for problems that are
not graph problems.

1. quadratic-assignment: Given a set fcijkl 2 Z : 1 � i; j; k; l � ng, �nd a permutation (xij)
that minimizes c(x) =

P
i;j;k;l cijklxijxkl:Well-known inapproximable problems such as clique

and general TSP can be reduced to quadratic-assignment, so the problem has no good
approximation algorithms if P 6= NP ([SG76]). We will be interested in the subcase when
each jcijklj = O(1) and the minimum value of c(x) is
(n2).

2. Graph-Iso: This is an optimization version of the usual decision problem. Given two graphs
G1 = (V1; E1) and G2 = (V2; E2) each with n vertices, it seeks the lowest cost embedding of
G1 in G2. An embedding of G1 into G2 is a permutation (xij), and its cost is the number of
uncovered edges, that is,

c(x) =
X

fi;jg2E1;fk;lg62E2

xikxjl +
X

fi;jg62E1;fk;lg2E2

xikxjl:

We consider the case when c(x) =
(n2) for every x. In other words, the graphs are \very
nonisomorphic": every embedding of G1 into G2 fails to cover
(n

2) edges.

3. min-linear-arrangement: Given a graph G = (V;E) with V = f1; : : : ; ng, �nd a permuta-
tion � : f1; : : : ; ng ! f1; : : : ; ng that minimizes c(�) =P

(i;j)2E j�(i)� �(j)j. In other words,
the goal is to lay out G along n nodes in a straight line, such that the total edge length in the
layout is minimized. An O(log2 n)-factor approximation algorithm is presented in [LR88].

4. d-dimensional arrangement: The analogue of the linear arrangement problem when the
n points are on a d-dimensional grid instead of in a line. \Length" of edge (i; j) is the
Manhattan distance from �(i) to �(j). Here d is a constant.

5. Minimum Cut Linear Arrangement Given a graph G = (V;E) with V = f1; : : : ; ng, �nd
a permutation � that minimizes c(�) = maxi jf(k; l) 2 Ej�(k) � i < �(l)gj. The minimum
value of c(�) is called the cutwidth of the graph. We will restrict attention to dense graphs.
Previous work includes an exact algorithm when the graph is a tree [Y85], and a O(log2 n)-
factor approximation on general graphs [LR88]..

6. betweeness: Given a �nite set A and a collection C of ordered triples (a; b; c) of distinct
elements from A. Find a permutation � of A that maximizes the number of triples (a; b; c)
such that either �(a) < �(b) < �(c) or �(c) < �(b) < �(a). A dense instance is one in which
the number of triples is
(n3). A constant factor approximation algorithm is trivial (just pick
a random permutation).

7. max-acyclic-subgraph: Given a digraph G = (V;E), �nd the largest (with respect to the
number of edges) acyclic subgraph in it.

Now we note that most problems in the above list involve optimizing an objective function that
is a degree d polynomial in (xij)

4

(In fact, the degree d is 2 for most of the problems, and 3 for betweenness.) The only
problem that doesn't fall into this classi�cation is min-linear-arrangement, which we'll deal
with separately. Now we formalize this class of problems.

De�nition 1 A degree-d arrangement problem is of the type

max p(x)

s.t. x is a permutation

where p is a degree d polynomial. The problem could involve minimization instead of maximization.
The problem is c-smooth if each coe�cient of p is an integer in [�c; c].

Theorem 1.1 There is a deterministic algorithm that, given any c-smooth degree-d arrangement
problem and an �, �nds a matching (xij) that contains at least (1� �)n edges, and which satis�es

p(x) � p(x�)� �nd;

where x� is the perfect matching at which p attains its maximum value. The algorithm runs in
nO(c

3d3 log n=�2) time.

We will indicate a proof of this theorem in Section 3.

Theorem 1.2 Every problem in the list above has an nO(logn=�
2) time approximation scheme

on dense instances. In addition, betweenness, min-linear-arrangement, min-cut-linear-
arrangment, d-dimensional arrangement, and max-acyclic-subgraph have an nO(1=�

2)

time approximation scheme.

Part of Theorem 1.2 is a corollary to Theorem 1.1. The nO(1=�
2) time approximation schemes will

be treated separately in Section 4. We note that the techniques in that section also allows us to
obtain a PTAS for the dense version of the Koopmans-Becker Quadratic Assignment Problem.

1.2 Assignment Problem with Additional Linear Constraints

Let G = (V1; V2; E) be a bipartite graph with jV1j = jV2j = n and jEj = m. The assignment
polytope of G, denoted AG (or just A when G is understood from context) is the polytope in <m

de�ned by the assignment constraints in (1), and with xij = 0 for all fi; jg 62 E. As is well-known,
every vertex (if one exists) of this polytope is integral.

A matching in G is a subset M � E of pairwise disjoint edges. A matching is perfect if it
includes every vertex. A solution (not necessarily integral) to the set of equations (1) is called
a fractional perfect matching and a solution to a set of inequalities similar to (1) in which every
equality sign is replaced by a \�"-sign is called a fractional matching. A (perfect) matching M is
clearly also a fractional (perfect) matching.

In particular, minimizing a linear function over this polytope is the well-known assignment
problem, also called the minimum cost matching problem. By incorporating the cost function into
a linear constraint in the usual way, the problem is equivalently viewed as a decision problem: �nd
a perfect matching that satis�es one additional linear constraint. We consider a modi�cation of
this decision problem in which the number of additional constraints is K = poly(n). We call this

5

the Assignment Problem with Extra Constraints, or APEC. The problem is to �nd an integral x
such that

x 2 AG

aTk x � bk; k = 1; 2; : : : ;K
(2)

Note that the problem contains integer linear programming as a subcase, and hence is NP-
hard. One could try to compute \approximate" integer solutions by solving the system as a linear
program, and then using Raghavan-Thompson rounding on the resulting fractional solution. This
would give a 0-1 vector x that satis�es w.h.p.

aTk x � bk � ~O(
p
nAk) k = 1; 2; : : : ;K; (3)

where Ak is the largest (in magnitude) coe�cient of ak and ~O is the usual \soft-Oh" notation
that suppresses poly(logn) factors. But as already mentioned, such an x may be far from being a
permutation.

The following theorem states the existence of an alternative rounding procedure.

Theorem 1.3 There is a randomized algorithm that, given a fractional solution x� to the sys-
tem (2), produces a matching x that contains at least n� o(n) edges and satis�es

aTk x � (1� o(1))bk � ~O(
p
nAk) k = 1; 2; : : : ;K: (4)

The running time of the algorithm is ~O(N), where N is the number of nonzero entries in x�.
The algorithm can be implemented in O(log n log log n) time on an EREW PRAM.

Remarks:(i) The polylog() factor hidden in the soft-O notation is somewhat larger in our result
than in Raghavan-Thompson. (ii) As in the Raghavan-Thompson procedure, the error goes down
when all coe�cients are nonnegative. (LPs of this form are called fractional packing and covering
problems.) In this case the algorithm guarantees that

aTk x � bk(1� o(1))� ~O(Ak) k = 1; 2; : : : ;K; (5)

(The �'s are changed to +'s if the inequality involved a � instead of a �.)

2 Rounding Procedure for the Assignment Problem

For ease of exposition, we �rst describe a simpler rounding procedure that works correctly when
the coe�cients of the linear constraints are between �c and c, for some constant c independent
of n. Let us call such linear constraints c-smooth. The constraints encountered while proving
Theorem 1.1 (and also in solving Luby and Nisan's open problem) are of this type. Furthermore,
the simple procedure described here motivates our more general procedure that is described in the
appendix. The more general procedure works even when the value of the coe�cients is allowed to
grow with n.

Let x� be a fractional perfect matching for the graph G = (V;E), and � be an arbtrarily small
constant. We give a probabilistic procedure to produce a matching M of cardinality n � o(n) in
G. Furthermore, if (wij) is any c-smooth weight function, then with probability at least 1� 1=nf

(where f is any prespeci�ed constant), the matching M satis�es w(M) 2 w(x�)� ~O(n3=4). (From

6

now on, whenever we say \high probability" we mean probability 1 � 1=nf for some large enough
f .) Hence it follows that if K < nf�1 and w1; : : : ; wK are any c-smooth weight functions, then M
satis�es with probability at least 1� 1=n:

wj(M) 2 wj(x�)� ~O(n3=4) for j = 1; 2; : : : ;K:

The procedure consists of two phases. The �rst, called decomposition, produces � = O(log2 n)
perfect matchings M1;M2; : : : ;M� such that with high probability,

1

�

�X
i=1

w(Mi) 2 w(x�)� ~O(n1=2): (6)

The second phase consists of applying a binary (probabilistic) operator � (called merge) on
matchings. If A and B are two matchings then for any c-smooth function w, the probability is at
least 1� nf+1 that

w(A �B) 2 w(A) + w(B)

2
� ~O

�
n3=4

�
(7)

The second phase proceeds as follows: Partition M1;M2; : : : ;M� into pairs, merge each pair so
as to obtain �=2 new matchings, and repeat this pairing and merging until we're left with a single
matching denoted M . Equation (7) implies that with probability 1��=nf+1,

w(M) 2 1

�

�X
i=1

w(Mi)� ~O
�
n3=4

�
��:

Since � = O(log2 n), the error term is at most ~O(n3=4). Now it follows from Equation (6) that

w(M) 2 w(x�)� ~O(n3=4)

.
Finally, let's estimate the cardinality of M . Let w0 be the linear function that counts the

number of edges of G in the matching. Since w0(x�) is n, we see that w.h.p., the decomposition
phase ensures 1

�

P
iw

0(Mi) � n � ~O(n1=2). Hence with high probability, the merges ensure that

w0(M) is also at least n� ~O(n3=4); in other words, M has n�O(n3=4) edges.
Now we describe the two phases. The following procedure is used in the decomposition phase.

Given: Fractional perfect matching x� on a bipartite graph G = (V1; V2; E).
Procedure: Construct a multigraph G� = (V1; V2; E

�) as follows. For each edge (i; j) 2 E, toss a
biased coin L = �(log2 n) times, where the coin is biased to come up \Heads" with probability
x�ij . Suppose the coin came up \Heads" �ij times. Then put �ij copies of the edge (i; j) in E�.

Claim 1: With high probability, each vertex in G� has degree L� ~O(L1=2).
Proof. The degree of vertex i is

P
j �ij, and the expectation of this degree is

E

2
4X

j

�ij

3
5 =

X
j

E[�ij] = L �
X
j

x�ij = L:

7

Since L = �(log2 n), the Cherno� bound in Lemma 7.1(b) implies that the deviation from the
mean is at most ~O(L1=2) w.h.p.

The decomposition phase constructs the multigraph G�. Then, it adds ~O(nL1=2) edges to G� to
make it �-regular were � = O(L) = O(log2 n). Note that these edges might not be present in G;
we are adding them just to simplify the exposition. The procedure decomposes G� into the disjoint
union of � perfect matchings, M1[M2[� � �[M�. Then it ignores the edges that were not present
in G and is left with � matchings. Using Claim 1 and the fact that the standard deviation of the
random variable

P�
i=1 w(Mi) is O(n

1=2) we can prove
Claim 2: With high probability,

1

�

�X
i=1

w(Mi) 2 w(x�)� ~O(n1=2):

This �nishes the description of the decomposition phase. Now we describe the merge phase.

MERGE:

Given: Two matchings A and B.
Procedure: A [B is a union of cycles and paths. By deleting O(n1=2) edges if necessary, ensure
that every cycle/path has length O(

p
n). Consolidate all paths/cycles into �(n1=2) groups each of

size O(n1=2). Probabilistically construct a matching A�B as follows. Within all the paths/cycles
in a group, pick with equal probability either all the edges of A or all the edges of B.

Furthermore, make this decision independently in di�erent groups.

Claim 3: If weight function w is c-smooth, then with high probability,

w(A�B) 2 w(A) + w(B)

2
� ~O(n3=4)

Proof. Let m = O(n1=2) be the number of groups of paths or cycles, and let �1; �2; : : : ; �m be the
weights of the edges of A in these paths or cycles. Each �i is at most cn

1=2 in absolute value. The
expected contribution ZA of A's edges to w(A � B) is

P
i �i=2 = w(A)=2, and furthermore, the

m contributions are decided using independent coin tosses. Hence by Lemma 7.4 we obtain that
jZA �w(A)=2j = ~O(n3=4).

Here is a good place to contrast our rounding procedure with Raghavan-Thompson rounding.
RT-rounding on (A+B)=2 would involve picking every edge of A and B independently with proba-
bility 1=2. Hence the expected weight of the resulting graph is (w(A)+w(B))=2, but unfortunately,
that graph is not even close to a matching. Our procedure also picks each edge of A and B with
probability 1=2 |to be correct, it does this for all edges of A and B except for at most O(

p
n)

edges that were deleted. Hence the expected weight of the resulting matching is very close to
(w(A)+w(B))=2. The crucial di�erence is that the procedure's decisions for di�erent edges are not
independent; in fact they are very dependent. Nevertheless, the degree of independence is enough
to allow us to get a good upperbound on the probability that w(A � B) deviates \signi�cantly"
from its expectation.

8

2.0.1 Solution to Luby and Nisan's problem

Luby and Nisan give an NC1 approximation algorithm that approximates the linear program for
maximum-cardinality matching in unweighted graphs. The program �nds a fractional matching
of \cardinality" at least (1 � �)OPT . However, it does not produce a matching. Our randomized
rounding procedure can produce a matching. Furthermore, as mentioned already in Theorem 1.3,
the procedure runs in O(log n log log n) time on an EREW PRAM. This relies on a parallel al-
gorithm in [LPV81] that decomposes L-regular multigraphs into L disjoint perfect matchings in
O(logL logn) parallel time. In our procedure L = poly(log(n)).

We can derandomize our algorithm by derandomizing OVERSAMPLING and MERGE in the
standard way. Also, if we don't care about derandomization, then our more sophisticated algorithm
of Theorem 1.3 has the same parallel running time but works on weighted graphs so long as the
weights are \moderate."

2.1 The General Rounding Procedure

The general procedure is similar to the simple procedure described above: we do an oversampling
�rst, then decompose the resulting multigraph into a disjoint union of perfect matchings, then do
a sequence of merges. The important di�erences is that the merge operation does not break long
paths in A [B arbitrarily, but at random points.

The proof that the procedure works is more involved, and is given in the appendix.

3 Approximation Algorithm for degree-d arrangement

Now we prove Theorem 1.1
Proof.(Theorem 1.1) For ease of exposition we prove the theorem for d = 2. The proof for general
d involves a simple induction. Let

P
ijkl cijklxijxkl be the objective function, where each cijkl is an

integer in [�c; c]. Let x� be the perfect matching that maximizes the objective function.
The basic idea is similar to the main proof in [AKK95], except that we always have to deal with

the assignment constraints. Let bij denote
P

kl cijklx
�
kl. Then x� is the solution to the APEC

maximize
P

ij bijxijP
kl cijklxkl = bij

The procedure consists of two parts: (i) Use random sampling to estimate bij's within an
additive error �n. Pick a random sample S of O(c2 log n=�2) vertices. Then enumerate all possible
(i.e., nO(c

2 log n=�2)) ways in which they can be placed in a permutation. One of these ways is also the
way in which they are placed by x�; we restrict attention to that one. (Of course, the polynomial-
time procedure, not knowing x�, must do the rest of the work for each of the nO(c

2 logn=�2) guesses.)
Estimate the sum

P
kl cijklx

�
kl by looking at the value of x

�
kl for each k 2 S. Let b0ij be this estimate.

Cherno� bounds imply that each b0ij 2 bij � �n w.h.p. (ii) Now consider the optimization problem

maximize
P

ij b
0
ijxij

b0ij � �n � P
kl cijklxkl � b0ij � �n

9

Use binary search to replace the linear objective function by a linear constraint, thus obtaining an
instance of APEC. A solution y to that APEC satis�es

jc(y)� c(x�)j � �n� n = �n2:

Of course, we don't know how to solve the APEC exactly. Let us calculate the error due to our
approximation of APEC. We scale the objective function by n to make each coe�cient a number
between �c and c, thus making the APEC c-smooth. Then we solve the APEC as an LP and
use our rounding algorithm (actually, even the simple algorithm in Section 2 su�ces) to obtain a
solution z that is a matching of cardinality n(1 � o(1)) and satis�es the given constraints with an
additive error of o(n). Hence

jc(z)� c(y)j � o(n)� n = o(n2):

Hence we have shown that jc(z)� c(x�)j � �n2.

4 PTASs

We describe PTAS's formin-linear-arrangement andmin-cut-linear-arrangement on dense
graphs (the PTAS for betweenness and max-acyclic-subgraph is similar). Recall that min-
linear-arrangement and its d-dimensional version these did not �t the general framework of
Theorem 1.1, so we do a direct reduction to an APEC-like problem. betweenness and min-cut-
linear-arrangement do �t the framework, but a direct reduction to an APEC-like problem
allows a more e�cient algorithm.

4.1 Linear Arrangement

We describe a polynomial-time approximation scheme for this problem on dense graphs. Let G =
(V;E) be a 2a-dense graph. First we notice that the optimum value of the cost function is �
a3n3=16. The reason is that at least an of its vertices have degree greater than an. Regardless of
how the graph is laid out along a line, the total length of the edges incident to any such vertex is
at least a2n2=8, which makes the total edge length at least (an)3=16. Hence to obtain a PTAS it
su�ces to show how to �nd layouts in which the cost is within �an3 of the optimal, where � > 0 is
arbitrary. For convenience we denote a� by � in the description below.

Partition the interval [1; n] into t = c=�, equal-sized intervals I1; : : : ; It each of size not greater
than n=t. For a number x 2 [1; n] denote by I(x) the index of the interval to which x belongs.
The following lemma shows that the cost of a permutation is essentially decided by how it places
vertices into these intervals.

Lemma 4.1 Let �1 and �2 be two permutations that di�er only locally; i.e. for every 1 � i � n
I(�1(i)) = I(�2(i)). Then jc(�1)� c(�2)j � 2n3=t

Proof. The contribution of each edge to c(�1) and its contribution to c(�2) may di�er in at most
2n=t.

Hence to obtain a permutation whose cost is whithin an additive error of �n3 of the minimum
cost it su�ces to discover a \good" assignment of the vertices to the intervals I1; : : : ; It. Let ĝ be

10

an assignment of vertices to intervals; i.e. for every i 2 V , g(i) = j for some j, 1 � j � t. An
assignment ĝ is proper if jfi 2 V jĝ(i) = jgj = n=t for every 1 � j � t. We de�ne the cost c(ĝ) of
an assignment ĝ as c(ĝ) =

P
(i;j)2E jĝ(i) � ĝ(j)j. We now describe an algorithm to locate a proper

assignment g such that c(ĝ) � c(ĝ�) + �tn2 for any � > 0, where ĝ� is a proper assignment with
minimum cost. This algorithm together with Lemma 4.1 will give us the desired result.

Randomly pick with replacement a set S of f logn=�2 vertices, where f is the degree of the
desired probability. Let g : S ! f1; : : : ; tg be a function assigning each vertex in S to an interval.
(One should think of g as a guess of the location of S according to an optimal permutation ��.)
For each possible g we construct a linear program Mg as follows. We compute an estimate eik of
the cost of assigning vertex i to interval Ik in any complete assignment ĝ whose restriction to S is
g

eik =
n

jSj
X

(i;j)2E;j2S

jg(j) � kj

Note that this estimate is well de�ned no matter what the value of ĝ(i). The accuracy of this
estimate is speci�ed by the following lemma.

Lemma 4.2 Let ĝ be an assignment that extends a guess g : S ! f1; : : : ; tg. With high probability,

X
(i;j)2E

jĝ(j) � kj � �nt � eik �
X

(i;j)2E

jĝ(j) � kj+ �nt:

Proof. Let Xi be a random variable that equals jĝ(j) � kj if the ith vertex sampled is j. Divide
each Xi by t to scale it to the interval [0; 1] and apply Cherno� bounds.

Using the estimates eik, where 1 � i � n, 1 � k � t we write the following linear program Mg.

min
Pn

i=1

Pt
k=1 eikxikPn

i=1 xik = n=t 8 1 � k � tPt
k=1 xik = 1 8 1 � i � nP

(i;l)2E

Pt
j=1 jj � kjxlj � eik + �nt 8 1 � i � n; 1 � k � tP

(i;l)2E

Pt
j=1 jj � kjxlj � eik � �nt 8 1 � i � n; 1 � k � t

0 � xik � 1 8 1 � i � n; 1 � k � t

We use a linear programmimg algorithm to solve Mg for every possible guess g. Let Mh be the
linear program with a minimum solution x̂h among all the linear programs. We use x̂h to de�ne
an assignment f̂ of vertices to intervals as follows. For each vertex i we pick the interval Ik with
probability x̂hik. If the assignment f̂ is not proper, then we move some vertices between intervals
to obtain a proper assignment f . The following theorem is proved using the same techniques of
Section 2.

Theorem 4.3 With high probability for large enough n c(f̂) � c(g�) + c�tn2.

11

4.2 Minimum Cut Linear Arrangement

The approach is similar to the one for min-linear-arrangement. As before, we notice that if
a graph is a-dense, then the cost of the optimum assignment is
(n). Then we notice (just as in
Lemma 4.1) that it su�ces to �nd an assignment that agrees with the optimum assignment on the
placement of vertices inside O(1) intervals.

Lemma 4.4 Let �1 and �2 be two permutation that di�er only locally; i.e. for every 1 � i � n
I(�1(i)) = I(�2(i)). Then jc(�1)� c(�2)j � n2=t

The estimates eik we compute are de�ned now as

eik =
n

jSj jfs 2 Sj(i; s) 2 E and g(s) � kgj :

The value of eik estimates the contribution of vertex i to a cut right between intervals Ik�1 and Ij
assuming I(i) � (k � 1).

The linear program Mg that corresponds to a guess g is now the following.

min zPn
i=1 xik = n=t 8 1 � k � tPt
k=1 xik = 1 8 1 � i � nPn

i=1 eik(xi1 + : : : xi(k�1)) � z 8 1 < k � t���P(i;s)2E;l�k xsl � eik
��� � �n 8 1 � i � n; 1 � k � t

0 � xik � 1 8 1 � i � n; 1 � k � t

References

[AFW94] N. Alon, A. Frieze, and D. Welsh. Polynomial time randomized approximation schemes
for the tutte polynomial of dense graphs. In Proc. 35th FOCS, pages 24{35. IEEE, IEEE
Computer Society Press, November 1994.

[A96] S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other geometric
problems. Manuscript, April 1996.

[AKK95] S. Arora, D. Karger and M. Karpinski. Polynomial-time approximation schemes for dense
instances of NP-hard optimization problems. In Proc. ACM STOC'95.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and
hardness of approximation problems. In Proc. 33rd FOCS, pages 14{23. IEEE, October 1992.

[B94] B. S. Baker. Approximation Algorithms for NP-complete problems in planar graphs. JACM
41:153-180, 1994

[dlV94] W.F. de la Vega. MAXCUT has a randomized approximation scheme in dense graphs.
manuscript, October 1994. To appear in Random Structures and Algorithms.

12

[FL81] W.Fernandez de la Vega and G.S.Lueker Bin packing can be solved within 1+� in linear
tiem Combinatorica:1(4), 349{355, 1981.

[H64] W. H�o�ding. Probability inequalities for sums of bounded random variables, Journal of the
American Stastical Association, 1964.

[IK75] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subsets problems. JACM, 22(4):463{468, 1975.

[KK82] N. Karmaker and R.M. Karp. An e�cient approximation scheme for the one-dimensional
bin-packin g problem. In Proc. 23rd FOCS, pages 312{320. IEEE, 1982.

[LR88] T. Leighton and S. Rao. An approximate max-ow min-cut theorem for uniform multicom-
modity ow problems with applications to approximation algorithms. In Proc. 29th FOCS,
pages 422{431. IEEE, October 1988.

[LN92] M. Luby and N. Nisan. A parallel approximation algorithm for positive linear programming.
In Proc. ACM STOC, 1993, pp 448{457.

[KM96] S. Khanna and R. Motwani. Towards a syntactic characterization of PTAS. In Proc. ACM
STOC 1996, to appear.

[PY91] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity
classes. JCSS, 43:425{440, 1991. Preliminary Version in Proc. ACM STOC, 1988.

[LPV81] G. F. Lev, N. Pippenger, and L. Valiant. A Fast Parallel Algorithm for Routing in
Permutation Networks. In IEEE Trans. Computers, C-30:2, 1981.

[R88] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximate packing
integer programs. JCSS, 37(2):130{43, October 1988.

[RT87] P. Raghavan and C. Thompson. Randomized Rounding: a technique for provably good
algorithms and algorithmic proofs Combinatorica, 7:365-374, 1987.

[SG76] S. Sahni and T. Gonzales. P-complete approximation problems. JACM, 23:555{565, 1976.

[ST93] D. B. Shmoys and E. Tardos. An approximation algorithm for the generalized assignment
problem. In Math. Programming 62:pp 461{474, 1993.

[Y85] M. Yannakakis. A polynomial algorithm for the min cut linear arrangement problem on
trees. JACM, 32: pp 950-988, 1985.

Appendix: The general rounding procedure

We now describe the general rounding procedure for APEC (when the linear constraints are not
required to be c-smooth). In Section 5 we describe the algorithm and analyze it assuming that the
coe�cients are all nonnegative. Section 6 indicates the changes in the analysis when the coe�cients
could be positive or negative. Section 7 gives the details of the tail bounds we use to derive the
results.

13

The following notational conventions will be useful. We will use the letters c and c1 to denote
�xed constants that do not depend on n but on the degree of the desired probability. These
constants may take di�erent values in each place they occur unless we explicity link between them.
One should think of any other constant as nondecreasing functions of n taking values that are
at least one. We will add a subscript n to such a constant whenever we need to emphasis the
dependency on n.

5 The Algorithm

In this section we describe our (randomized) algorithm and analyze it for the case in which all the
coe�cients are nonnegative. The approach is as the one presented in Section 2. We �rst oversample
a multigraph based on the optimal fractional solution. Then we partition the multigraph into
matchings. Last we merge the matchings into one matching whose weight is close to the weight of
the fractional solution we have started with.

5.1 Sampling a multigraph

Let x� be the optimal (fractional) solution to (2). As in Section 2 we oversample to construct
a multigraph G� = (V1; V2; E

�): For each edge (i; j) 2 E, toss a biased coin L times, where the
coin is biased to come up \Heads" with probability x�ij. Suppose the coin came up \Heads" �ij
times. Then E� contains �ij copies of the edge (i; j). Let X

k
ij be a random variable taking the value

one if the result of the kth coin toss for edge (i; j) is \Heads" and zero otherwise. Here assume
L � c log3 n. Recall that c is a constant that depends on the desired probability and = n is a
nondecreasing function of n. First we prove a structural property of G�.

Lemma 5.1 With high probability the degree dG�(v) of any vertex v 2 V1[V2 satis�es jdG�(v)�Lj <
L=(1=2 log n).

Proof. Assume w.l.o.g. that v 2 V1. Note that dG�(v) =
P

(v;w)2E

PL
k=1X

k
vw is a random variable

with mean L. To obtain the claim we apply Lemma 7.1(b) with � =
p
c log n to this random

variable (c here is the same constant we used to lower bound L).

Let � = maxv2V1[V2 dG�(v). Lemma 5.1 implies that j� � Lj � L=(1=2 logn) and that G� is
\almost" regular. In order to make it regular one can add no more than O(Ln=(1=2 log n)) edges
that will even out all degrees to be �.

Here w denote a weight function de�ned on the edges of G such that 0 � wij � B for every
(i; j) 2 E. For two vectors x and y we denote their dot product by xy. Note that E(W) = Lwx�.
The following lemma shows that the total weight of the edges in G� averaged over L would be close
to the weight of x�.

Lemma 5.2 With high probability, jw�=L� wx�j = O(wx�=(1=2 log n) + B log3 n=L).

Proof. De�ne the following random variables W k
ij = wijX

k
ij for every (i; j) 2 E, and W =P

(i;j)2E

PL
k=1W

k
ij. Apply Lemma 7.3 to these variables and divide by L.

Combining Lemma 5.1 and Lemma 5.2 we obtain the following.

Lemma 5.3 With high probability, jw�=�� wx�j = O(wx�=(1=2 log n) + B log3 n=L).

14

5.2 Random merging of matchings

Let M1 and M2 be two matchings in G given by m1
ij and m2

ij respectively. Next, we show how to
randomly construct a matching M3 such that with high probability w(M3) is \close" to (w(M1) +
w(M2))=2.

M3 is constructed as follows. First, we put into M3 every edge in (M1 \M2), every edge in
M1 that does not share a vertex with any edge in M2, and every edge in M2 that does not share
a vertex with any edge in M1. This leaves a union of vertex disjoint alternating paths and cycles
denoted by P. Let k = kn denote a growing function of n to be determined later. Partition the
paths and cycles of P into two sets. One contains those paths/cycles whose length is greater than
k and denoted by LP (Long Paths). The other contains the rest of the cycles and denoted by SP
(Short Paths). Denote by V (LP) the vertices that occur on cycles in LP and let q = jV (LP)j.
We randomly pick with repetitions l = bq=kc vertices from V (LP) and denote the sampled subset
by S. Then we partition each path or cycle C 2 LP such that jC \ Sj � 2 into a set of jC \ Sj
paths by breaking it at the vertices in C \S. Let LP 0 be the set of paths and cycles obtained after
partitioning LP . Note that the paths in LP 0 are vertex disjoint except possibly for their endpoints.
Let 	 = LP 0 [SP . Construct a graph 	s on V (P) as follows. For each P 2 	 include in 	s

either the edges in P \M1 or the edges in P \M2 with equal probability. Every vertex in 	s has
degree at most two. Moreover, the only vertices that could have degree two in 	s are those in S.
The construction of M3 is completed by adding to it the edges in 	s which are not incident with
vertices in S and a maximal subset of the edges incident with vertices in S such that M3 remains
a matching.

For a set of vertices X denote by w(X;M1) and w(X;M2) the total weight of edges fromM1 and
M2 repectively incident to at least one vertex inX. For a vertex v denote by w(v;Mi) = w(fvg;Mi),
i = 1; 2. The following lemma upper bounds w(S;Mi), i = 1; 2.

Lemma 5.4 With high probability, jw(S;Mi)�w(Mi)=kj = O(w(Mi)=(
1=2 logn) + B log3 n) for

i = 1; 2.

Proof. Assume i = 1. Let Xi, 1 � i � l be a random variable representing the ith choice of
a vertex from V (LP). The variable Xi takes each one of the values fw1(v) j v 2 V (LP)g with
probability 1=q hence jXij � B. Let S =

Pl
i=1Xi. Note that E(S) = l w(V (LP);M1)=q. We

upper bound Y by applying Lemma 7.3 to these random variables.

The following lemma upper bounds the length of the paths in 	.

Lemma 5.5 With high probability, the length of any path/cycle in 	 is bounded by ck log n.

Proof. Let P be path of length ck logn in a cycle of LP . The probability that none of the vertices
on P is in S is 1� (1� (ck log n)=q)l that is greater than 1� e�c log n.

For a set of edges A denote by w(A) the sum of the weights of the edges in A. The following
lemma shows that the total weight of M1 edges in 	s is about half the weight of the edges in
(M1 �M2) \ P and the total weight of M2 edges in 	s is about half the weight of the edges in
(M2 �M1) \P. Hence the total weight of edges in 	s is about half the weight of the edges on the
paths/cycles in (M1 �M2) \ P.

15

Lemma 5.6 Let Ai = E(s) \Mi, i = 1; 2. With high probability,

jw(A1)�w((M1 �M2) \ P)=2j = O
�
w((M1�M2)\P)

1=2 log n
+ kB log4 n

�

jw(A2)�w((M2 �M1) \ P)=2j = O
�
w((M2�M1)\P)

1=2 log n
+ kB log4 n

�
:

Proof. We prove the �rst part of the lemma the proof of the second part is analogous. We associate
a random variable Xi with each path Pi 2 	. The variable Xi equals either 0 or the sum of the
weights of the M1 edges on Pi with equal probabilities. Using Lemma 5.5 we obtain that w.h.p.

jXij � ckB log n. Let S =
Pj	j

i=1Xi and apply Lemma 7.3. Note that E(Y) = w((M1�M2)\P)=2.

Combining the errors estimated by Lemma 5.4 and Lemma 5.6 we obtain the following

Lemma 5.7 Let M3 be the matching constructed from M1 and M2 as described above then with
high probability

jw(M3)� (w(M1) +w(M2))=2j = O((1=k + 1=(1=2) log n)(w(M1) + w(M2)) + kB log4 n):

Proof. Let Y be the set of edges in 	s that were not added to M3 due to conicts at the
vertices in S. Clearly w(Y) < w(S;M1) + w(S;M2). Note that jw(M3)� (w(M1) +w(M2))=2j �
jw(E(s))� w(Y)�w((M1 �M2) \ P)=2j. The claim follows using the bounds in Lemma 5.4 and
5.6.

5.3 From the Multigraph to a Matching

Now we turn again to the multigraph G� constructed in Section 5.1 and show how to change it
into a matching that is approximately correct. Recall that according to Lemma 5.1 G� can be
augmented to be regular by adding at most 2nL=(1=2 logn) edges (Note that these edges may not
be edges in G). The new edges constitute a O(1=(1=2 logn)) fraction of the total number of edges.
Recall that we denote the degree of the augmented G� by �.

A �-regular mutigraph can be decomposed into � perfect matchings [LPV81]. After decom-
posing the augmented G� one could discard the new edges and remain with � matchings (not
necessarily perfect). Denote these matchings M1;M2; : : : ;M�.

Assume w.l.o.g. that � is a power of 2. Combine the � matchings into one according to the
following procedure. Pair up the D matchings. Merge each pair using the algorithm in Section 5.2.
Then pair up the D=2 matchings thus obtained, and merge each pair. Continue this way and end
up with one matching M , output M . Let w be a weight function on the edges of G, and x� the
matching used to produce G�. The following theorem shows that the weight of M is close to the
weight of x�. Recall that �ij is the multiplicity of the edge (i; j) 2 E in G� before augmenting it
to be regular. We denoted by � the degree of the augmented G� hence � is also the number of
matchings we merge. Note also that wT �=� =

P�
i=1 w(Mi)=�.

Lemma 5.8 Let t = tn = 1=k + 1=(1=2 log n) and � = �n = t log�. With high probability,
jw(M) � wTx�j = O(�wTx� + (1 + �)�kB log4 n).

16

Proof. LetM j
1 ; : : : ;M

j
�=2j the �=2

j matchings obtained at stage j of the merging procedure where

0 � j � log�. By induction on j using Lemma 5.7 one can prove that

(1� t)
j

�
wt�

�
�

�
1�

1

2j

�
�ckB log4 n

�
�

P�=2j

i=1 w(M j
i)

�=2j
� (1 + t)

j

�
wt�

�
+

�
1�

1

2j

�
�ckB log4 n

�

The statement follows from this inequality for j = log� together with Lemma 5.3.
Note that �n speci�ed in the previous lemma goes to zero when n goes to in�nity when k =

(log n) and � = O(loga n) for some a. The latter requirement could be restated as L = O(loga n)
since � = O(L).

Lemma 5.9 With high probability, the number of edges in M is at least n� o(n).

Proof. Consider a weight function w such that wij = 1 for every (i; j) 2 E. Apply Lemma 5.8 to
this weight function.

We summarize with the following theorem whose proof now is immediate.

Theorem 5.10 Given a fractional solution to the linear program (2) with all coe�cients nonneg-
ative. With high probability the rounding procedure we described gives a matching with at least
n� o(n) edges that satis�es (5).

6 Positive and Negative Coe�cients

In this section we assume that w is a weight function such that jwij j � B. The algorithm we apply
in this case is identical to the one we described in the previous section. The required changes in
the analysis are as follows. Lemma 5.2 changes to

Lemma 6.1 With high probability, jw�=L� wx�j = ~O(n1=2L�1=2B).

Proof. De�ne the following random variables W k
ij = wijX

k
ij for every (i; j) 2 E, and W =P

(i;j)2E

PL
k=1W

k
ij. We scale the variables W k

ij by B. Then we apply Lemma 7.2. (We need 7.2

here since W is a sum of a large number of random variables (n2L) but after scaling by B its
variance is relatively small (� nL).)

Hence Lemma 5.3 changes to

Lemma 6.2 With high probability, jw�=�� wx�j = ~O(n1=2L�1=2B).

Using Lemma 7.4 we can obtain the following lemma that replaces Lemma 5.4

Lemma 6.3 With high probability, jw(S;Mi)� w(Mi)=kj = ~O(l1=2B) for i = 1; 2.

Similarly we replace Lemma 5.6 and Lemma 5.7 with the following

Lemma 6.4 Let Ai = E(s) \Mi, i = 1; 2. With high probability,

jw(A1)� w((M1 �M2) \ P)=2j = ~O(l1=2kB)

jw(A2)� w((M2 �M1) \ P)=2j = ~O(l1=2kB)

17

Lemma 6.5 Let M3 be the matching constructed from M1 and M2 as described above then with
high probability

jw(M3)� (w(M1) + w(M2))=2j = ~O((w(M1) + w(M2))=k + l1=2kB):

Finally using the same method as in Section 5.3 we obtain

Theorem 6.6 Given a fractional solution to the linear program (2). With high probability the
rounding procedure we described gives a matching with at least n� o(n) edges that satis�es (3).

7 Cherno� Bounds

We use the following Cherno�-like bounds for independent bounded random variables that could
be derived from Hoe�ding [](Theorem 1) (see also []).

Lemma 7.1 Let Xi, 1 � i � k be independent random variables such that 0 � Xi � 1. Let
S =

Pk
i=1Xi and � = E(S) then

(a) Pr[S � � � ��] � (e=(1 + �))(1+�)�e�� for � � 0:

(b) Pr
�jS � �j � �

p
�
� � 2e��

2=3 for � � p
�:

(c) Pr [jS � �j � �] � 2e�2�
2=k for � � 0

We will also need the following lemma

Lemma 7.2 Let Xi, 1 � i � k be independent random variables such that jXij � 2. Let S =Pk
i=1Xi, � = E(S) and �2 = variance(S) then

Pr[jS � �j � ��] � 2e�
2=4

whenever � � �

We use the bounds in Lemma 7.1(a) and (b) to prove the following technical lemma.

Lemma 7.3 Let Xi, 1 � i � n be independent random variables with 0 � Xi � U and let
S =

Pn
i=1Xi and � = E(S). Then with high probability jS � �j � maxf�=(1=2 log n); cU log3 ng

for any = n � 1.

Proof. Let X 0
i = Xi=U , 1 � i � n, S0 =

Pn
i=1X

0
i and �0 = E(S0). Clearly 0 � X 0

i � 1, we
now use Lemma 7.1 as follows. If �0 � c1 log

3 n then using Lemma 7.1(a) with � = c21 log
3 n=�0

we obtain that w.h.p. jS0 � �0j � c21 log
2 n. Multiplying the last inequality by U we obtain the

claim. If �0 � c1 log
3 n then using Lemma 7.1(b) with � =

p
c1 logn we obtain that w.h.p.

jS0��0j � p
c1(log n)�0. Using our assumption that �

0 � c1 log
3 n the last inequality implies that

jS0 � �0j � �0=(1=2 log n). Multiplying the last inequality by U we obtain the claim.

If some of the variables are positive and others are negative we get the following

18

Lemma 7.4 Let Xi, 1 � i � n be independent random variables with 0 � Xi � U for i 2 I and
�U � Xi � 0 for i 62 I for some I � f1; 2; : : : ; ng. Let S =

Pn
i=1Xi and � = E(S). Also let

�̂ = E(
Pn

i=1 jXij) Then with high probability jS � �j � cmaxf(�̂U log n)1=2; U log2 ng = ~O(n1=2U)

Proof. Let X 0
i = Xi=U for i 2 I and X 0

i = �Xi=U for i 62 I. Clearly 0 � X 0
i � 1. Let S01 =

P
i2I X

0
i

and S02 =
P

i62I X
0
i. Let �

0
i = E(S0i) for i = 1; 2. We now use Lemma 7.1 as follows. Fix i = 1 or 2.

If �0i � c1 log
2 n then using Lemma 7.1(a) with � = c21 log

2 n=�0 we obtain that w.h.p.

jS0i � �0ij � c21 log
2 n: (8)

If �0i � c1 log
2 n then using Lemma 7.1(b) with � =

p
c1 log n we obtain that w.h.p.

jS0i � �0ij �
q
c1(logn)�0i (9)

Now let Si = US0i and �i = U�0i for i = 1:2. Multiplying the inequality (8) or (9) by U we see that
w.h.p.

jSi � �ij � cmaxf(�iU log n)1=2; U log2 ng:
Now S = S1 � S2 and � = �1 � �2 and so w.h.p.

jS � �j � cmaxf(log n)1=2U(p�1 +p
�2); U log2 ng:

The lemma now follows from the fact that
p
�1 +

p
�2 �

p
2(�1 + �2) =

p
2�̂.

19

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

