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Abstract

We define a space of random edge-coloured graphs Gy, ,, , Which correspond
naturally to edge k-colourings of G, . We show that there exist constants
Ky, Ky < 21 such that provided m > Kgnlogn and £ > Kin then a random
edge coloured graph contains a multi-coloured Hamilton cycle with probability
tending to 1, as the number of vertices n tends to infinity.

1 Introduction

Let G, . denote the space of random edge-coloured graphs, defined as follows: Each
G in G, has vertex set [n], edge set E,,(G) of size m, and each edge is coloured
with a label from [k]. Thus |G, .| = (fX ) k™ where N = (g) The elements of G, m
are given the uniform measure. A random edge-coloured graph G, . is a graph G

sampled uniformly at random from G, ,, ..

Given G € G, @ subset S of the edges of G is multi-coloured, if no two edges
of S have the same colour. We are interested in conditions on n,m, x which imply
that whp! Gnmx contains a multi-coloured Hamilton cycle. We also consider the
corresponding randomly arc-coloured random digraph D, ,, . which is defined in the
analogous way. We prove
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LA sequence of events &, is said to occur with high probability (whp) if lim,,_,, Pr(&,) = 1.



Theorem 1 There exist constants Ky, K1 > 0 such that if m > Kgnlogn and k > Kin
then Whp Gy (r€Sp. Dpm ) contains a multi-coloured Hamilton cycle.

We note that Theorem 1 is best possible up to a constant factor, for we need at least n
distinct colours and the underlying graph (resp. digraph) does not contain a Hamilton
cycle whp until m > nlogn/2. The values of the constants, (Kp, K1 = 21), we use in
the proof of Theorem 1 are, however, not the best possible values.

There are two general types of results on multi-coloured structures: whp existence un-
der random colouring and guaranteed existence under adversarial colouring. When con-
sidering adversarial (worst-case) colouring, the guaranteed existence of multi-coloured
structures, is called an Anti-Ramsey property.

Erdds, Nesetril and R6dl [5], Hahn and Thomassen [8] and Albert, Frieze and Reed
[1] (correction in Rue [10]) considered colourings of the edges of the complete graph
K,, where no colour is used more than k times. It was shown in [1] that if £ < n/64,
then there must be a multi-coloured Hamilton cycle. Cooper and Frieze [3] proved a
random graph threshold for this property to hold in almost every graph in the space
studied.

With respect to random colouring, Janson and Wormald [9] gave conditions for the
existence of a multi-coloured Hamilton cycle in a random regular graph. We also
mention that Frieze and Mckay [7] found a tight threshold for the existence of a multi-
coloured spanning tree.

2 A sequence of random graphs

Because we are concerned with monotone properties, we can work entirely with the
independent model G, ,, where p = m/N and the underlying uncoloured graph is
Gnp. Let p; satisfy 1 —p = (1 — p;)?. Let D, ,, be the random digraph where each
arc occurs independently with probability p;. Suppose now that we randomly colour
the arcs of D,, ,, with k colours to obtain the random coloured graph D, ,, .. Ignoring
orientation gives us the random graph G, ; ., provided we make a random choice from
the two possible colours when coalescing the edges of directed 2-cycles.

Next let Dg_oyt,, denote the following set of arc-coloured digraphs: Each D € Dg_out,
has vertex set [n], each vertex has out-degree d and the arcs of D are multi-coloured
by [k] i.e. no colour is used more than once. Thus |Dy_out k| = (";1)”( d";) (dn)!. The
arc-coloured digraph Dg_out . is chosen uniformly at random from Dg_ous .. In this
paper we will be concerned with d = O(1), in particular we assume that d = 5 from
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The central idea of this paper is to use a network flow algorithm to take D, ,, , and,
conditional on an event of probability 1-o(1), return as output, a multi-coloured sub-
digraph D. The distribution of D will be that of Dy_out .. If we ignore orientation
in Dg_outx and delete parallel edges then we obtain the random multi-coloured graph
Ga—outx- Ignoring colours now gives us the random graph G4,y If it is known whp
that G4_ou is Hamiltonian, then we will have proved that whp G, , . contains the
required multicoloured H. To prove Theorem 1 for G, ,,, we only have to do this
for d > 5 and then apply the result of Frieze and Luczak [6] which states that such a
graph is Hamiltonian whp. There is a technical point here. In the usual construction
of G4_,ut we coalesce rather than delete parallel edges. It is not difficult to see that the
proof of [6] is easily modifiable to handle this. On the other hand the result of Cooper
and Frieze [4] that G4 oy is Hamiltonian whp seems to run into difficulty.

2.1 Network Flow Construction

We define a flow network N as follows. N has source s and sink ¢. The vertex set W
consists of s,t, the set of colours C' = [k] and the set V' = [n] of vertices of the D,
under consideration. For each colour z € C there is an arc (s,z) in N of capacity 1.
There is an arc (z,v) in N of infinite capacity for every v € V for which there is an
arc (v,w) in D,, p, , With tail v and colour z. Finally, for each vertex v € V there is an
arc (v,t) of capacity d.

For SC C,let N(S)={v: z €S, veV, (z,v) € N} be the out-neighbour set of S
in /. A cut of finite capacity can be obtained from a set S C C' and N(S) C V. Let
T=N(S),W={s}uSUT,andlet W = (C\ S)U(V\T)U{t}. The capacity of the
cut (W : W) is k — |S| +d|T|. Applying the max-flow min-cut theorem we see that A
admits a flow of value dn if and only if, for all S C C,

Kk —|S|+ d|N(S)| > dn. (1)

We estimate the probability that (1) is not true because, for some set S, |[N(S)| <
n — (k —[S])/d. Le. there exists a set of colours S of size s and a set of vertices T" of
size |T| > (k — s)/d such that every arc of D whose tail is in 7" has a colour in C'\ S.

p satisfies 1 —p = (1 — p;)? and so p; > p/2, for 1 — /T —p > p/2 for p > 0. We see
therefore that np; > Kylogn.

Let £ denote the subset of D, ,, for which §*(D,,,,) > np:/2.

We first estimate Pr(&). By the Chernoff inequality,

Pr(é*(Dn,pl) <nmp;/2) < ne "P1/8 — O(nlfKO/S), (2)



which is O(n~1%/#) for K > 21. Thus Pr(€) = o(1)

1 =2(3) (10 ") (55°) B

be an upper bound on the probability that some set of size s does not satisfy (1)
conditional on £. The range of s we need to consider is between kK —dn + 1 and k — 1.
For, if |S| < k—dn then (1) is true with N(S) = (), and if s = k then as 67 (D) > np; /2,
T =10.

Let

The probability that (1) is not satisfied is bounded by © where

k—1

O=Pr()+ Y  L(s) (3)

s=k—dn+1
As Pr(€) = o(1), we can concentrate on the summation term in (3).

Now, choosing k > 21n, and putting [(k — s)/d] = (k — 8)/d+ fs, 0 < f, < 1,
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which is O(n~1/19) for Ky > 21 when d = 5.

Thus whp N contains a flow of value nd. The capacities of N are integral and so we can
assume this flow is integral. It decomposes into nd (s, t)-paths, each of which assigns
a colour x to a vertex v. By construction a colour can be assigned at most once to an
edge and each vertex is assigned d colours. For each assignment of a colour x to a vertex
v we choose (randomly from D) an arc of colour z which has tail v. We thus obtain a
multi-coloured member of Dy_,u: .. It is easy to argue that the underlying uncoloured
digraph is distributed as Dy_oyt - Indeed we could start with D,, ,, . and then replace
each arc (v,w) by (v,m,(w)) where the m,, v € V are independent permutations of
V' \ {v}. After this transformation the digraph is still distributed as D, ,, .. We run
the network flow algorithm and whp we obtain a multi-coloured member of Dy_ oyt -
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By replacing each arc (v, w) by (v, 7, (w)) we obtain a subgraph of the original D, ,, .
which is distributed as Dg_out .. For those cases where both (v,w) and (w,v) are
selected by the algorithm to be edges of D, ,, . we simply delete this edge. We have to
do this because of the possibility that the network algorithm chooses a different colour
for {v,w} to the one chosen in going from D,, ,, , to Gy p. -

In summary, whp D, ,, . contains a multi-coloured subgraph which is distributed as
Dy out - Ignoring orientation we obtain a graph which whp contains a Hamilton cycle.
This verifies Theorem 1 for the case of undirected graphs.

Consider now the directed case i.e. we start with D, .. We first split this into two
independent copies Dy, Dy of D, ,, .. We then use a slightly modified network. Now
we have vertices s,t,C' and two copies Vi,V of V. The s,C edges are as before and
there are Vi,t and V3, t edges of capacity d (now we can take d = 3). We join x € C to
v € V1 by an infinite capacity arc if V; contains an arc of colour z and tail v. We join
z € C to v € V, by an infinite capacity arc if V; contains an arc of colour  and head
v. The network flow algorithm constructs a random multi-coloured 3-in,3-out digraph,
which whp has a Hamilton cycle, by the result of [4], even after removing parallel arcs.
This is why we take d = 3 and appeal to the proof of the result in [2], that a random
3-in,3-out digraph is Hamiltonian whp. The proof there will survive the deletion of
parallel arcs.

As a final remark, we did not really make arguments about Hamiltonicity only about
constructing a random subgraph which is distributed as Dg_oy. Clearly, other mono-
tone graph properties can be treated in this manner.

Finally we mention two natural related problems: Suppose we fix K at the threshold
value I + o(1). What is the least value of K; = K;(n) for which G, contains a
multi-coloured Hamilton cycle whp? Similarly, if we fix K; = 1, what is the least
value of Ky = Ko(n) for which G, , . contains a multi-coloured Hamilton cycle whp?
It is prudent to observe that we must take Ky > 1 4 o(1) so that whp each colour

occurs at least once.
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