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Abstract

Given an r-regular graph G on n vertices with a Hamilton cycle, order its edges
randomly and insert them one by one according to the chosen order, starting from the
empty graph. We prove that if the eigenvalue of the adjacency matrix of G with the
second largest absolute value satisfies A = o(r%/2/(n??(log n)?/?)), then for almost all
orderings of the edges of G at the very moment 7* when all degrees of the obtained
random subgraph H,+ of G become at least two, H,« has a Hamilton cycle. As a
consequence we derive the value of the threshold for the appearance of a Hamilton
cycle in a random subgraph of a pseudo-random graph G, satisfying the above stated
condition.

Key-words Pseudo-random Graphs, Hamilton Cycles, Random Graphs.

1 Introduction

Pseudo-random graphs (sometimes also called quasi-random graphs) can be informally
defined as graphs whose edge distribution resembles closely that of truly random graphs
on the same number of vertices and with the same edge density. Pseudo-random graphs,
their constructions and properties have been a subject of intensive study for the last fifteen
years (see [15], [16], [8], [14], [3], to mention just a few).
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For the purposes of this paper, a pseudo-random graph is an r-regular graph G = (V, E)
with vertex set V' = [n] = {1,... ,n}, all of whose eigenvalues but the first one are sig-
nificantly smaller than r in their absolute values. More formally, let A = A(G) be the
adjacency matrix of G. This is an n-by-n matrix such that A;; = 1if (4,j) € E(G) and
A;; = 0 otherwise. Then A is a real symmetric matrix with non-negative values of its
entries. Let \; > Ay... > A\, be the eigenvalues of A, usually called also the eigenvalues of
G. It follows from the Perron-Frobenius theorem that A\; = r and |\;| < r forall2 <i < n.
We thus denote A = A\(G) = maxa<;<p |Ai|. The reader is referred to a monograph of Chung
[7] for further information on spectral graph theory.

It is known (see, e.g. [2]) that the greater is the so-called spectral gap (i.e. the difference
between r and \) the more tightly the distribution of the edges of G approaches that of the
random graph G(n,r/n). We will cite relevant quantitative results later in the text (see
(6), (7)), for now we just state informally that a spectral gap ensures pseudo-randomness.
Thus in the rest of the paper we will stick to the view of a pseudo-random graph as an
r-regular graph on n vertices with A < r.

In this paper we study certain properties of a random subgraph of a pseudo-random graph.
Given a graph G = (V| E) and an edge probability 0 < p = p(n) < 1, the random subgraph
G is formed by choosing each edge of G independently and with probability p. The most
studied random graph is the so called binomial random graph G(n, p), formed by choosing
the edges of the complete graph on n labeled vertices independently with probability p.
Here rather than studying random subgraphs of one particular graph, we investigate the
properties of random subgraphs of graphs from a wide class of regular pseudo-random
graphs. As we will see, all such subgraphs viewed as probability spaces share certain
common features.

Another related notion is that of a graph process. Given a graph G = (V| E), choose a
permutation o = (e, e,...) of the edges of E uniformly at random and then define an
increasing sequence of subgraphs (G,,) of G, where G,,, = (V, E,;,) and E,,, = {e1,... ,em}.
This sequence is called a random graph process. Choosing a random graph process (G,,)
and then ”stopping” it at time i is easily seen to produce a subgraph of G with ¢ edges,
chosen uniformly at random from all such subgraphs. We will thus denote by G; the prob-
ability space of the subgraphs of G with ¢ edges and with the uniform measure. Random
subgraphs and graph processes are intimately related, and studying one of these two prob-
abilistic objects usually provides immediate consequences for its counterpart. Our paper
is not exceptional in this aspect, we will draw conclusions about random subgraphs based
on studying random graph processes.

Given a graph process (G,,) and a graph property A possessed by G, the hitting time 74
is the minimal m, 0 < m < |E(G)|, for which the subgraph G,, has A.

As customary when studying random graphs, asymptotic conventions and notations apply.
In particular, we assume where necessary the number of vertices n of the base graph G to
be as large as needed. Also, we say that a graph property A holds with high probability, or



whp for brevity, in G, if the probability that G, has A tends to 1 as n tends to infinity.
A recent monograph [11] provides a necessary background and reflects the state of affairs
in the theory of random graphs.

The subject of this paper is Hamilton cycles in random subgraphs of pseudo-random graphs.
Observe that in order for a random graph G,, to contain a Hamilton cycle all vertices
should have degree at least two in G,,. Thus the corresponding graph process problem
can be formulated in general as follows: given a graph G with a Hamilton cycle, is it true
that for almost all graph processes (G,,) the first Hamilton cycle appears exactly at the
moment when all vertex degrees become at least two? This problem has been solved in
the affirmative for the case G = K,, i.e. for the model G(n,p), by Bollobas [5], based
on a breakthrough technique developed by Posa in [13]. The ingenious rotation-extension
technique of Posa plays a central role in our arguments as well.

Our main result can be formulated as follows. Let G = ([n], E) be an r-regular graph with
a Hamilton cycle. Consider a hitting time problem. Let eq,es,..., en, N = rn/2 be a
random ordering of the edges of G. For 0 < m < |E| let E,, = {e1,e2,... ,en} and let
Gm = ([n], E). Now consider two hitting times.

T =T(G) = min{m: §(G,,) > 2}.
Ty = 7g(G) = min{m: G,, is Hamiltonian}.
Let A denote the second largest by absolute value eigenvalue of the adjacency matrix of G.
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Theorem 1 If A = o (W) then whp 75(G) = 71(G).

Remark 1 Since A\ = Q(d*/?) (see, e.g., [12]), the condition of the theorem implies that

r > n®4(logn)®.

Throughout the paper we omit systematically all floor and ceiling signs for the sake of
clarity of presentation. All logarithms are natural.

2 Proof of Theorem 1

Theorem 1 follows immediately from the Lemmas 1 and 2 below. We start with some
notation. Let H = ([n], F') be a graph on vertex set [n|. Let dg denote degree in H. Let

logn
10 }

LARGE = LARGE(H) = {v € [n] : dg(v) >



and SMALL = SMALL(H) = [n] \ LARGE. Vertices v € SMALL will be called small
vertices.

For S C [n] we let Ng(S) = {w € [n]: Jv € S such that (v,w) € F}.

Consider the following list of properties:

P1 §(H) > 2.
P2 SMALL contains no edges.

P3 No v € V is within distance 2 of more than one small vertex.

P4 S C LARGE, [S| < nE2%E" implies that | Np(S)| > |S|rese

10loglogn*

P5 AABCV,AnB =10, |A|,|B| > 20n1°1gO1T"i" implies that H contains at least |A||B|1°2gn”
edges joining A and B.

P6 A\ BCV,ANB =10,|A| <|B| <4]A| and |B| < 200”% implies that there are at
most 2400|A|loglog n edges joining A and B.

P7 If |A] < BOn% then A contains at most 100|A| loglogn edges.

Lemma 1 Let H = ([n], F') satisfy P1-P7 above. Then H is Hamiltonian.

O
Lemma 2 G, satisfies P1-P7 whp.

O
3 Proof of Lemma 1
We assume throughout this section that P1-P7 hold. We first prove
Lemma 3 H is connected.
Proof If H is not connected then from P5 it has a component C' of size at most

20n"°E %" But then P3 and P4 imply C' C SMALL. P1 and P2 give a contradiction. O



3.1 Construction of an initial long path

We use rotations and extensions in H to find a maximal path with large rotation endpoint
sets, see for example [6], [9]. Let Py = (vi,vs,...,v;) be a path of maximum length in
H. If1 <i<land {v,v} is an edge of H then P’ = (vjvg...v;uv; 1...v;11) is also of
maximum length. It is called a rotation of Py with fized endpoint v; and pivot v;. Edge
(v, vi41) is called the broken edge of the rotation. We can then, in general, rotate P’ to get
more maximum length paths.

For t > 0 let S; = {v € LARGE : v # vy, is the endpoint of a path obtainable from P, by
t rotations with fixed endpoint v; and all broken edges in Fp}.

It follows from P1, P3 and P4 that S; # 0. It then follows that if [S,[ < n™E°5" then
1Ss11] > |Se| 5262 — . We prove this by induction. It is clearly true for t = 0 and

21loglogn
1
[Serl 2 SINE(S)] = (L4 |51 + [S2| + -+ +Si) (1)
logn
> " 1 e
> 8 5ot (LF 151418+ +1Si])
logn
> |8
21loglogn
Explanation of (1) Let
¢
T = {Z Z 2: v; € NH(St),Ui—l,Ui+1 ¢ U S.,-} (2)

=0

Note that if v; € Ng(S;) then we know already that H is Hamiltonian. It is connected and
there is a cycle containig a longest path. So we assume that vy ¢ Ng(S;)

Suppose now that x = v; € T and y € S, are neighbours. t rotations starting with P,
produce a path @ with y as an endpoint. Now, v; 1,v;41 ¢ UtT:o S, and so a rotation with
pivot v; will place one of v; 1,v;,1 in Sz, 1. Suppose for example that it is v; ;. The only
other vertex other than v; that can place v; ; in S;,; in this way is v; 5. Thus we obtain
at least half the RHS of (2) in this way as members of S;,.

Thus there exists ¢y < (1 + o(1))logn/loglogn such that |Si| > cn, ¢ = 1/21. Let
B(vy) = S, and Ag = B(vy) U {v1}. Similarly, for each v € B(v;) we can construct a set
of endpoints B(v), |B(v)| > ¢n, of endpoints of maximum length paths with endpoint v.
Note that [ > cn as every vertex of By lies on Fj.

In summary, for each a € Ay, b € B(a) there is a maximum length path P(a,b) joining a
and b and this path is obtainable from Py by at most (2 + o(1))logn/loglogn rotations.



3.2 Closure of the maximal path

This section follows closely both the notation and the proof methodology used in [1].

Given path P, and a set of vertices S of Py, we say s € S is an interior point of S if both

neighbours of s on P, are also in S. The set of all interior points of S will be denoted by
int(S).

Lemma 4 Given a set S of vertices with |int(S)| > 120”%’ there is a subset S' C S

such that, for all s € S’ there are at least k = 1°5gn"|z'nt(5')| edges between s' and int(S').
Moreover, |int(S")| > |int(S)|/2.

Proof We use the proof given in [1]. If there is s; € S such that the number of edges
from s; to int(S) is less than k we delete s1, and define S; = S\ {s1}. If possible we repeat
this procedure for Si, to define S, = Sy \ {s2} (etc). If this continued for r = %|int(S)]

steps, we would have a set S, and a set R = {s1, s2,..., S}, with
lint(S,)| > |int(S)| — 3r > |mt2(5)|
However, there are fewer than
HE| = 2 int(5)] [R] < 228" imi(s,)| |R],
edges from R to int(S,), which contradicts P5. O

In Section 3.1 we proved the existence of maximum length paths P(a,b), b € B(a), a € A
where |Ag|, |B(a)| > en. Thus there are at least ¢?n? distinct endpoint pairs (a,b) and for
each such pair there is a path P(a,b) derived from at most p = (2 + o(1)) logn/loglogn
rotations starting with some fixed maximal path F.

We consider P to be directed and divided into 2p segments I3, I, ... , I, of length at least
||Pol/2p], where |Py| > cn. As each P(a,b) is obtained from P, by at most p rotations, the
number of segments of Py which occur on this path, although perhaps reversed, is at least
p. We say that such a segment is unbroken. These segments have an absolute orientation
given by Py, and another, relative to this by P(a,b), which we regard as directed from a
to b. Let t be a fixed natural number. We consider sequences ¢ = I;,, ..., I;, of unbroken
segments of Py, which occur in this order on P(a,b), where we consider that o also specifies
the relative orientation of each segment. We call such a sequence o a t-sequence, and say
P(a,b) contains o.

For given o, we consider the set L = L(o) of ordered pairs (a,b), a € Ay, b € B(a) which
contain the sequence o.

The total number of such sequences of length ¢ is (2p);2!. Any path P(a,b) contains at least
p > logn/loglogn unbroken segments, and thus at least (;’) t-sequences. The average, over

6



t-sequences, of the number of pairs containing a given ¢-sequence is therefore at least

2.2 (lt)) > 2

c’n :
(2p)e2¢ —

where a = ¢?/(4t)". Thus there is a t-sequence oy and a set L = L(ay), |L| > an® of
pairs (a,b) such that for each (a,b) € L the path P(a,b) contains oo. Let A = {a :
contains at least an/2 pairs with a as first element}. Then |A| > an/2. For each a € A
let B(a) = {b: (a,b) € L}.

Let ¢ = 480000/c and let C denote the union of the first ¢/2 segments of o, in the fixed

order and with the fixed relative orientation in which they occur along any of the paths

P(a,b), (a,b) € L. Let C5 denote the union of the second ¢/2 segments of oy. C; and C

both contain at least £ cn lzglé;gn"(l — 0(1)) interior points which from Lemma 4 gives sets
1, C4 with at least

tC(]_ _0(1)) oglogn oglogn
T nioEoEn > 300000 F 5" (3)

interior points and with all vertices v € C] having at least 1°5i"|C£ | neighbors in the corre-
sponding sets int(C}).

It follows from P5 that there exists a € A such that H contains an edge from a to int(C1).
Similarly, H contains an edge joining some b € B(a) to int(Ch). Let z be some vertex
separating C7 and Cj along P = P(a,b). We now consider the two half paths Pi, Py
obtained by splitting P at z. We consider rotations of P, i = 1,2 with z as a fixed
endpoint. We show that in both cases the finally constructed endpoint sets Vi, V5 are large
enough so that P5 guarantees an edge e € E(H) from V; to V. Since in a connected graph
every non-Hamiltonian cycle can be augmented to a path with a larger number of vertices,
we deduce that H is Hamiltonian as the path e closes is of maximum length.

Consider P;. Let T; = {v € C] : v # x is the endpoint of a path obtainable from P, by i
rotations with fixed endpoint z, all pivots in int(C7) and all broken edges in P;}. We claim
we can choose sets U; C T;, 1 =1,2,... | =1 and |U;y1| = 2|U;], as long as
|U;| < 15n1°1g01%. > lolgolﬂ and we are done. Note
that T} # () because @ has an H-neighbour in int(C7). Note also that if we make a rotation
with pivot in int(C]) and broken edge in P; then the new endpoint created is in Cj.

Let y be a vertex of U;. Then by Lemma 4 and (3) there are at least 6000 loglogn
edges between y and int(C7). Thus the number of edges from U; to int(C}) is at least
3000|U;] log logn As |U; (Uil < 2|U;| at most 200|U;| loglogn of these edges are con-
tained in U U; (from P7), and so by P6 we have |T;.1| > §|Ng(U;) Nint(CY)| > 2|U;]
and we can select a subset of size exactly 2|U;|. O



4 Proof of Lemma 2

For 0 <p <1let G, = ([n], E,) denote the random subgraph of G where each edge of E
is independently included in E, with probability p.

Let A be a property of graphs. Such a property is monotone increasing if G € A implies that
G' € A for all G’ which contain G as a subgraph. A similar definition holds for monotone
decreasing properties. We state the following easily verified results: Let p = m/N.

Pr(G,, € A) < 3m'*Pr(G, € A). (4)
If A is monotone then
Gm € A whp iff G, € A whp. (5)

We also need the following results related to edge density in G. They are taken from Alon
and Spencer [4], Chapter 9.

Recall that G is an r-regular graph with vertex set V(G) = [n]. Let K,L C [n], |K| =
k,|L| = ¢ be disjoint. Let eq(K) denote the number of G-edges which are contained in K
and let eq(K, L) denote the number of G-edges joining K and L. Then

k2 r 1
‘eG(K, L) - sz‘ < AWk (7)
n

Thus if A is small, the values of eq(K), eq(K, L) are close to what one would expect in the
standard random graph model G, , /y,.

Let
1
m; = 5n(logn +loglogn + (2i — 3)logloglogn), i = 1,2,

and where N = rn/2 let

2m; 1 . .
p; = X;L = —(logn + loglogn + (2i — 3) logloglogn), i = 1, 2.
r
Lemma 5
ma S T2 S mo Whp
Proof Having minimum degree at least two is a monotone property and so we can

prove the lemma by verifying that
d(Gp,) < 2 whp and §(G,,) > 2 whp,

and then applying (5).



Let Z; denote the number of vertices of degree 0 or 1 in G,,,7 = 1,2. Then
E(Z) = n((1-p) +rpi(1—p) Y
= (14 o0(1))(loglogn)**.
Thus E(Z;) = o(1) and §(Gp,) > 2 whp.
Furthermore, E(Z;) ~ loglogn and
E(Z(Z1—1)) =2N({m(1 —p)* 2+ (1= p)(1 = p)" + (r = pr(1 = p1)" )
+(n(n —1) = 2N)((1 = p)" +rpi(1 = ps)"™")?
~ (loglogn)?

and so
E(Z,)?

E(Z})

Pr(Z, #0) >
O

We now go through the list of properties P1-P7 and confirm them one by one. Clearly G,
satisfies P1 and so we start with P2.

P2 and P3:

We will prove that whp there do not exist v,w € SMALL(G,,,) such that v, w are joined
by a path of length 4 or less in G,,,. This implies that P2 and P3 both hold in G,,. Now
if Z denotes the number of such pairs v, w then

4 (logn)/5 (2r—2) (N—2r+2—t)
E(Z) gant Z i (]i,n;_k_t
t=1 k=0 m1

L OB o N E ke o\ ™
t=1 k=0
4

< 2n71(10e)log™)/5 Z(log n)t

t=1

P4:
Suppose that K C [n] with |K| = k. We show first that whp

n . .
k S W lmphes €msy (K) S 3k (8)

for every such subset K, where e,,,(K) is the number of G,,, edges contained in K.

It follows from (6) that



Case 1:
5/2 3/2

n r n r
<

k e
wn3/2(logn)®?2 r  wnl/2(logn)3/2

IN

r
where w — o0.

Let ey, (K) denote the number of G,, edges contained in K.

An/r k
e - < Q)
k=8
An/r 3\
ne [ klogn
< -
- Z(k < 2r >>
k=8
An/r 9 3\ k
n k*(logn)
< Z <§ r3 >
k=8
An/r

IA
g
g
1

The existence of K containing > 3| K| edges is monotone and so we see from (5) that whp
em, (K) < 3|K| for |K| < An/r.

Case 2: k > An/r.
It follows from (9) that eg(K) < k*r/n. So

n
Pr(3K : Mn/r < |K| < 2(logn)*2’ €pa (

n/(2(logn)*/?)

S )

k=An/r

n ogn)3/2 k
/(2(lzg) ) ne (kre (1+o0(1))logn 5
E \ 3n r

k=An/r

K) > 3k)

IN

n ogn 3/2
/(2(logn)>/%) o4 kz(logn)s

< Z (1+ 0(1))2—7 . T)

k=An/r
= o(1).
Applying (5) we see that we have now verified (8).
It follows that whp

logn

K CLARGE, K| <

implies | Ng,, (K)| > ——|K|. (10)

L
(logn)®/>

10



Indeed, suppose there exists K for which (10) does not hold and let L = Ng,, (K). Then

KUL| < (% +1)|K]| <

contradicting (8).

. . 1
739(10;‘”)3 7z and it contains at least <5 |K| — em,(K) edges,

To finish the verification of P4, consider the event B that G,,, contains a set of vertices

K, formsims < |K| =k < niEER where |Ng,, (K)| < qrieir [K|. P4 follows from the

non-occurrence of this event. Let L = Ng,, (K), £ =|L| and R = [n] \ K U L. Now (7)
and our assumption on the value of A imply that

ec(K,R) = (1 — o(1))k(n — k — 1)~ > (1 — o(1))9%r/10.

S

We calculate in G, and translate to G, via (7). First consider the case £ < k. The
probability that such K, L exist with no K — R edges in G,, is then at most

nloglogn/(logn) n 2
1_— (1—0(1))k(n—2k)r/n
> (1) a-m
k=n/(logn)5/2

nloglogn/(logn)
ne

< Z <?>2k exp{—(1 — o(1))klogn} = o(1).

k=n/(logn)5/2
We can now use monotonicity and (5) to rule out this event in G,y,,.

Now consider the case £ > k. Now (7) implies that eg(K, L) = (1 +o(1))k¢>. Hence there
is a set L; of at least £/2 vertices of L, each having at most 2(1 +o(1))kZ K-neighbours in
G. Each vertex of L has a G, neighbour in K. So the probability that such K, L; exist in
Gp, is at most

klogn/(10loglogn)

nloglogn/(logn) n n okr £/2
¢ 4RT o\ (1-0(1))9kr/10
> (1) X ()(aramn) a-m

k=n/(logn)5/2 1=k

nloglogn/(logn) ne k klogn/(10loglogn) Ine zklogn ¢
—8k/9 b
= Z (l{:)n Z (ﬂ \/(1+0(1)) n )
k:n/(logn)5/2 =k

nloglogn/(logn) klogn/(10loglogn)
- Z <%>kn8’“/g-n- ((1+0(1))2Oe7]zioglogn /2klogn>
ogn n

k=n/(logn)®/2
nloglogn/(logn)
< Z (lOg n)5k/2 . n78k/9 .n- nk/?
k=n/(logn)®/?
=o(n ?).

So applying (5) we see that whp B does not happen in G,,, and this completes the verifi-
cation of P4.

11



P5:
It follows from (7) that eq(A, B) > (1—o0(1))ab> where a = |A|,b = |B|. Then by Chernoff
bounds,

logn n\ (n 1 logn
: < N
Pr(3A,B: e, (A,B) < ab o ) < E <a> <b> exp{ 10ab " }

a,b>200n 108108
ogn

ne blogn)\* [ ne alogn b
< 2 <ZeXp{_ 20 }) <TeXp{_ 20 })

a,b>200n 'o8loE ™
ogn

= o(1).

Since we are discussing a monotone property, we deduce its occurence in G,,, whp and
hence in G,,.

Pé6:
We can assume w.l.o.g. that |B| = 4|A|. If | 4| < {og? then we can use (8) because if P6
fails then AU N(A) contains 5|A| < Togno7e vertlces and at least 2400|A|loglogn edges.

So we can assume that |A| > Togm)?" It follows from (7) that eg(A4,B) < (1 + o(1))abr.
Then by Chernoff bounds,

Pr(3A4, B : e, (A, B) > 2400|A|loglog n)

1+0(1))4a r
S < ) < > < > p3400a loglogn
a<200n log log n 24000/ log log n
< 1 +0(1))4ea Do 2400aloglog n
B 2400naloglogn

a<200n'cglen ‘°g 1°g n

IA
5 M

a<200 loglogn
ogn

(]

ne (ne>4 (1+0(1))4ealogn 2400loglogn\ ¢
a 4a 2400n loglogn
(E (Ey (M) 240010g10gn>a
4 3
GSQOOnI"IgJ% a a

1 1 2400loglogn log%n
< n- (e(logn)10 <7e( +30( ))>

= o(1)

Since we are discussing a monotone property, we deduce its occurrence in G,,, whp and
hence in G,.

P7:

For |A] = a <

< fognyz We can appeal to (8). For a > Tognyers We see from (7) that

(log

12



2

ea(A) < (1+0(1))%r. So

Pr(3A : W <a< 30n1°£50:’§", ep, (A) > 100aloglogn)
loglogn
logn
< z:g n (1 + 0(1))a2r/n plOOaloglogn
- < a 100aloglogn J©2
*~ (ogn)3/2
loglogn

30Mm

= (logn)3/?

loglogn
logn

< Z (e(logn)3/2(‘8)10010g10gn)a

— n
= ogn)3/2

30Mm

logn 100loglogn a
< Z ne (ae(l +o(1))logn
a 100n loglogn

o(1).

Since we are discussing a monotone property, we deduce its occurrence in G,,, whp and

hence in G,.

5 Concluding remarks

e Our main result, Theorem 1, and its proof imply readily the following result on the

threshold probability for Hamilton cycles in the random subgraph G,;:

Corollary 1 Let G be an r-regular subgraph on n wvertices all of whose eigenval-

ues, but the first one, are at most A in their absolute values. Assume that X =
0 (ngw) Form a random subgraph G, of G by choosing each edge of G inde-
pendently with probability p. Then for any function w(n) tending to infinity arbitrarily
slowly:

1. if p(n) =
2. if p(n) =

I(logn + loglogn — w(n)), then whp G, is not Hamiltonian;
I(logn + loglogn + w(n)), then whp G, is Hamiltonian.

Our result enables to estimate from below the number of Hamilton cycles in pseudo-
random graphs as follows:

Corollary 2 Let G satisfy the conditions of Theorem 1. Then G contains at least
(W) Hamilton cycles.
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Proof Denote by HC(G) the number of Hamilton cycles in G. Consider the
random subgraph G, with p = p(n) = (log n+2loglogn)/r. Denote by X the random
variable counting the number of Hamilton cycles in G(p). As by our main Theorem
and the preceding corollary G, has whp a Hamilton cycle, we get E(X) > 1—o(1). On
the other hand, the probability a given Hamilton cycle of G appears in G, is exactly
p". Therefore the linearity of expectation implies E(X) = HC(G) - p*. Combining
the above two estimates we get:

1—o(1)) _ r '
HC(G) > o —<(1+o(1))logn> '

O

Note that the number of Hamilton cycles in any r-regular graph on vertices obviously
does not exceed r™. Thus for graphs satisfying the conditions of Theorem 1 the above
corollary provides an asymptotically tight estimate on the exponent of the number
of Hamilton cycles. The above result improves upon an estimate of Thomason ([15],
Corollary 2.9) for the number of Hamilton cycles in pseudo-random graphs. We
remark that for the case of pseudo-random graphs of linear degrees a recent result
of the first author [10] gives an even better lower bound for the number of Hamilton
cycles.

e We do not believe that the restriction on A imposed in the formulation of Theorem 1 is
optimal. It would be interesting to figure out what is the weakest possible requirement
on the spectral gap which still guarantees that the hitting time for Hamiltonicity still
coincides whp with that of having all degrees at least two. We conjecture that at
least for the case of linear degrees the weakest possible condition A = o(r) should
ensure the above stated property.

e Our paper can be viewed as the first step in studying random subgraphs of pseudo-
random graphs. Questions of a similar kind can be asked with respect to other
properties of pseudo-random graphs, like independence and chromatic numbers, ex-
istence of perfect matchings, factors and many others. Their study should combine
existing techniques for the binomial random graphs G(n,p) with known results on
the edge distribution of pseudo-random graphs. We plan to return to this subject in
the future.
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