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ABSTRACT
Comparing chromosomal gene order in two or more related
species is an important approach to studying the forces that
guide genome organization and evolution. Linked clusters
of similar genes found in related genomes are often used
to support arguments of evolutionary relatedness or func-
tional selection. However, as the gene order and the gene
complement of sister genomes diverge progressively due to
large scale rearrangements, horizontal gene transfer, gene
duplication and gene loss, it becomes increasingly diÆcult
to determine whether observed similarities in local genomic
structure are indeed remnants of common ancestral gene or-
der, or are merely coincidences.
A rigorous comparative genomics requires principled meth-

ods for distinguishing chance commonalities, within or be-
tween genomes, from genuine historical or functional rela-
tionships. In this paper, we construct tests for signi�cant
groupings against null hypotheses of random gene order, tak-
ing incomplete clusters, multiple genomes and gene families
into account. We consider both the signi�cance of individ-
ual clusters of pre-speci�ed genes, and the overall degree of
clustering in whole genomes.

1. INTRODUCTION
Comparison of gene order and content in related genomes

is a rich source of information concerning genome evolution
and function. The biology literature is rife with articles
in which local similarities in two or more genomes are pre-
sented as evidence of evolutionary relatedness or functional
selection on gene order. To be convincing, such reports
should reject the hypothesis that the observed similarities
could have occurred by chance, yet many of those reports
present no statistical analysis and those that do usually rely
on intuitive criteria, ad hoc tests or, at best, randomiza-
tion simulations. Very few formal probabilistic analyses of
gene clustering have been presented and there is no consen-
sus among them on what criteria best reect biologically
important features of gene clusters.
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Biological background and signi�cance: Speciation
results in o�spring genomes that initially have identical gene
content and order. Similarly, whole genome duplication cre-
ates a new genome with two identical copies of the ancestral
genome embedded in it. In both cases, the gene comple-
ment and gene order of the o�spring genomes will diverge
over time. Gene duplication and loss and horizontal gene
transfer result in changes in gene complement, while gene
order is disrupted by large scale rearrangements, including
translocation, transposition, inversion and chromosome �s-
sion and fusion. Intuitively, rearrangement processes should
result in a pattern of conserved segments, pairs of chromo-
somal regions, one in each genome, that are descended from
a single, contiguous region in the ancestral genome. Be-
cause rearrangements may involve arbitrarily long chromo-
somal fragments, conserved segments that are adjacent in
one genome will not necessarily be close to each other in the
sister genomes.
In the absence of selective pressure on gene order, succes-

sive rearrangement will lead to randomization of gene order.
Therefore, similarity in genomic organization is a source of
evidence for inferring evolutionary relationships and/or for
predicting the functional roles of gene clusters. For example,
comparison of genetic maps of two or more species has been
used to infer patterns of chromosomal rearrangement [10,
35, 37, 52] and as a basis for alternative approaches to phy-
logeny reconstruction [4, 8, 18, 46, 47, 58]. Comparison of a
genetic map from a single species with itself has been used to
analyze patterns of gene duplication in genome evolution [2,
11, 12, 50, 53, 61, 62, 64]. Interest in such questions has
spawned a growing body of research in algorithms for in-
ferring the history of rearrangements (see, for example, [42,
48] for surveys.) In microbial genomics, comparisons of gene
content and order have also been used to study the impor-
tance of spatial organization in genome function including
functional selection [23, 27, 40, 57, 56], operon formation [5,
14] and horizontal transfer [29].
The identi�cation of conserved segments is a basic build-

ing block of all these analyses. According to the most strin-
gent de�nitions, conserved segments are de�ned to be two or
more contiguous regions that contain the same genes in the
same order [34, 38] and, in some cases, in the same orien-
tation [40, 56, 64]. However, it is common practice in indi-
cating conserved segments in comparative genomic maps to
disregard small deviations from strict conservation of gene
order [17, 49]. For example the human-mouse comparison in
[24] indicates only around 200 segments, many of which are
known to contain small inversions and other inconsistencies.



For studies that focus on large scale genome organization
and rearrangements, more generally de�ned gene clusters
are the units of interest. Under some rearrangement regimes
(e.g. short inversions, single gene insertion, loss or duplica-
tion), a high degree of gene proximity is conserved, even
while gene order is rapidly scrambled [45]. The notion of
conserved segment loses signi�cance when it is reduced to
span one or two genes (e.g., [28]). The strict de�nition of
conserved segments is also inappropriate in the presence of
positional errors. These observations have led to formaliza-
tions of a more exible concept of gene cluster, as well as
algorithms for �nding gene clusters given these more relaxed
de�nitions [2, 3, 5, 19, 20, 34, 38, 40, 56, 61].
Our Results: Given a method for identifying them, how

can we assess whether gene clusters are statistically mean-
ingful? The issue of cluster signi�cance arises in two types
of analysis: detailed study of the history or function of a
particular set of genes and large scale studies of the selec-
tive forces acting on the genome as a whole. This leads to
two statistical questions:

Individual clusters: Given a particular set of
genes of interest, is it signi�cant to �nd these
genes in close proximity in a previously unexam-
ined genome?

Whole genome clustering: Given two ran-
dom genomes, is the observation that a certain
number of gene clusters appear in both genomes
signi�cant?

The problem of signi�cance testing for gene clusters has
been introduced by previous authors for a limited set of con-
ditions. Their results, based on combinatorial analysis, are
described in detail in Section 4. In the current paper, we
model a broad range of scenarios. In Section 2, we focus on a
single cluster of pre-speci�ed genes, providing exact expres-
sions for the probability of �nding a given set of m genes
in a window of size r. In Section 3, we extend these re-
sults to take into account incomplete clusters, gene families
and clusters found in several genomes. Probabilistic mod-
els for detecting clusters in whole genome comparisons are
presented, including both genome self-comparison and com-
parison of genomes from di�erent species. The application
of these results to speci�c biological problems is discussed
in Section 5.

2. SIMPLE CLUSTER PROBABILITIES
We begin by introducing a simple de�nition of a gene clus-

ter and calculate the probability of observing such a cluster
in a genome with uniform random gene order (a \random
genome"). Let genome, G = (1; : : : ; n), be an ordered set
of n genes and let M be a pre-selected set of m genes of
interest. These m genes may be of interest because they are
contiguous in some other genome (\the reference genome")
or because they share a functional property. In any case, the
spatial organization of the genes on the reference genome
does not enter into the analysis at this point.
Consider the case where the genes in M are found in any

order in a window of exactly r slots in G. In this case, the
�rst and last of the r slots contain two of the m genes and
the remaining r� 2 slots contain the remaining m� 2 genes

plus r�m intruders. The probability of this event is�
r � 2
m� 2

�
�
n� 1
m� 1

� : (1)

In the event these m genes span at most r slots in G, it
suÆces that one of the end points of the window be occupied
by one of the m genes. In this case, the probability is

q(n;m; r) =

�
r � 1
m� 1

�
�
n� 1
m� 1

� : (2)

If we require that the genes in M appear in a given order,
then the probability of observing the cluster is q(n;m; r)=m!.
Intuitively, we expect the probability of �nding a cluster

by chance will depend on the size of the window, relative
to the genome size, and the fraction of slots in the window
that are occupied by intruders. For large n, we can make
this intuition explicit by applying Stirling's approximation
to Equation 2 to obtain

q(n;m; r) �

�
w�

e

�m�1

��(r� 1

2
)O(1); (3)

where w = r�1
n�1

and � = 1� m�1
r�1

are two parameters intro-
duced to represent window proportion and window sparsity,
respectively. Formulae 2 and 3 can be used to test whether
a speci�c set of m genes is more highly clustered than by
chance.

3. GENE CLUSTER STATISTICS
In the previous section we introduced the our basic notion

of a cluster, m genes in a window of size at most r � m,
and calculated the probability of �nding such a cluster in
a random genome. We now use this probability to develop
tests for a variety of more complex, biologically motivated,
clustering scenarios:
In many cases, authors report �nding incomplete clusters:

given a cluster of m genes in one genome, a subset of those
genes is found close together in another genome. For a given
h < m, is a cluster of h of the m genes signi�cant?
In our initial analysis, we assumed that each gene in M

has exactly one homolog in G1. When G includes families
of paralogous genes, a given gene inM may now correspond
to several genes in G. In this case, a cluster is observed
if any set of m genes corresponding to the genes in M is
found within a window of length at most r. What is the
signi�cance of observing a cluster under these conditions?
The signi�cance of observing a cluster in several genomes

arises in the context of comparative maps. For each genome
in a comparative map, a mapping is established between
each gene in the genome and its homologs in other genomes.
Given such a map, what is the probability of observing the
same clusters in several genomes?
The advent of comparative maps also introduces the ques-

tion of the signi�cance of multiple shared clusters in the con-
text of whole genome comparison. When comparing entire

1Homologs are genes descended from a single gene in the
common ancestral species, resulting from speciation (or-
thologs) or gene duplication (paralogs).



genomes, how many pairs of homologous clusters should we
expect to �nd by chance alone? Aggregate clustering prop-
erties have been used to study the functional and evolution-
ary implications of large-scale genomic organization, includ-
ing rates of rearrangement [10, 32, 52, 51], the distribution
of breakpoints, conservation of gene order [56], and the du-
plication processes (e.g., tandem duplication, whole genome
duplication, duplication of subchromosomal segments) that
dominate in a given lineage [7, 15, 50]. In order to interpret
such data correctly, the signi�cance of a certain number of
observed shared clusters must be determined.
Whole genome clustering statistics are also relevant to

the analysis of individual clusters. The discussion in Sec-
tion 2 focussed on clusters of pre-speci�ed genes. In practice,
gene clusters are often found through comparison of whole
genomes. This is often a serendipitous �nding, and the cir-
cumstances of the discovery may not even be reported. In-
deed, the description of the cluster may read as if the genes
involved were the original focus of interest, i.e., were pre-
speci�ed. But such presentation can be misleading as to the
signi�cance of the clusters. Signicance tests based on whole
genome comparison models (given in Sections 3.4 and 3.5)
should be used in this case rather than Equation 2.
In the following sections, we derive a variety of statisti-

cal tests for determining the signi�cance of gene clusters by
rejecting the hypothesis that such a cluster could have oc-
curred by chance in a genome with uniform random gene
order, the most basic null hypothesis we can consider. If we
cannot reject that null hypothesis, no more complex, biolog-
ically motivated null hypothesis need be considered.
The probability of observing a single cluster of pre-speci�ed

genes (Equation 2) is suÆcient to test its sign�cance. How-
ever, for the more complex biological scenarios described
above, there will typically be more than one cluster of genes
that meet the criterion under consideration. In this case,
the probability of observing at least one such cluster may be
used to test sign�cance. Unfortunately, in many instances
this probability is diÆcult to calculate because some sets of
genes that meet the criterion intersect so that the events
under consideration are not independent.
It is generally easier to calculate the expected number of

clusters of a given type. Such a result can be used as a
benchmark or informal test; if the number of observed clus-
ters, �, is much greater than the expected number, S, we can
assume that about � � S of them represent evolutionary or
functionally derived clusters. Markov's inequality provides
a formal, albeit weak, test: if � > S=�, then the number
of observed clusters exceeds the null hypothesis at a signi�-
cance level of �.
The above approach assumes that it is possible to calcu-

late the number of observed clusters, �, from experimental
data. In some cases, enumerating all observed clusters may
be diÆcult and it is more convenient to use an approach
based on sampling windows from the genome. In this case,
signi�cance tests focus on the expected number of windows
in the sample that contain a cluster of interest and on the
probability that the sample contains at least one such win-
dow.

3.1 Incomplete clusters:
Frequently, only a subset of the m genes of interest are

found in close proximity in the genome. When is this event
signi�cant? To model this scenario, let H be the set of all

subsets of M of size h < m. The probability that a speci�c
subset in H appears in a window spanning at most r slots
is q(n; h; r) and the expected number of such subsets is

SH(n; h;m; r) =

�
m
h

�
q(n; h; r): (4)

Notice that these subsets may intersect. For example, if all
m genes were found in a single window of length r, then
G contains all the incomplete clusters in H but only one
biologically interesting cluster.
For this reason, signi�cance tests based on the probability

of observing at least one incomplete cluster are easier to in-
terpret. This probability is PH(n; h;m; r) = Prob([ni=1Ei),
where Ei is the event that the ith subset in H is found in a
window of size r in G. Since many of the subsets intersect,
the events fEig are not independent. Let Ei1;��� ;ig be the
event that each of the g subsets i1; � � � ; ig appears in a win-
dow of size at most r in G. Then, by the inclusion-exclusion
rule,

PH(n; h;m; r) =
nX
i=1

Prob(Ei)� (5)

nX
i1 6=i2

Prob(Ei1;i2) +

nX
i1 6=i2 6=i3

Prob(Ei1;i2;i3)� � � �

The �rst term of this equation is SH(n; h;m; r) and the re-
maining terms correct for intersecting subsets. In the ge-
nomic context, i.e. for large n, the dominant term of this
correction will be due to pairs of subsets whose intersec-
tions are as large as possible, namely of size h � 1. The
windows containing such a pair must overlap by at least
h � 1 positions. Thus we can estimate the dominant term
of Equation 5 by calculating

S0H(n; h;m; r) =

�
m

h+ 1

�
q(n; h + 1; 2r � h+ 1);

the expected number of windows of size 2r�h+1 containing
h + 1 of the m genes. (Note that this is not exact because
not every such window will be the union of two windows of
size at most r each containing h members of M .) Then

PH(n; h;m; r) � SH(n; h;m; r)� S
0
H(n; h;m; r) (6)

represents a �rst order approximation to the probability that
at least one incomplete cluster of size h appears in G.
An upper bound on the probability of �nding at least

one incomplete cluster can be derived using a sampling ap-
proach. Given a particular window of size r � h of G, the
probability that exactly h of the m genes fall into that win-
dow is just the hypergeometric probability

�qHW (n; h;m; r) =

�
m
h

��
n�m
r � h

�
�
n
r

� : (7)

The probability that at least h of the m genes fall into that
window is then

qHW (n; h;m; r) =

min(r;m)X
i=h

�qHW (n; h;m; r): (8)

The probability of �nding at least one incomplete cluster
from H anywhere in the genome can now be bounded above



by sampling all windows of size r in G that have a gene from
M in the �rst position:

PH(n; h;m; r) � m qHW (n; h�1; m�1; r�1): (9)

When SH()� 1, Equation 4 can be used to test whether
the observation that h genes of some pre-speci�ed set of m
genes fall into a window of size r � h of G is signi�cant. Al-
ternatively, Formulae 6 and 9 can be used to show that the
probability of observing at least one such cluster is small.
In the usual case where n is very large and either r or m is
small, the combinatorial terms involving n may be approx-
imated, and qHW rapidly calculated. In the case of larger
m and r, we may use the binomial approximation to the
hypergeometric:

qHW (n; h;m; r) �

min(r;m)X
i=h

�
r
i

��m
n

�i �
1�

m

n

�r�i
; (10)

or a normal approximation with mean rm
n

and variance�
n� r

n� 1

��rm
n

��
1�

m

n

�
: (11)

These approximations improve as m increases with respect
to r.

3.2 Allowing for gene families
So far, our analysis has assumed that each gene has ex-

actly one homolog in each genome, a highly unrealistic as-
sumption in most organisms. We now consider genomes
with gene families, assuming that the set of genes in G can
be partitioned into non-intersecting gene families (i.e., each
gene in the family is homologous to all other genes in the
family and to no genes outside the family.)
As the size of gene families increases, so do chance occur-

rences of gene clusters. For example, if we are looking for a
cluster containing the m genes in M , and if just one of the
genes in M has two homologs, then there are two di�erent
sets of m genes that qualify as clusters and the probability
of �nding the cluster by chance doubles (almost). In gen-
eral, if each gene j 2 M has fj homologs in G, then there
are �(M) = �j2Mfj distinct sets of genes that are homolo-
gous to M2. For each of these, the probability that it spans
at most r slots is q(n;m; r). Thus, the expected number of
homologous clusters is

S�(n;m; r) = �(M)q(n;m; r): (12)

The probability that there is at least one such cluster
is P�(n;m; r) � 1 � [1 � q(n;m; r)]�(M). The latter ex-
pression can be used for rough tests, but it is based on
an unwarranted assumption of independence of occurrence
among the �(M) possible clusters. A better approxima-
tion of P�(n;m; r) can be estimated by using the inclusion-
exclusion rule (Equation 5) to correct for overlapping clus-
ters. For large n, the dominant term of this correction will
be due to pairs of clusters that share identical genes in all
but one of the m families. The windows containing such a
pair must overlap by at least m� 1 positions. Thus we can
estimate the second term of Equation 5 by calculating

S
0

�(n;m; r) = q(n;m+1; 2r�m+1)
X
j2M

�(M)

fj

�
fj
2

�
;

2We assume that no two genes in M are members of the
same gene family.

the expected number of windows of size 2r�m+1 containing
a cluster plus an extra member of one of the m families. (As
above, this is only an estimate of the second term because
not every such window will be the union of two windows of
size at most r each containing a complete cluster.) Then

P�(n;m; r) � S�(n;m; r)� S
0

�(n;m; r) (13)

represents a �rst order approximation to the probability that
at least one cluster appears. As in the case of incomplete
clusters, signi�cance tests for gene clusters in genomes with
gene families can be performed using either the expected
number of clusters (Equation 12) or the probability of ob-
serving at least one cluster (Equation 13).

3.3 Clusters in k genomes:
The probability that a gene cluster is a chance occurrence

decreases if found in more than one genome. For k genomes
of same gene content with no gene families, the probability
that a speci�c set of m genes appear in all these genomes
in windows spanning at most r slots is qk = q(n;m; r)k.
The probability that it appears in at least k0 � k of these
genomes, spanning at most r slots in each case, is

PK =
kX

j=k0

�
k
j

�
qj(1� q)k�j ; (14)

which can be used for testing purposes.
The more typical case reported in the literature, however,

is that di�erent subsets ofM are found in di�erent genomes.
Consider k random genomes of size n1; � � � ; nk containing
subsets of M of sizes m1; � � � ;mk, respectively. The proba-
bility that, for each genome Gi, at least one subset of M of
size hi appears inGi in a window spanning at most ri slots is
�k
i=1PH(ni; hi;mi; ri), where each hi � min[mi; ri]. An ad

hoc test based on all the hi and ri is not, however, rigorous.
For fairness, the test should be based on h = min[h1; � � � ; hk]
and r = max[r1; � � � ; rk] and the test distribution becomes

PK = �k
i=1PH(ni; h;mi; r): (15)

For uniform ni and mi, this is PH(n; h;m; r)
k.

If the cluster is missing from any of the genomes, then it is
fair to use n = min[n1; � � � ; nk] and m = max[m1; � � � ;mk].
The probability that subsets of M of size h appear in at
least k0 � k of these genomes, spanning at most r slots in
each case, is obtained by substituting PH(n; h;m; r) for q in
Equation 14.

3.4 Comparing two different genomes
The previous sections focussed on the event that a single

set of pre-speci�ed genes is observed in a cluster under vari-
ous conditions. We now address the event that two genomes,
G1 and G2, from di�erent species share a certain number of
gene clusters. Initially, we treat the case where there are no
gene families. Each gene in G1 has exactly one homolog in
G2 and vice versa. We de�ne a paired cluster to be a set of
m genes observed in two windows of length at most r, one
in G1 and one in G2. The expected number of such paired
clusters is

SoC(n;m; r) =

�
n
m

�
q(n;m; r)2; (16)

where q() is de�ned in Equation 2.



While this expression provides a measure of the degree of
shared clustering between G1 and G2, it is not a convenient
basis for data analysis because it requires enumerating all
paired clusters. An alternate approach, based on sampling
windows from the genome at random, may be preferable.
Given a pair of windows of length r, one from each genome,
the probability that these windows share at least m homol-
ogous gene pairs is

qoW (n; r;m) =

rX
i=m

�
r
i

��
n� r
r � i

�
�
n
r

� : (17)

Given a random sample of nw pairs of windows, such that
no window in the sample overlaps with any other window in
the sample, the expected number of pairs that share at least
m genes is

SoW = nw � q
o
W (n;m; r):

Given a random sample of non-identical, but possibly over-
lapping, windows, the above expressions can be used to esti-
mate the expected number of pairs that sharem homologous
pairs, since the fraction of overlapping pairs is O(n�1), when
r� n.
The probability of �nding at least one pair of windows in

the sample that share at least m genes can be approximated
by the equation

P o
W (nw ; n;m; r)=1� [1�qoW (n;m; r)]nw : (18)

but since it is based on an unwarranted assumption that the
events of �nding clusters in the various pairs of windows are
independent, it provides only a rough estimate.

3.4.1 Comparison with a reference genome
A better estimate can be obtained by designating one

genome as the reference genome (without loss of general-
ity, G1) and considering the set of n�m+1 contiguous runs
of m genes in that genome. The expected number of those
runs that will appear in a window of length r in G2 is

SoR(n; r;m) = (n�m+1) q(n;m; r): (19)

What is the probability that at least one of those runs will
be clustered in the second genome? Let Ei(m;n; r) be the
event that the m consecutive genes starting at gene i in G1

appear in a window of size at most r in the second genome.
(Note that Prob(Ei) = 0 if i > n�m+1, since there are only
n genes in the genome.) Let Ei1;��� ;ig (m;n; r) be the event
that all of the g runs of m consecutive genes in G1 starting
at genes i1; � � � ; ig , respectively, appear in windows of size
at most r in G2. Note that some of the runs may overlap.
The probability that at least one cluster of m (or more)

consecutive genes in G1 appears in a window of size at most
r in G2 is P o

R(m;n; r) = Prob([ni=1Ei) and can be calcu-
lated using the inclusion-exclusion rule (Equation 5). For
large n, we may neglect third and higher order terms and
even those second-order terms where i2>i1+1, yielding the
approximation

P o
R � (n�m+1)q(m;n; r)� (n�m)Prob(E1;2):

We can calculate Prob(E1;2) exactly, by considering all the
ways in which a set of genes, 1 : : :m+1, can appear in two
windows that overlap at m�1 positions. Stated formally, we

compute the probability of the event that genes 1; :::; m ap-
pear in a window of size exactly r1 � m and that genes
2; :::; m+1 appear in a window of size exactly r2 � m, where
the leftmost positions of the two windows are a1 and a2, re-
spectively. Figure 1 lists all possible con�gurations for two
overlapping windows W1 andW2 with endpoints a1+1; a1+r1
and a2+1; a2+r2, respectively, that can satisfy these condi-
tions. Let Pa; Pb; � � � ; Pg be the probabilities that the seven
con�gurations in Figure 1 occur. Then

Prob(E1;2) = (20)
rX

r1;r2=m

X
a1;a2

Pa+Pb+Pc+Pd+Pe+Pf+Pg

Due to space limitations, we do not derive these probabilities
here, but simply state the results:X

r1;r2;a1;a2

Pa = q(n;m; r)
(r�m+2)r(r + 1)

m(m+ 1)
;

X
r1;r2;a1

Pc = q(n;m; r)

(m� 1)

2
664 r(r + 1)

m(m+ 1)
�

1�
r � 1
m� 1

�
3
775 ;

X
r1;a1

Pg = q(n;m; r)
(r �m)(m� 2)

m
:

Due to symmetry, the term for case (b) is identical to (a),
while the terms for (d), (e) and (f) are identical to the term
for (c). Collecting terms, Equation 20 becomes

Prob(E1;2) = 2
X

r1;r2;a1;a2

Pa + 4
X

r1;r2;a1

Pc +
X
r1;a1

Pg;

which may be calculated rapidly with the help of approxi-
mation 3.

3.4.2 Gene families
Let G1 and G2, be two random genomes containing n

genes and nf gene families. The number of sets of m gene
families is de�ned by

� =

�
nf
m

�
(21)

In a given genome, Gi, gene family j has fij members. Given
a particular set, M , of m genes, the number of distinct sets
of genes that are homologous to M is �i(M) = �m

j=1fij in
Gi. In the presence of gene families, the expected number
of paired clusters found when comparing G1 and G2 is

SoF (n;m; r) = (22)"
�X
k=1

�2(Mk)�1(Mk)

#
q(n;m; r)2:

To compute SoF (n;m; r) requires a complete catalog of all
gene families and their sizes for the genome in question.
For a few fully sequenced species, it is currently possible to
calculate SoF (n;m; r), but requires enumerating all sets of
m gene families. Distributions of gene family sizes, under
various assumptions, have been published for a number of
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r2 -
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Figure 1: All possible con�gurations for two overlapping windows W1 and W2 such that genes 1; :::; m appear
in W1 and genes 2; :::; m+1 appear in W2. Genes 1 and m+1 must be present where indicated at the endpoints
of windows. Genes i and j may be any of the genes within the braces, except gene 1 or gene m+1. Except for
these constraints, genes within the braces may occur in any order within the overlap between the windows,
and may be intermingled with other genes.

species (e.g., [15, 30, 36, 59]). In future work, we plan to de-
rive approximations that are more easily calculated based on
parameterized models of such distributions. We seek quanti-
ties ~f i(m) that depend only onm and the model parameters
such that �

nf
m

�
~f1(m) ~f2(m)

is a good approximation for
Q�

k=1[�2(Mk)�1(Mk)]. A �rst
approach is to assume that each gene family has the same
number of paralogs, f . Then nf = n=f , ~f(m) = fm and

SoF (n;m; r) �

�
nf
m

�
[fmq(n;m; r)]2: (23)

While this assumption will rarely, if ever, be true, Equa-
tion 30 is easy to calculate and provides a useful tool for ex-
ploring how the signi�cance of genome-wide clustering varies
with gene family size.
For the case where all gene families are of equal size, we

can also derive measures that can be used in sampling tests.
Given a pair of windows, W1 and W2, of length r selected
from G1 and G2, respectively, the probability that these
windows share at least m gene families is

qoFW (m) =
rX

k=m

p1(k) � p2(k;m); (24)

where p1(k) is the probability that there are k distinct gene
families in W1 and p2(k;m) is the probability that at least
m of those k families appear in W2.

The �rst term is

p1(k) =

�
nf
k

� P
S

�
f
x1

�
�

�
f
x2

�
� � �

�
f
xk

�
�
n
r

� ; (25)

where S is the set of all ensembles fx1 : : : xkg such that

kX
j=1

xj = r

0 < xj � f:

The second term, p2(), is the probability that m of those
k gene families appear in W2. This is equivalent to the re-
quirement that k�m+1 families be excluded from the window
or

p2(k;m) = 1� �p(k; k�m+1): (26)

The probability that at least j gene families will be absent
from a window of size r selected at random is

�p(k; j) =

�
k
j

� �n� jf
r

�
�
n
r

� ;

where the �rst term is the number of ways of excluding j of
the k families from the set of all genes and the second term is
the number of ways of selecting r genes from the remaining



genes normalized by the number of ways of sampling r genes
from the entire gene set.
Given a random sample of nw pairs of non-overlapping

windows, the expected number of pairs that have m gene
families in common is

SoFW (nw; n;m; r)=nw q
o
FW (n;m; r); (27)

and the probability of �nding at least one such pair is ap-
proximately

P o
FW (nw ; n;m; r)�1� [1�qoFW (n;m; r)]nw : (28)

3.5 Genome self-comparison
Clusters of paralogs in the same genome are often pre-

sented as evidence of whole genome duplication or duplica-
tion of large sub-chromosomal segments. Thus, the goal in
genome self-comparison is to determine the degree of clus-
tering among duplicated genes. In this case, genes with no
paralogs may be ignored. Let Gp be the set of np � n genes
in G that have been duplicated. For convenience, we will
describe Gp as an ordered set, 1; : : : ; np, keeping in mind
that the numbering scheme in Gp is di�erent from that in G
(e.g., the �rst gene in Gp is not necessarily the �rst gene in
G.) Let fj be the number of paralogs in gene family j and
nf be the number of gene families. Let M be a particular
set of m di�erent gene families in Gp and letMi(M) be a set
of m genes, one from each family in M. The total number
of pairs of non-intersecting sets (Mi(M);Ml(M)) is

 (M) = �
j2M

�
fj
2

�
:

In the paralogous case, we de�ne a paired cluster to be
two non-intersecting sets Mi(M) and Mj(M) found in two,
possibly overlapping, windows of length at least r in the
same genome. The expected number of paired clusters is
then

SpF (np; m; r) =

"
�X
i=1

 (Mi)

#
q(np;m; r)

2; (29)

where � is de�ned in Equation 21. If all genes in Gp have
the same number of paralogs, f , then

SpF (np;m; r) =

�
nf
m

��
f
2

�m
q(np;m; r)

2: (30)

Calculating qpFW (m), the probability that two non-over-
lapping windows selected at random share at least m gene
families, is analogous to the two genome case (Equation 24).
The probability, p1(k), that there are k distinct gene families
inW1 is again given by Equation 25. However, in calculating
the probability that at least m of those families appear in
W2, we must take into account the fact that W1 and W2

are in the same genome and competing for the same genes.
If W1 contains ci genes from family i, then at most f � ci
genes from that family can appear in W2. We estimate that
ci � r=k for each of the k gene families in W1. Then the
probability that at least j gene families will be absent from
W2 is approximately

�p
0

(k; j) �

�
k
j

� �n� r � j(f�r
k
)

r

�
�
n� r
r

�
;

(31)

yielding

qpFW (m) �
rX

i=m

p1(k) � (1 � �p0(k; k�m+1)): (32)

The degree of clustering of duplicated genes in a genome
can be estimated by counting the number of pairs of windows
that share a given number of gene families. Given a random
sample of nw pairs of non-overlapping windows taken from
Gp, the expected number of pairs that have m gene families
in common is

SpFW (nw ; np;m; r)=nw q
p
FW (np;m; r) (33)

and

P p
FW (nw ; np;m; r)�1� [1�qpFW (np;m; r)]

nw (34)

yields a rough approximation for the probability of �nding
at least one such pair.

4. PREVIOUS WORK
In their analysis of the signi�cance of conserved synteny,

Trachtulec and Forejt [60] estimate the probability of �nding
m genes in a window of exactly r slots by chance to be
(r=n)m, where n is the number of genes in the genome. If
m � r and m; r � n, this formula approximates our exact
expression 1.
As part of their analysis of gene duplication in the human

genome, Venter et al. [61] suggest that the probability of
a �xed set of m genes occurring in a given order within an
interval of r successive gene positions in a random genome
of length n is

u1(n;m; r) =

Pr�2
i=m�2

�
i

m� 2

�
nm�1

(35)

For a large genome, where nm�1 � (n�1)!=(n�m+1)!, and
neglecting end e�ect (or assuming a circular genome), Equa-
tion 35 is essentially correct. An exact expression for this
quantity is u(n;m; r) = q(n;m; r)=m!, where q(n;m; r) is
de�ned in Equation 2
They further consider the case of two sets of m genes that

are pairwise paralogous and state a probability \allowing
for" the two sets \to be spread across r positions" in two
separate locations:

u2(n;m; r) =

�Pr�2
i=m�2

�
i

m� 2

��2
nm�1

(36)

However, it is not clear what event has this probability, even
approximately. Indeed, for m = 3 and r = n

2
, for example,

Equation 36 is O(n2) and thus cannot be a probability.

5. APPLICATION TO BIOLOGICAL DATA
There is a broad literature in which gene cluster analysis

has been used to interpret the evolutionary or functional
implications of gene order in species ranging from viruses
and bacteria to mammals, based on data derived from both
whole genome sequencing and linkage mapping. To show
the utility of the models developed in the previous sections,
we apply our results to a few examples from this literature.
Our intent here is not to reanalyze the data or question the
conclusions of the studies cited below, but rather to provide



Region Gene families found in region References
MHC Abc, C3/4/5, Col, Hsp, Notch, Pbx, Psmb, Rxr, Ten [13, 21, 25, 26, 55, 60]
HOX Achr, Ccnd, Cdc, Cdk, Dlx, En, Evx, Gli, Hh, Hox, If, Inhb,

Nhr, Npy/Ppy, Wnt
[1, 21]

FGR Adr, Ank, Egr, Fgfr, Pa, Vmat, Lpl [9, 31, 41]
TBOX Cryb, Lhx, Nos, Tbx, Tcf, Prkar [43]
MATN Eya, Hck, Matn, Myb , Myc, Sdc, Src [16]

Table 1: Paralogous gene clusters in vertebrate genomes recently reported in the literature. Many of these
clusters appear in several vertebrate species and have also been found in invertebrate genomes.

concrete examples of how our models can be put to practical
use in real biological studies.
Individual clusters: Since Ohno [39] �rst hypothesized

two whole genome duplications in early vertebrates, the role
of large scale duplication in vertebrate evolution has been
much debated [22, 44, 54, 63]. One type of evidence that is
o�ered in these debates is the presence of linkage groups that
appear to be duplicated and also to be conserved across sev-
eral species. At least a dozen papers analyzing such regions,
summarized in Table 1, have appeared in the last decade.
These clusters typically contain �ve to �fteen genes spread
over a window of 15 to 100 slots. Are conserved clusters of
this sparsity truly signi�cant? Figure 2 shows the expected
number of clusters in a random genome of size n = 3000,
calculated using Equation 30. Since these studies were per-
formed on linkage data, n refers to the number of genes in
the data set not the number of genes in the organism. The
Jackson Laboratories Mouse Genome Database [33] (MGD),
currently contains roughly 3000 mapped genes. The curves
in Figure 2(a) suggest that when gene family sizes are small
(f = 2), a cluster of size ten or larger is signi�cant even
if spread over a large window. However, as f increases,
clusters found in larger windows are no longer signi�cant
(Figure 2(b)).
Let us consider one of these examples, the TBOX clus-

ter, in detail. Ruvinsky and Silver [43] observed paralogous
gene clusters on mouse chromosomes 5 and 11, shown in
Figure 3, and explored the hypothesis that these genes were
duplicated in a single event. The central cluster is quite com-
pelling but it is more diÆcult to decide whether the more
distant Prkar paralogs should be included in this candidate
duplicated region. A statistical test can help resolve this
question. We extend Equation 4 to estimate the expected
number of incomplete clusters of a pre-speci�ed set of genes,
obtaining

SFH(n; h;m; r; f) =�
m
h

�
(f�1)hqH(n�m;h;m; r); (37)

for a uniform gene family size, f . In a dataset of 2888
mapped genes extracted from MGD [33], genes from the
Cryb, Lhx, Nos, Tbx and Tcf families were found in a win-
dow of 15 slots on chromosome 5 and a window of 48 slots on
chromosome 11. The inclusion of the Prkar genes, yields a
cluster of seven genes in windows of 47 and 65 slots, respec-
tively. If we take the six gene cluster on chromosome 5 as
the reference, assuming f = 3, the expected number of such
clusters in a random genome is SFH(2888; 6; 15; 48; 3) =
3:0 � 10�4, suggesting that the six gene cluster is signi�-
cant. Adding Prkar1b to the reference cluster, yields h = 7,
m = 47 and r = 65, and the expected number of clusters

becomes 0:83. In this case, it is no longer possible to reject
chance as a possible explanation for the seven gene cluster
with con�dence. Moreover, if we select chromosome 11 as
the reference, then the expected numbers of comparable six
and seven gene clusters in a random genome are 1:0� 10�3

and 1:2, respectively, leading to the same conclusions.
Whole genome analysis: In large scale studies of con-

served regions, the intent is to characterize processes of du-
plication, rearrangement and conservation on a genome wide
scale rather than detailed study of a particular region. In
one example of such an analysis [56], Tamames compaired
pairs of bacterial genomes in a study of gene order conser-
vation in prokaryotes. His approach uses a parameterized
method for identifying pairs of runs of orthologs (one in
each species), in which the user must specify two parame-
ters: m0, the minimum number of pairs of orthologs in the
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Figure 2: Expected number of paralogous clusters in
a random genome, where n = 3000 and m = r. The
threshold, SpF () = 1, is shown as a dashed line. (a)
Each gene has one paralog (f = 2). The number of
genes in the cluster ranges from m = 5 (top curve)
to m = 15 (bottom curve). (b) Cluster size m = 10.
Gene family sizes range from f = 2 (bottom curve)
to f = 8 (top curve).
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Figure 3: Clusters of paralogous mouse genes on
chromosomes 5 and 11. Adapted from Ruvinsky
and Silver [43].

run and, g, the maximum number of intruders found be-
tween any pair of orthologs in the run. Thus, a run with m
orthologs can be at most (g+1)(m�1)+1 slots long. For the
purposes of the study [56], m0 and g were both set to three.
Our model provides a rational basis for selecting parameters
of clustering algorithms such as this. In this example, we
seek the minimum m0 and maximum g such that the clus-
ters obtained are still signi�cant. Figures 4 and 5 show the
expected number of clusters with m gene families in com-

3 4 5 6 7 8 9
r0.0001

0.001

0.01

0.1

1

10

100
 m=3, g=3, f=1,2,4,8

(a)

10 15 20 25 30
r

       -18
1.  10

       -14
1.  10

       -10
1.  10

       -6
1.  10

0.01

 m=9, g=3, f=1,2,4,8

(b)

Figure 4: Expected number of orthologous clusters
of m genes in a window of size r, where r ranges from
m to (g+1)(m�1)+1 and n = 3000. Gene family sizes
are uniform and range from f = 1 (bottom curve)
to f = 8 (top curve). A maximum of g = 3 genes
is allowed between any pair of genes in the cluster.
The threshold, SoF () = 1, is shown as a dashed line.
(a) m = 3. (b) m = 9.
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Figure 5: Expected number of orthologous clusters
of m genes in a window of size r = (g+1)(m�1)+1, f = 8
and n = 3000. Gap sizes range from g = 1 (bottom
curve) to g = 3 (top curve). The threshold, SoF () = 1,
is shown as a dashed line.

mon, calculated using Equation 23. Since bacterial genomes
range from roughly 500 to 7000 genes, an intermediate size
of n = 3000 was used. Figure 4(a) shows that with a gap of
three, clusters of three genes are signi�cant for small gene
family sizes but cease to be for f � 4. When m = 9, how-
ever, most clusters are signi�cant except when f = 8 and r
approaches its maximum range (Figure 4(b)). The depen-
dence of cluster signi�cance on gap size is demonstrated in
Figure 5. When f = 8, clusters in windows of maximum
size with g = 3 are not signi�cant for any value of m, no
matter how large. However, if g = 2 clusters are sign�cant
for m � 6 and for g = 1 most clusters are signi�cant. In
the absence of additional biological information that can be
used to determine cluster signi�cance, such as gene orien-
tation, these results suggest that a slightly higher value of
m0 and a gap size of g � 2 would guarantee the signi�cance
of clusters found with this algorithm. This example demon-
strates that statistical models of gene clusters are useful not
only in data analysis but also in algorithm design.

6. DISCUSSION AND FUTURE WORK
We have presented probabilistic models for determining

the signi�cance of local gene clusters in both paralogous
and orthologous settings. Under a model of uniform ran-
dom gene order, we consider the probability of �nding a
cluster of a particular set of genes, as well as the expected
number of clusters observed in whole genome comparison.
Our models take multiple genomes and gene families into
account. Despite a fairly simple and abstract model, we
have demonstrated that our results can be applied to range
of problems from the biology literature.
In future work, we plan to develop more detailed, bio-

logically motivated models. The current model treats the
genome as an ordered set of genes. An extended analysis
would model the chromosomal positions of genes, and would
take tandem duplications and gene rich and gene poor re-
gions into account. A parameterized model of gene family
sizes that yields realistic, computationally tractable approx-
imations is also needed. Finally, other types of biological in-
formation besides gene order can be brought to bear on the
assessment of signi�cance including gene orientation (e.g.,
[56, 64]) and divergence times (e.g., [6, 15, 43].)
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